pooling.py 63.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define pooling functions
16
from ...fluid import core
17 18 19
from ...fluid.framework import in_dygraph_mode
from ...fluid.layers import utils, LayerHelper, unsqueeze, squeeze
from ...fluid.data_feeder import check_type, check_variable_and_dtype
W
wanghuancoder 已提交
20 21
from paddle import _C_ops
from paddle import _C_ops
22

23 24
__all__ = []

25

26 27 28 29 30
def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _check_input(x, dimension):
31
    if len(x.shape) != dimension:
32 33 34
        raise ValueError(
            "Excepted Input X is {}-D tensor, but received {}-D {}".format(
                dimension, len(x.shape), type(x)))
35 36


37
def _check_instance(x, x_name, types=(int, float)):
38 39 40 41 42 43

    if not isinstance(x, types):
        raise ValueError("Excepted {} type for {} but received type: {}. ".
                         format(types, x_name, type(x)))


44 45 46
def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
47
    else:
48
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]
49 50


51 52 53 54
def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_
55 56


57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
def _channel_last(data_format, num_dims):
    if num_dims == 1:
        if data_format not in ['NCL', 'NLC']:
            raise ValueError(
                "Attr(data_format) should be 'NCL' or 'NLC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NLC" else False
    if num_dims == 2:
        if data_format not in ['NCHW', 'NHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NHWC" else False
    if num_dims == 3:
        if data_format not in ['NCDHW', 'NDHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NDHWC" else False
79 80


81 82 83 84 85 86 87 88 89
def _update_padding_nd(padding, num_dims, channel_last=False, ceil_mode=False):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            if ceil_mode != False:
90
                raise ValueError(
91 92 93 94 95 96 97 98 99 100 101 102 103 104
                    "When Attr(padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")

            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
105
                raise ValueError(
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
            padding = _exclude_padding_in_batch_and_channel(padding,
                                                            channel_last)
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, 2 * num_dims, 'padding')
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, num_dims, 'padding')
        else:
            raise ValueError("Invalid padding: {}".format(padding))
    # for integer padding
126
    else:
127 128 129 130
        padding_algorithm = "EXPLICIT"
        padding = utils.convert_to_list(padding, num_dims, 'padding')
    return padding, padding_algorithm

131

132 133 134 135 136 137 138 139 140 141
def _expand_low_nd_padding(padding):
    #1d to 2d fake input
    if len(padding) == 2:
        padding = [0] * 2 + padding
    elif len(padding) == 1:
        padding = [0] + padding
    else:
        raise ValueError(
            "The size of padding's dimmention should be 1 or 2. But got padding={}".
            format(padding))
142 143 144 145 146 147 148
    return padding


def avg_pool1d(x,
               kernel_size,
               stride=None,
               padding=0,
149
               exclusive=True,
150 151
               ceil_mode=False,
               name=None):
D
Double_V 已提交
152
    """
153 154
    This API implements average pooling 1d operation,
    See more details in :ref:`api_nn_pooling_AvgPool1d` .
155 156 157 158

    Args:
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L]. where `N` is batch size, `C` is the number of channels,
159
                          `L` is the length of the feature. The data type is float32 or float64.
160
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
161
            it must contain an integer.
162
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
163 164 165 166 167 168 169 170
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
171
        exclusive (bool): Whether to exclude padding points in average pooling
172
                          mode, default is `True`.
173
        ceil_mode (bool): ${ceil_mode_comment}Whether to use the ceil function to calculate output height and width.
174
            If it is set to False, the floor function will be used. The default value is False.
175 176 177 178 179 180 181 182 183
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
184 185
        ValueError: If `padding` is a list or tuple but its length is greater than 1.
        ShapeError: If the input is not a 3-D tensor.
186 187 188 189
        ShapeError: If the output's shape calculated is not greater than 0.

    Examples:
        .. code-block:: python
C
Chen Long 已提交
190 191 192 193 194 195 196 197
          
            import paddle
            import paddle.nn.functional as F
            import numpy as np

            data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
            out = F.avg_pool1d(data, kernel_size=2, stride=2, padding=0)
            # out shape: [1, 3, 16]
198 199 200
    """
    """NCL to NCHW"""
    data_format = "NCHW"
201 202
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool1d')
203
    _check_input(x, 3)
204
    x = unsqueeze(x, [2])
205
    kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
206 207 208 209 210 211 212
    kernel_size = [1] + kernel_size
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 1, 'pool_stride')
        stride = [1] + stride

213 214 215
    channel_last = _channel_last("NCL", 1)
    padding, padding_algorithm = _update_padding_nd(
        padding, 1, channel_last=channel_last, ceil_mode=ceil_mode)
216

217 218
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
219 220

    if in_dygraph_mode():
W
wanghuancoder 已提交
221
        output = _C_ops.pool2d(
222 223
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'global_pooling',
            False, 'strides', stride, 'paddings', padding, 'padding_algorithm',
224
            padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
D
Double_V 已提交
225
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
226
            data_format)
227 228 229 230
        return squeeze(output, [2])

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
231
    dtype = helper.input_dtype(input_param_name='x')
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    pool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": 'avg',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
248
            "exclusive": exclusive,
249 250 251 252 253 254
            "data_format": data_format,
        })

    return squeeze(pool_out, [2])


255
def avg_pool2d(x,
256 257 258 259
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
260
               exclusive=True,
261 262
               divisor_override=None,
               data_format="NCHW",
263 264
               name=None):
    """
265 266
    This API implements average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AvgPool2d` .
D
Double_V 已提交
267

268
    Args:
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If it is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The stride size. If it is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the stride size will be a square of an int.

        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
289
        exclusive (bool): Whether to exclude padding points in average pooling
290 291 292 293 294
                          mode, default is `true`.
        divisor_override (float): if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
295 296 297
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
298
    
299 300
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
301
    
302 303 304 305
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
306
    
307 308
    Examples:
        .. code-block:: python
C
Chen Long 已提交
309 310 311 312 313 314 315 316 317 318 319
          
            import paddle
            import paddle.nn.functional as F
            import numpy as np
            
            # avg pool2d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
            out = F.avg_pool2d(x,
                            kernel_size=2,
                            stride=2, padding=0)
            # out.shape [1, 3, 16, 16]
320
    """
321
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
322 323 324
    if stride is None:
        stride = kernel_size
    else:
325
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
326

327 328 329
    channel_last = _channel_last(data_format, 2)
    padding, padding_algorithm = _update_padding_nd(
        padding, 2, channel_last, ceil_mode=ceil_mode)
330 331

    if in_dygraph_mode():
W
wanghuancoder 已提交
332 333 334 335 336 337
        output = _C_ops.pool2d(x, 'pooling_type', 'avg', 'ksize', kernel_size,
                               'global_pooling', False, 'padding_algorithm',
                               padding_algorithm, 'strides', stride, 'paddings',
                               padding, 'use_cudnn', True, 'ceil_mode',
                               ceil_mode, 'use_mkldnn', False, 'exclusive',
                               exclusive, 'data_format', data_format)
338 339 340 341 342
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1]) / divisor_override
343

344
    op_type = 'pool2d'
345
    helper = LayerHelper(op_type, **locals())
346
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool2d')
347
    dtype = helper.input_dtype(input_param_name='x')
348 349 350 351 352
    pool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x},
353
        outputs={"Out": pool_out},
354
        attrs={
355
            "pooling_type": "avg",
356 357 358 359 360 361 362 363
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
364
            "exclusive": exclusive,
365 366 367
            "data_format": data_format,
        })

368 369 370 371 372
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1]) / divisor_override
373 374


375 376 377 378 379
def avg_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
380
               exclusive=True,
381 382 383
               divisor_override=None,
               data_format="NCDHW",
               name=None):
384
    """
385 386
    This API implements average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AvgPool3d` .
387 388

    Args:
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W], where `N` represents the batch size, `C` represents
                          the number of channels, `D`, `H` and `W` represent the depth, height and width of the feature respectively.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
407
        exclusive (bool): Whether to exclude padding points in average pooling
408 409 410 411 412
                          mode, default is True.
        divisor_override (int|float) if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
413
        name(str, optional): For detailed information, please refer
414 415
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
416
    
417
    Returns:
418
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
419
    
420
    Raises:
421 422 423
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
424
    
425 426
    Examples:
        .. code-block:: python
C
Chen Long 已提交
427
          
428
          import paddle
C
Chen Long 已提交
429 430
          import numpy as np

431 432 433 434 435 436 437 438
          x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
          # avg pool3d
          out = paddle.nn.functional.avg_pool3d(
                                            x,
                                            kernel_size = 2,
                                            stride = 2,
                                            padding=0)
          # out.shape: [1, 3, 16, 16, 16]
439
    """
440 441 442 443 444
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
445

446 447 448
    channel_last = _channel_last(data_format, 3)
    padding, padding_algorithm = _update_padding_nd(
        padding, 3, channel_last=channel_last, ceil_mode=ceil_mode)
449 450

    if in_dygraph_mode():
W
wanghuancoder 已提交
451
        output = _C_ops.pool3d(
452 453 454
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'strides', stride,
            'paddings', padding, 'global_pooling', False, 'padding_algorithm',
            padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
D
Double_V 已提交
455
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
456
            data_format)
457 458 459 460 461 462
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1] *
                             kernel_size[2]) / divisor_override
463

464 465
    op_type = "pool3d"
    helper = LayerHelper(op_type, **locals())
466
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
467
    dtype = helper.input_dtype(input_param_name='x')
468 469
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}
470 471

    helper.append_op(
472
        type=op_type,
473 474 475
        inputs={"X": x},
        outputs=outputs,
        attrs={
476 477 478 479 480 481 482 483 484
            "pooling_type": 'avg',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
485
            "exclusive": exclusive,
486
            "data_format": data_format,
487 488
        })

489 490 491 492 493 494
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1] *
                           kernel_size[2]) / divisor_override
495 496


497
def max_pool1d(x,
498 499 500
               kernel_size,
               stride=None,
               padding=0,
501
               return_mask=False,
502 503 504
               ceil_mode=False,
               name=None):
    """
505 506
    This API implements max pooling 1d opereation.
    See more details in :ref:`api_nn_pooling_MaxPool1d` .
507 508

    Args:
509 510 511
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L], where `N` is batch size, `C` is the number of channels,
                          `L` is the length of the feature. The data type if float32 or float64.
512
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
513
            it must contain an integer.
514
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
515 516 517 518 519 520 521 522
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
523
        return_mask (bool): Whether return the max indices along with the outputs. default is `False`.
524 525
        ceil_mode (bool): Whether to use the ceil function to calculate output height and width. False is the default.
            If it is set to False, the floor function will be used. Default False.
526 527 528 529 530
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
531

532 533 534
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
535
        ShapeError: If the input is not a 3-D tensor.
536
        ShapeError: If the output's shape calculated is not greater than 0.
537

538 539
    Examples:
        .. code-block:: python
540

541 542
          import paddle
          import paddle.nn.functional as F
C
Chen Long 已提交
543 544
          import numpy as np

545 546 547
          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
          pool_out = F.max_pool1d(data, kernel_size=2, stride=2, padding=0)
          # pool_out shape: [1, 3, 16]
548
          pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
549
          # pool_out shape: [1, 3, 16],  indices shape: [1, 3, 16]
550
    """
551 552
    """NCL to NCHW"""
    data_format = "NCHW"
553 554
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool1d')
555 556 557
    _check_input(x, 3)
    x = unsqueeze(x, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
558 559 560
    if stride is None:
        stride = kernel_size
    else:
561
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
562

563 564
    padding, padding_algorithm = _update_padding_nd(
        padding, 1, ceil_mode=ceil_mode)
565

566 567
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
568 569

    if in_dygraph_mode():
570
        if return_mask:
W
wanghuancoder 已提交
571
            pool_out = _C_ops.max_pool2d_with_index(
D
Double_V 已提交
572 573 574 575 576
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
577 578 579
            return (squeeze(pool_out[0], [2]),
                    squeeze(pool_out[1],
                            [2])) if return_mask else squeeze(pool_out[0], [2])
D
Double_V 已提交
580
        else:
W
wanghuancoder 已提交
581
            pool_out = _C_ops.pool2d(
D
Double_V 已提交
582 583 584 585 586 587 588
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return squeeze(pool_out, [2])

589
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
590
    helper = LayerHelper(op_type, **locals())
591
    dtype = helper.input_dtype(input_param_name='x')
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
    pool_out = helper.create_variable_for_type_inference(dtype)
    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": True,
            "data_format": data_format,
        })

614
    return (squeeze(pool_out, [2]),
615
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
616 617


618
def max_pool2d(x,
619 620 621
               kernel_size,
               stride=None,
               padding=0,
622
               return_mask=False,
623 624 625 626
               ceil_mode=False,
               data_format="NCHW",
               name=None):
    """
627 628
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool2d` .
629 630 631 632 633 634 635 636

    Args:
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
637
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
638 639
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
640
            it must contain two integers, (stride_Height, stride_Width).
641
            Otherwise, the pool stride size will be a square of an int.
642 643 644 645 646 647 648
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
649
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
650
        return_mask (bool): Whether to return the max indices along with the outputs. Default False, only support `"NCHW"` data format
651
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
652 653 654 655 656 657 658
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
659 660
   
   Raises:
661 662 663
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
664
    
665 666
    Examples:
        .. code-block:: python
667

C
Chen Long 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
            import paddle
            import paddle.nn.functional as F
            import numpy as np
            
            # max pool2d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
            out = F.max_pool2d(x,
                                  kernel_size=2,
                                  stride=2, padding=0)
            # output.shape [1, 3, 16, 16]
            # for return_mask=True
            out, max_indices = F.max_pool2d(x,
                                               kernel_size=2,
                                               stride=2,
                                               padding=0,
                                               return_mask=True)
            # out.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
685 686 687 688 689 690 691 692 693 694 695
    """
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
696 697 698 699 700

    channel_last = True if data_format == "NHWC" else False

    padding, padding_algorithm = _update_padding_nd(
        padding, num_dims=2, channel_last=channel_last, ceil_mode=ceil_mode)
701

702
    if data_format == "NHWC" and return_mask:
D
Double_V 已提交
703
        raise ValueError(
704
            "When setting return_mask to true, data_format must be set to NCHW in API:max_pool2d"
D
Double_V 已提交
705 706
        )

707
    if in_dygraph_mode():
708
        if return_mask:
W
wanghuancoder 已提交
709
            output = _C_ops.max_pool2d_with_index(
D
Double_V 已提交
710 711 712 713 714
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
715
            return output if return_mask else output[0]
D
Double_V 已提交
716
        else:
W
wanghuancoder 已提交
717
            output = _C_ops.pool2d(
D
Double_V 已提交
718 719 720 721 722 723
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return output
724

725
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
726
    helper = LayerHelper(op_type, **locals())
727 728
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'max_pool2d')
729
    dtype = helper.input_dtype(input_param_name='x')
730
    pool_out = helper.create_variable_for_type_inference(dtype)
731 732
    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}
733 734 735 736

    helper.append_op(
        type=op_type,
        inputs={"X": x},
737
        outputs=outputs,
738
        attrs={
739
            "pooling_type": 'max',
740 741 742
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
743
            "paddings": padding,
744 745 746 747
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
748
            "exclusive": True,
749 750 751
            "data_format": data_format,
        })

752
    return (pool_out, mask) if return_mask else pool_out
753 754 755 756 757 758


def max_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
759
               return_mask=False,
760 761 762 763
               ceil_mode=False,
               data_format="NCDHW",
               name=None):
    """
764 765
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool3d` .
766 767
    Args:
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
D
Double_V 已提交
768
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` or `"NDHWC"`, where N represents batch size, C represents the number of channels, D, H and W represent the depth, height and width of the feature respectively.
769
        kernel_size (int|list|tuple): The pool kernel size. If the kernel size
770
            is a tuple or list, it must contain three integers,
771
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
772
            Otherwise, the pool kernel size will be the cube of an int.
773 774
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
775
            Otherwise, the pool stride size will be a cube of an int.
776 777 778 779 780 781 782
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
783
        ceil_mode (bool): ${ceil_mode_comment}
784
        return_mask (bool): Whether to return the max indices along with the outputs. Default False. Only support "NDCHW" data_format.
785 786 787 788 789 790
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
791
    
792 793
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
794
    
795 796 797 798
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
799
    
800 801
    Examples:
        .. code-block:: python
802

C
Chen Long 已提交
803 804 805
            import paddle
            import paddle.nn.functional as F
            import numpy as np
806

C
Chen Long 已提交
807 808 809 810 811 812 813 814 815 816 817 818 819 820
            # max pool3d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
            output = F.max_pool2d(x,
                                  kernel_size=2,
                                  stride=2, padding=0)
            output.shape [1, 3, 16, 16, 16]
            # for return_mask=True
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
            output, max_indices = paddle.nn.functional.max_pool3d(x,
                                          kernel_size = 2,
                                          stride = 2,
                                          padding=0,
                                          return_mask=True)
            # output.shape [None, 3, 16, 16, 16], max_indices.shape [None, 3, 16, 16, 16],
821 822 823 824 825 826 827
    """
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')

828
    channel_last = _channel_last(data_format, 3)
829

830 831
    padding, padding_algorithm = _update_padding_nd(
        padding, 3, channel_last=channel_last, ceil_mode=ceil_mode)
832

833
    if data_format == "NDHWC" and return_mask:
D
Double_V 已提交
834
        raise ValueError(
835
            "When setting return_mask to true, data_format must be set to NCDHW in API:max_pool3d"
D
Double_V 已提交
836 837
        )

838
    if in_dygraph_mode():
839
        if return_mask:
W
wanghuancoder 已提交
840
            output = _C_ops.max_pool3d_with_index(
D
Double_V 已提交
841 842 843 844 845
                x, 'pooling_type', 'max', 'ksize', kernel_size, 'strides',
                stride, 'paddings', padding, 'global_pooling', False,
                'padding_algorithm', padding_algorithm, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
846
            return output if return_mask else output[0]
D
Double_V 已提交
847
        else:
W
wanghuancoder 已提交
848
            output = _C_ops.pool3d(
D
Double_V 已提交
849 850 851 852 853 854
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return output
855

856
    op_type = "max_pool3d_with_index" if return_mask else "pool3d"
857
    helper = LayerHelper(op_type, **locals())
858
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
859
    dtype = helper.input_dtype(input_param_name='x')
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
    pool_out = helper.create_variable_for_type_inference(dtype)
    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": False,
            "data_format": data_format,
        })

882
    return (pool_out, mask) if return_mask else pool_out
883 884


885
def adaptive_avg_pool1d(x, output_size, name=None):
886
    """
887 888
    This API implements adaptive average pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool1d` .
D
Double_V 已提交
889

890
    Args:
891 892 893 894
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
895
        output_size (int): The target output size. It must be an integer.
896
        name(str, optional): For detailed information, please refer
897 898
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
899
    Returns:
900 901
            Tensor: The output tensor of adaptive average pooling result. The data type is same
                      as input tensor.
902
    Raises:
903
            ValueError: 'output_size' should be an integer.
904 905
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
906

907 908 909 910 911 912 913 914 915 916 917 918 919 920
              # average adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lstart - lend)
              #
              import paddle
              import paddle.nn.functional as F
C
Chen Long 已提交
921
              import numpy as np
922

923 924 925 926 927
              data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
              pool_out = F.adaptive_average_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
    """
    pool_type = 'avg'
928 929 930 931
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'adaptive_pool2d')
        check_type(output_size, 'pool_size', (int), 'adaptive_pool1d')
932 933
    _check_input(x, 3)
    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')
934

935
    x = unsqueeze(x, [2])
936
    if in_dygraph_mode():
W
wanghuancoder 已提交
937 938
        pool_out = _C_ops.pool2d(x, 'pooling_type', pool_type, 'ksize',
                                 pool_size, 'adaptive', True)
939
        return squeeze(pool_out, [2])
940

941 942
    l_type = "pool2d"

943
    helper = LayerHelper(l_type, **locals())
944
    dtype = helper.input_dtype(input_param_name='x')
945 946
    pool_out = helper.create_variable_for_type_inference(dtype)

947
    outputs = {"Out": pool_out}
948
    helper.append_op(
949
        type=l_type,
950 951 952
        inputs={"X": x},
        outputs=outputs,
        attrs={
953 954 955
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
956 957
        })

958
    return squeeze(pool_out, [2])
959 960


961 962
def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None):
    """
963 964
    This API implements adaptive average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool2d` .
965 966 967

    Args:
        x (Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor.
968
                          The data type can be float32 or float64.
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool2d result. The data type is same as input tensor.
    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
984

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
1002

1003 1004 1005
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 32, 32]
1006
            out = paddle.nn.functional.adaptive_avg_pool2d(
1007 1008
                            x = x,
                            output_size=[3, 3])
1009
            # out.shape is [2, 3, 3, 3]
1010 1011
    """
    if not in_dygraph_mode():
1012
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1013
                                 'adaptive_avg_pool2d')
1014
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool2d')
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCHW":
        in_h, in_w = x.shape[2:4]
    else:
        in_h, in_w = x.shape[1:3]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1029
        output_size = list(output_size)
1030 1031 1032 1033 1034 1035
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w

    if in_dygraph_mode():
W
wanghuancoder 已提交
1036 1037 1038
        output = _C_ops.pool2d(x, 'pooling_type', 'avg', 'ksize', output_size,
                               'global_pooling', False, 'adaptive', True,
                               'data_format', data_format)
1039 1040 1041 1042 1043
        return output

    l_type = 'pool2d'

    helper = LayerHelper(l_type, **locals())
1044
    dtype = helper.input_dtype(input_param_name='x')
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": "avg",
            "ksize": output_size,
            "adaptive": True,
            "data_format": data_format,
        })

    return pool_out


def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None):
    """
1065 1066
    This API implements adaptive average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool3d` .
1067 1068 1069

    Args:
        x (Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor.
1070
                          The data type can be float32, float64.
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool3d result. The data type is same as input tensor.
    Raises:
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1086

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
            import numpy as np
            input_data = np.random.rand(2, 3, 8, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 8, 32, 32]
1110
            out = paddle.nn.functional.adaptive_avg_pool3d(
1111 1112
                            x = x,
                            output_size=[3, 3, 3])
1113
            # out.shape is [2, 3, 3, 3, 3]
1114 1115
    """
    if not in_dygraph_mode():
1116 1117
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_avg_pool3d')
1118
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool3d')
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCDHW":
        in_l, in_h, in_w = x.shape[2:5]
    else:
        in_l, in_h, in_w = x.shape[1:4]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1133
        output_size = list(output_size)
1134 1135 1136 1137 1138 1139 1140 1141
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

    if in_dygraph_mode():
W
wanghuancoder 已提交
1142 1143 1144
        output = _C_ops.pool3d(x, 'pooling_type', 'avg', 'ksize', output_size,
                               'global_pooling', False, 'adaptive', True,
                               'data_format', data_format)
1145 1146 1147 1148 1149
        return output

    l_type = 'pool3d'

    helper = LayerHelper(l_type, **locals())
1150
    dtype = helper.input_dtype(input_param_name='x')
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": "avg",
            "ksize": output_size,
            "adaptive": True,
            "data_format": data_format,
        })

    return pool_out
1166 1167


1168
def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
1169 1170 1171 1172 1173 1174 1175 1176 1177
    """
    This API implements adaptive max pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveMaxPool1d` .

    Args:
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
1178
        output_size (int): The pool kernel size. The value should be an integer.
1179
        return_mask (bool): If true, the index of max pooling point will be returned along
1180 1181 1182 1183 1184 1185 1186 1187
                with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
    Returns:
            Tensor: The output tensor of adaptive pooling result. The data type is same
                      as input tensor.
    Raises:
1188
            ValueError: 'output_size' should be an integer.
1189 1190
    Examples:
        .. code-block:: python
1191

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
              # max adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = max(input[:, :, lstart: lend])
              #
              import paddle
              import paddle.nn.functional as F
C
Chen Long 已提交
1206
              import numpy as np
1207

1208 1209 1210
              data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
              pool_out = F.adaptive_max_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
1211
              pool_out, indices = F.adaptive_max_pool1d(data, output_size=16, return_mask=True)
1212 1213 1214
              # pool_out shape: [1, 3, 16] indices  shape: [1, 3, 16]
    """
    pool_type = 'max'
1215 1216 1217 1218 1219
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool1d')
        check_type(output_size, 'pool_size', int, 'adaptive_max_pool1d')
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool1d')
1220 1221 1222 1223 1224 1225
    _check_input(x, 3)

    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')

    x = unsqueeze(x, [2])
    if in_dygraph_mode():
W
wanghuancoder 已提交
1226
        pool_out = _C_ops.max_pool2d_with_index(
1227 1228
            x, 'pooling_type', pool_type, 'ksize', pool_size, 'adaptive', True)
        return (squeeze(pool_out[0], [2]), squeeze(
1229
            pool_out[1], [2])) if return_mask else squeeze(pool_out[0], [2])
1230

1231 1232
    l_type = 'max_pool2d_with_index'

1233
    helper = LayerHelper(l_type, **locals())
1234
    dtype = helper.input_dtype(input_param_name='x')
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
    pool_out = helper.create_variable_for_type_inference(dtype)

    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

    return (squeeze(pool_out, [2]),
1251
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
1252 1253


1254
def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
1255 1256 1257
    """
        This operation applies a 2D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool2d` .
1258

1259 1260 1261
        Args:
            x (Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type can be float16, float32, float64, int32 or int64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two elements, (H, W). H and W can be either a int, or None which means the size will be the same as that of the input.
1262
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1263
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1264

1265 1266
        Returns:
            Tensor: The output tensor of adaptive max pool2d result. The data type is same as input tensor.
1267

1268 1269
        Examples:
            .. code-block:: python
1270

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
              # max adaptive pool2d
              # suppose input data in the shape of [N, C, H, W], `output_size` is [m, n]
              # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         for j in range(n):
              #             hstart = floor(i * H / m)
              #             hend = ceil((i + 1) * H / m)
              #             wstart = floor(i * W / n)
              #             wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
              #
              import paddle
              import numpy as np
1288

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
              input_data = np.random.rand(2, 3, 32, 32)
              x = paddle.to_tensor(input_data)
              # x.shape is [2, 3, 32, 32]
              out = paddle.nn.functional.adaptive_max_pool2d(
                            x = x,
                            output_size=[3, 3])
              # out.shape is [2, 3, 3, 3]
    """
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool2d')
1300 1301
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool2d')
        #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool2d')
1302 1303 1304 1305 1306 1307
    _check_input(x, 4)

    in_h, in_w = x.shape[2:4]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1308
        output_size = list(output_size)
1309 1310 1311 1312 1313 1314
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w

    if in_dygraph_mode():
W
wanghuancoder 已提交
1315
        pool_out = _C_ops.max_pool2d_with_index(
1316
            x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive', True)
1317
        return pool_out if return_mask else pool_out[0]
1318 1319 1320 1321

    l_type = 'max_pool2d_with_index'

    helper = LayerHelper(l_type, **locals())
1322
    dtype = helper.input_dtype(input_param_name='x')
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
    pool_out = helper.create_variable_for_type_inference(dtype)

    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": output_size,
            "adaptive": True,
        })
1337
    #return (pool_out, mask) if return_mask else pool_out
1338 1339 1340
    return pool_out


1341
def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
1342 1343 1344
    """
        This operation applies a 3D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool3d` .
1345

1346 1347 1348
        Args:
            x (Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as that of the input.
1349
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1350
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1351

1352 1353
        Returns:
            Tensor: The output tensor of adaptive max pool3d result. The data type is same as input tensor.
1354

1355 1356
        Examples:
            .. code-block:: python
1357

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
              # adaptive max pool3d
              # suppose input data in the shape of [N, C, D, H, W], `output_size` is [l, m, n]
              # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(l):
              #         for j in range(m):
              #             for k in range(n):
              #                 dstart = floor(i * D / l)
              #                 dend = ceil((i + 1) * D / l)
              #                 hstart = floor(i * H / m)
              #                 hend = ceil((i + 1) * H / m)
              #                 wstart = floor(i * W / n)
              #                 wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j, k] = max(input[:, :, dstart: dend, hstart: hend, wstart: wend])
              #
              import paddle
              import numpy as np
1378

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
              input_data = np.random.rand(2, 3, 8, 32, 32)
              x = paddle.to_tensor(input_data)
              # x.shape is [2, 3, 8, 32, 32]
              out = paddle.nn.functional.adaptive_max_pool3d(
                            x = x,
                            output_size=[3, 3, 3])
              # out.shape is [2, 3, 3, 3, 3]
    """

    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool3d')
1391 1392
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool3d')
        #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool3d')
1393 1394 1395 1396 1397 1398
    _check_input(x, 5)

    in_l, in_h, in_w = x.shape[2:5]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1399
        output_size = list(output_size)
1400 1401 1402 1403 1404 1405 1406 1407
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

    if in_dygraph_mode():
W
wanghuancoder 已提交
1408
        pool_out = _C_ops.max_pool3d_with_index(
1409
            x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive', True)
1410
        return pool_out if return_mask else pool_out[0]
1411 1412 1413 1414

    l_type = 'max_pool3d_with_index'

    helper = LayerHelper(l_type, **locals())
1415
    dtype = helper.input_dtype(input_param_name='x')
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
    pool_out = helper.create_variable_for_type_inference(dtype)

    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": output_size,
            "adaptive": True,
        })

1431
    return (pool_out, mask) if return_mask else pool_out