conv_op.cc 30.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16

17
#include <memory>
Y
Update  
Yi Wang 已提交
18 19 20
#include <string>
#include <vector>

21
#include "paddle/fluid/framework/op_version_registry.h"
22
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
23

24 25 26
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
H
hong 已提交
27
#include "paddle/fluid/framework/infershape_utils.h"
28
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
H
hong 已提交
29 30
#include "paddle/phi/infermeta/binary.h"

C
chengduoZH 已提交
31 32 33
namespace paddle {
namespace operators {

34 35
std::vector<int64_t> ConvOp::ComputeOutputShape(
    framework::InferShapeContext* ctx) const {
36 37
  OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "Conv");
  OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "Conv");
C
chengduoZH 已提交
38 39 40

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
41

C
chengduoZH 已提交
42 43
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
L
liym27 已提交
44 45
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
C
chengduoZH 已提交
46
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
47
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
48 49 50
  int dilation_size = dilations.size();
  for (int i = 0; i < dilation_size; ++i) {
    PADDLE_ENFORCE_GT(
51 52
        dilations[i],
        0,
53 54 55 56 57
        platform::errors::InvalidArgument(
            "The dilation of Op(Conv) should be larget than 0, but received "
            "dilation is %d.",
            dilations[i]));
  }
L
liym27 已提交
58
  const std::string data_format = ctx->Attrs().Get<std::string>("data_format");
59 60 61

  // MKL-DNN Kernels are using NCHW order of dims description
  // so we ignore data_format consideration for MKL-DNN kernel
62
  const bool channel_last = (ctx->IsRunMKLDNNKernel() == false) &&
63
                            (data_format == "NHWC" || data_format == "NDHWC");
C
chengduoZH 已提交
64

65
  PADDLE_ENFORCE_EQ(
66 67
      in_dims.size() == 4 || in_dims.size() == 5,
      true,
68
      platform::errors::InvalidArgument(
69 70
          "The input of Op(Conv) should be a 4-D or 5-D Tensor. But "
          "received: input's dimension is %u, input's shape is [%s].",
71 72
          in_dims.size(),
          in_dims));
73

C
chengduoZH 已提交
74
  PADDLE_ENFORCE_EQ(
75 76
      in_dims.size(),
      filter_dims.size(),
77
      platform::errors::InvalidArgument(
78 79 80 81
          "The input's dimension and filter's dimension of "
          "Op(Conv) should be equal. But received: the input's shape is [%s], "
          "the input's dimension is %d; the filter's shape is [%s],  "
          "the filter's dimension is %d.",
82 83 84 85
          in_dims,
          in_dims.size(),
          filter_dims,
          filter_dims.size()));
86

87 88 89
  int stride_size = strides.size();
  for (int i = 0; i < stride_size; ++i) {
    PADDLE_ENFORCE_GT(
90 91
        strides[i],
        0,
92 93 94 95 96 97 98
        platform::errors::InvalidArgument(
            "The stride of Op(Conv) should be larget than 0, but received "
            "stride is %d.",
            strides[i]));
  }

  int in_sub_stride_size = in_dims.size() - stride_size;
99
  PADDLE_ENFORCE_EQ(
100 101
      in_dims.size(),
      strides.size() + 2U,
102
      platform::errors::InvalidArgument(
103 104 105 106 107
          "The difference of input's dimension and Attr(strides)'s "
          "length must be euqal to 2 for Op(Conv). "
          "But received: input's dimension is %d, input's shape is [%s]; "
          "Attr(stride)'s length is %d, Attr(stride) is [%s]; "
          "difference of input's dimention and Attr(strides)'s length = %u.",
108 109 110 111
          in_dims.size(),
          in_dims,
          strides.size(),
          phi::make_ddim(strides),
112
          in_sub_stride_size));
L
liym27 已提交
113 114 115

  const auto input_channels =
      channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];
F
fengjiayi 已提交
116

117
  PADDLE_ENFORCE_EQ(
118 119
      input_channels,
      filter_dims[1] * groups,
120
      platform::errors::InvalidArgument(
121 122 123 124 125
          "The number of input's channels should be equal to filter's channels "
          "* groups for Op(Conv). But received: the input's channels is %d, "
          "the input's shape is [%s]; the filter's channels is %d, the "
          "filter's shape is [%s]; the groups is %d, the data_format is %s. "
          "The error may come from wrong data_format setting.",
126 127 128 129 130
          input_channels,
          in_dims,
          filter_dims[1],
          filter_dims,
          groups,
131
          data_format));
C
chengduoZH 已提交
132
  PADDLE_ENFORCE_EQ(
133 134
      filter_dims[0] % groups,
      0,
135
      platform::errors::InvalidArgument(
136 137 138 139
          "The number of output's channels (filter's first dimension) of "
          "Op(Conv) should be divided by groups. But received: "
          "the output channels is %d, the filter's shape is [%s], "
          "the groups is %d.",
140 141 142
          filter_dims[0],
          filter_dims,
          groups));
W
wangxinxin08 已提交
143 144 145

  if (ctx->IsRuntime()) {
    PADDLE_ENFORCE_GT(
146 147
        filter_dims[0],
        0,
W
wangxinxin08 已提交
148 149 150
        platform::errors::InvalidArgument(
            "the size of filter at axis 0 should be greater than 0"));
  }
C
chengduoZH 已提交
151

L
liym27 已提交
152 153
  framework::DDim in_data_dims;
  if (channel_last) {
154
    in_data_dims = phi::slice_ddim(in_dims, 1, in_dims.size() - 1);
L
liym27 已提交
155
  } else {
156
    in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
L
liym27 已提交
157
  }
158

159
  framework::DDim filter_data_dims =
160
      phi::slice_ddim(filter_dims, 2, filter_dims.size());
161

162
  std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
163 164
  UpdatePaddingAndDilation(
      &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);
L
liym27 已提交
165 166 167 168 169

  std::vector<int64_t> output_shape({in_dims[0]});
  if (!channel_last) {
    output_shape.push_back(filter_dims[0]);
  }
170
  for (int i = 0; i < in_data_dims.size(); ++i) {
T
tink2123 已提交
171
    if ((!ctx->IsRuntime()) &&
L
liym27 已提交
172
        (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
T
tink2123 已提交
173 174
      output_shape.push_back(-1);
    } else {
175 176 177 178 179 180
      output_shape.push_back(ConvOutputSize(in_data_dims[i],
                                            filter_data_dims[i],
                                            dilations[i],
                                            paddings[2 * i],
                                            paddings[2 * i + 1],
                                            strides[i]));
T
tink2123 已提交
181
    }
C
chengduoZH 已提交
182
  }
L
liym27 已提交
183 184 185 186
  if (channel_last) {
    output_shape.push_back(filter_dims[0]);
  }

187
  return output_shape;
C
chengduoZH 已提交
188 189
}

190 191
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
192
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
193 194
  // todo enable data layout when it's ready
  // (https://github.com/PaddlePaddle/Paddle/pull/20042)
195

196
  if (input_data_type != framework::proto::VarType::INT8 &&
197 198
      input_data_type != framework::proto::VarType::UINT8 &&
      input_data_type != framework::proto::VarType::BF16) {
199 200
    auto filter_data_type = framework::TransToProtoVarType(
        ctx.Input<phi::DenseTensor>("Filter")->dtype());
201
    PADDLE_ENFORCE_EQ(
202 203
        input_data_type,
        filter_data_type,
204 205 206 207 208 209
        platform::errors::InvalidArgument(
            "input and filter data type should be consistent, "
            "but received input data type is %s and filter type "
            "is %s",
            paddle::framework::DataTypeToString(input_data_type),
            paddle::framework::DataTypeToString(filter_data_type)));
210
  }
211 212 213

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (platform::CanCUDNNBeUsed(ctx)) {
W
wuhuanzhou 已提交
214
#if PADDLE_WITH_CUDA
215 216 217 218 219 220 221
    if (input_data_type == framework::proto::VarType::BF16) {
      PADDLE_ENFORCE_GE(
          platform::DnnVersion(),
          8100,
          platform::errors::InvalidArgument(
              "bfloat16 can only be used when CUDNN_VERSION >= 8100"));
    }
W
wuhuanzhou 已提交
222
#endif  // PADDLE_WITH_CUDA
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    return framework::OpKernelType(input_data_type,
                                   ctx.GetPlace(),
                                   framework::DataLayout::kAnyLayout,
                                   framework::LibraryType::kCUDNN);
  }
#endif  // PADDLE_WITH_CUDA || PADDLE_WITH_HIP

#ifdef PADDLE_WITH_MKLDNN
  if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
    int customized_type_value =
        (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
         input_data_type == framework::DataTypeTrait<uint8_t>::DataType())
            ? OperatorWithKernel::IndicateVarDataType(ctx, "Filter") ==
                      framework::DataTypeTrait<int8_t>::DataType()
                  ? kConvMKLDNNINT8WS8
                  : kConvMKLDNNINT8
            : kConvMKLDNNFP32;
    return framework::OpKernelType(input_data_type,
                                   ctx.GetPlace(),
                                   framework::DataLayout::kMKLDNN,
                                   framework::LibraryType::kMKLDNN,
                                   customized_type_value);
  }
#endif

  // #ifndef PADDLE_WITH_ASCEND_CL
  //   if (input_data_type == framework::proto::VarType::FP16) {
  //     PADDLE_ENFORCE_EQ(
  //         library, framework::LibraryType::kCUDNN,
  //         platform::errors::InvalidArgument(
  //             "float16 can only be used when CUDNN or NPU is used"));
  //   }
  // #endif
K
Kexin Zhao 已提交
256

257
  return framework::OpKernelType(input_data_type, ctx.GetPlace());
258 259
}

260
framework::OpKernelType ConvOp::GetKernelTypeForVar(
261
    const std::string& var_name,
262
    const phi::DenseTensor& tensor,
263 264 265 266 267 268 269 270 271 272 273
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "Input") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
274
    // Some models may have intentionally set "AnyLayout" for conv
275 276
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
277 278
      return framework::OpKernelType(
          expected_kernel_type.data_type_, tensor.place(), dl);
279 280 281
    }
  }
#endif
282 283
  return framework::OpKernelType(
      expected_kernel_type.data_type_, tensor.place(), tensor.layout());
284 285
}

Y
Yu Yang 已提交
286
void Conv2DOpMaker::Make() {
L
liym27 已提交
287 288 289 290 291 292
  AddInput("Input",
           "(Tensor) The input tensor of convolution operator. "
           "The format of input tensor is NCHW or NHWC, where N is batch size, "
           "C is the "
           "number of channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
293
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
294
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
295 296
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
297 298
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
299
           "input image channels divided by the groups.");
300 301 302 303
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
304 305
      .AsDispensable()
      .AsExtra();
306 307 308
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
309
           "Used with fuse_residual_connection fusion.")
310 311
      .AsDispensable()
      .AsExtra();
Y
Yihua Xu 已提交
312 313
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
L
liym27 已提交
314
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
315 316 317 318
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
319
      .SetDefault({1, 1});
C
chengduoZH 已提交
320 321
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
L
liym27 已提交
322 323
                            "paddings(pad_height_top, pad_height_bottom, "
                            "pad_width_left, pad_wifth_right)  of "
C
chengduoZH 已提交
324
                            "convolution operator.")
C
chengduoZH 已提交
325
      .SetDefault({0, 0});
L
liym27 已提交
326 327 328 329 330 331
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
332 333
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
334
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
335 336 337 338
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
339
      .SetDefault(1);
C
chengduoZH 已提交
340
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
341 342
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
343
                            "convolution operator.")
C
chengduoZH 已提交
344
      .SetDefault({1, 1});
345 346 347 348 349 350
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
L
liym27 已提交
351
      .SetDefault("NCHW");
352
  // TODO(dzhwinter): need to registered layout transform function
C
chengduoZH 已提交
353
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
354 355
Convolution Operator.

C
chengduoZH 已提交
356
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
357
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
358
parameters is checked in the infer-shape.
L
liym27 已提交
359
Input(Input) and Output(Output) are in NCHW or NHWC format. Where N is batch
C
fix doc  
chengduoZH 已提交
360
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
361
the width of the feature.
362
Filters(Input) is MCHW format format. Where M is the number of output image channels, C is
C
chengduoZH 已提交
363 364 365 366
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
367 368 369 370
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
371 372
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
373
  Output:
C
chengduoZH 已提交
374 375 376
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
L
liym27 已提交
377 378
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
C
chengduoZH 已提交
379
$$
C
chengduoZH 已提交
380
)DOC");
Q
qingqing01 已提交
381
  Apply();
C
chengduoZH 已提交
382 383
}

384 385 386 387 388 389 390 391 392 393 394
class DepthwiseConv2DOpMaker : public Conv2DOpMaker {
 protected:
  void Apply() override {
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
        .SetDefault(false)
        .AsExtra();
  }
};

Y
Yu Yang 已提交
395
void Conv3DOpMaker::Make() {
C
chengduoZH 已提交
396 397
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
398
      "(Tensor) The input tensor of convolution operator. "
L
liym27 已提交
399 400
      "The format of input tensor is NCDHW or NDHWC. Where N is batch size, C "
      "is the "
C
fix doc  
chengduoZH 已提交
401 402 403
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
404
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
405
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
406 407
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
408 409 410
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
411
           "input image channels divided by the groups.");
412 413 414 415
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
416 417
      .AsDispensable()
      .AsExtra();
Y
Yihua Xu 已提交
418 419
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
L
liym27 已提交
420
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
421 422 423 424
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
425
      .SetDefault({1, 1, 1});
L
liym27 已提交
426 427 428 429 430 431
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector<int>, default:{0, 0, 0}), the "
      "paddings(pad_depth_front, pad_depth_back, pad_height_top, "
      "pad_height_bottom, pad_width_left, pad_width_right) of convolution "
      "operator.")
C
chengduoZH 已提交
432
      .SetDefault({0, 0, 0});
L
liym27 已提交
433 434 435 436 437 438
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
439 440
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
441
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
442 443 444 445
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
446
      .SetDefault(1);
C
chengduoZH 已提交
447
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
448 449
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
450
                            "convolution operator.")
C
chengduoZH 已提交
451
      .SetDefault({1, 1, 1});
452 453
  AddAttr<std::string>(
      "data_format",
L
liym27 已提交
454 455 456
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
457
      "the input will be transformed automatically. ")
L
liym27 已提交
458
      .SetDefault("NCDHW");
C
chengduoZH 已提交
459
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
460 461
Convolution3D Operator.

C
chengduoZH 已提交
462
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
463
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
464
parameters is checked in the infer-shape.
L
liym27 已提交
465
Input(Input) and output(Output) are in NCDHW or NDHWC format, where N is batch
C
fix doc  
chengduoZH 已提交
466
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
467 468 469 470 471 472
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
473 474 475 476
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
477 478
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
479
  Output:
C
chengduoZH 已提交
480 481 482
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
L
liym27 已提交
483 484 485
       D_{out}= \frac{(D_{in} + pad_depth_front + pad_depth_back - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
C
chengduoZH 已提交
486
  $$
C
chengduoZH 已提交
487
)DOC");
Q
qingqing01 已提交
488
  Apply();
C
chengduoZH 已提交
489 490
}

C
chengduoZH 已提交
491 492 493 494 495 496 497 498 499 500 501
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

502 503
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
M
mozga-intel 已提交
504
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
505
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
M
mozga-intel 已提交
506

507
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
508
  if (platform::CanCUDNNBeUsed(ctx)) {
509 510 511 512
    return framework::OpKernelType(data_type,
                                   ctx.GetPlace(),
                                   framework::DataLayout::kAnyLayout,
                                   framework::LibraryType::kCUDNN);
C
chengduoZH 已提交
513 514
  }
#endif
515
#ifdef PADDLE_WITH_MKLDNN
516 517 518 519 520 521
  if (this->CanMKLDNNBeUsed(ctx, data_type)) {
    return framework::OpKernelType(data_type,
                                   ctx.GetPlace(),
                                   framework::DataLayout::kMKLDNN,
                                   framework::LibraryType::kMKLDNN,
                                   kConvMKLDNNFP32);
522
  }
523
#endif
524

525
  return framework::OpKernelType(data_type, ctx.GetPlace());
526 527
}

528
framework::OpKernelType ConvOpGrad::GetKernelTypeForVar(
529
    const std::string& var_name,
530
    const phi::DenseTensor& tensor,
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if (((var_name == "Input") ||
       (var_name == framework::GradVarName("Output"))) &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
546 547
      return framework::OpKernelType(
          expected_kernel_type.data_type_, tensor.place(), dl);
548 549 550
    }
  }
#endif
551 552
  return framework::OpKernelType(
      expected_kernel_type.data_type_, tensor.place(), tensor.layout());
553 554
}

H
hong 已提交
555 556
template <typename T>
class Conv2DGradMaker : public framework::SingleGradOpMaker<T> {
557
 public:
H
hong 已提交
558
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
559

560
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
561
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
562 563 564
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
565

H
hong 已提交
566 567
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
568 569 570 571 572

    if (this->HasInput("Bias")) {
      op->SetInput("Bias", this->Input("Bias"));
      op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    }
H
hong 已提交
573
    op->SetAttrMap(this->Attrs());
574
  }
S
sneaxiy 已提交
575 576
};

H
hong 已提交
577 578
template <typename T>
class Conv3DGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
579
 public:
H
hong 已提交
580
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
581

582
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
583
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
584 585 586
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
S
sneaxiy 已提交
587

H
hong 已提交
588 589
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
S
sneaxiy 已提交
590

H
hong 已提交
591 592
    if (this->HasInput("ResidualData")) {
      op->SetInput("ResidualData", this->Input("ResidualData"));
S
sneaxiy 已提交
593 594
    }

H
hong 已提交
595
    op->SetAttrMap(this->Attrs());
596 597 598
  }
};

Q
qingqing01 已提交
599 600 601 602
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
603 604
template <typename T>
class Conv2DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
Q
qingqing01 已提交
605
 public:
H
hong 已提交
606
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Q
qingqing01 已提交
607

608
  void Apply(GradOpPtr<T> op) const override {
Q
qingqing01 已提交
609 610
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
611 612 613 614 615 616
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
Q
qingqing01 已提交
617 618 619 620

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
H
hong 已提交
621 622
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
623

L
lvmengsi 已提交
624
    op->SetOutput("DDOutput",
H
hong 已提交
625
                  ddx.empty()
626
                      ? this->EmptyInputGrad()
H
hong 已提交
627
                      : this->InputGrad(framework::GradVarName("Output")));
628 629 630 631 632 633
    op->SetOutput(
        "DFilter",
        ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Filter"));
    op->SetOutput(
        "DInput",
        ddw.empty() ? this->EmptyInputGrad() : this->InputGrad("Input"));
634

H
hong 已提交
635
    op->SetAttrMap(this->Attrs());
Q
qingqing01 已提交
636 637 638
  }
};

L
lvmengsi 已提交
639 640 641 642
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
643 644
template <typename T>
class Conv3DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
645
 public:
H
hong 已提交
646
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
647

648
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
649 650
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
651 652 653 654 655 656
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
L
lvmengsi 已提交
657

H
hong 已提交
658 659
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
L
lvmengsi 已提交
660

L
lvmengsi 已提交
661
    op->SetOutput("DDOutput",
H
hong 已提交
662
                  ddx.empty()
663
                      ? this->EmptyInputGrad()
H
hong 已提交
664
                      : this->InputGrad(framework::GradVarName("Output")));
665 666 667 668 669 670
    op->SetOutput(
        "DFilter",
        ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Filter"));
    op->SetOutput(
        "DInput",
        ddw.empty() ? this->EmptyInputGrad() : this->InputGrad("Input"));
L
lvmengsi 已提交
671

H
hong 已提交
672
    op->SetAttrMap(this->Attrs());
L
lvmengsi 已提交
673 674 675
  }
};

Q
qingqing01 已提交
676 677 678 679 680
void ConvOpDoubleGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto x_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("Filter");
  auto do_dims = ctx->GetInputDim("DOutput");

L
lvmengsi 已提交
681 682
  if (ctx->HasOutput("DDOutput") &&
      (ctx->HasInput("DDInput") || (ctx->HasInput("DDFilter")))) {
Q
qingqing01 已提交
683 684
    ctx->SetOutputDim("DDOutput", do_dims);
  }
685
  if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
Q
qingqing01 已提交
686 687
    ctx->SetOutputDim("DFilter", w_dims);
  }
688
  if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
Q
qingqing01 已提交
689 690 691 692 693 694 695 696 697
    ctx->SetOutputDim("DInput", x_dims);
  }
}

framework::OpKernelType ConvOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
  framework::LibraryType library_{framework::LibraryType::kPlain};
L
liym27 已提交
698
  std::string data_format = "AnyLayout";
Q
qingqing01 已提交
699 700
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

701
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
qingqing01 已提交
702 703
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
L
lvmengsi 已提交
704
  }
Q
qingqing01 已提交
705
#endif
706
  auto type = framework::OpKernelType(
707 708 709 710 711
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
      ctx.GetPlace(),
      layout_,
      library_,
      customized_type_value);
Q
qingqing01 已提交
712 713 714
  return type;
}

C
chengduoZH 已提交
715 716 717 718
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
719 720 721
REGISTER_OPERATOR(conv2d,
                  ops::ConvOp,
                  ops::Conv2DOpMaker,
H
hong 已提交
722 723 724
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
725 726
REGISTER_OPERATOR(conv2d_grad,
                  ops::ConvOpGrad,
H
hong 已提交
727 728
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
Q
qingqing01 已提交
729
REGISTER_OPERATOR(conv2d_grad_grad, ops::ConvOpDoubleGrad);
730 731

// depthwise convolution op
732 733
REGISTER_OPERATOR(depthwise_conv2d,
                  ops::ConvOp,
734
                  ops::DepthwiseConv2DOpMaker,
H
hong 已提交
735 736 737
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
738 739
REGISTER_OPERATOR(depthwise_conv2d_grad,
                  ops::ConvOpGrad,
740 741 742
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(depthwise_conv2d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduo 已提交
743

744 745 746
REGISTER_OPERATOR(conv3d,
                  ops::ConvOp,
                  ops::Conv3DOpMaker,
H
hong 已提交
747 748 749
                  ops::ConvOpInferVarType,
                  ops::Conv3DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DGradMaker<paddle::imperative::OpBase>);
750 751
REGISTER_OPERATOR(conv3d_grad,
                  ops::ConvOpGrad,
H
hong 已提交
752 753
                  ops::Conv3DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
754
REGISTER_OPERATOR(conv3d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduoZH 已提交
755

756 757
REGISTER_OP_VERSION(conv2d).AddCheckpoint(
    R"ROC(
758 759
      Upgrade conv2d, add a new attribute [use_addto].
    )ROC",
760 761 762 763 764
    paddle::framework::compatible::OpVersionDesc().NewAttr(
        "use_addto",
        "In order to support new feature (inplace addto strategy) for "
        "gradient accumulation.",
        false));
765 766 767 768 769 770 771 772 773 774 775 776

REGISTER_OP_VERSION(depthwise_conv2d)
    .AddCheckpoint(
        R"ROC(
      Upgrade depthwise_conv2d, add a new attribute [use_addto].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_addto",
            "In order to support new feature (inplace addto strategy) for "
            "gradient accumulation.",
            false));

777 778
REGISTER_OP_VERSION(conv3d).AddCheckpoint(
    R"ROC(
779 780
      Upgrade conv3d, add a new attribute [use_addto].
    )ROC",
781 782 783 784 785
    paddle::framework::compatible::OpVersionDesc().NewAttr(
        "use_addto",
        "In order to support new feature (inplace addto strategy) for "
        "gradient accumulation.",
        false));