test_adamw_op.py 24.6 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
zhaoyingli 已提交
15
import random
16 17 18
import unittest
from functools import partial

M
MRXLT 已提交
19
import numpy as np
Z
zhaoyingli 已提交
20
from op_test import OpTest
21 22 23 24

import paddle
import paddle.fluid as fluid
from paddle.framework import core
Z
zhaoyingli 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57


def adamw_step(inputs, attributes):
    param = inputs['Param']
    grad = inputs['Grad']
    moment1 = inputs['Moment1']
    moment2 = inputs['Moment2']
    lr = inputs['LearningRate']
    beta1_pow = inputs['Beta1Pow']
    beta2_pow = inputs['Beta2Pow']

    epsilon = attributes['epsilon']

    if 'lr_ratio' in attributes:
        lr = lr * attributes['lr_ratio']

    if attributes["with_decay"]:
        coeff = attributes["coeff"]
        decay = 1.0 - lr * coeff
        param2 = param * decay
        param = param2.copy()

    if 'beta1' in attributes:
        beta1 = attributes['beta1']
    else:
        beta1 = inputs['Beta1Tensor'][0]
    if 'beta2' in attributes:
        beta2 = attributes['beta2']
    else:
        beta2 = inputs['Beta2Tensor'][0]

    moment1_out = beta1 * moment1 + (1 - beta1) * grad
    moment2_out = beta2 * moment2 + (1 - beta2) * np.square(grad)
Z
zhaoyingli 已提交
58 59
    denom = (np.sqrt(moment2_out) / np.sqrt(1.0 - beta2_pow)) + epsilon
    param_out = param + ((moment1_out / denom) * (-(lr / (1.0 - beta1_pow))))
Z
zhaoyingli 已提交
60 61 62 63 64
    return param_out, moment1_out, moment2_out


class TestAdamW(OpTest):
    def setUp(self):
65
        '''Test AdamW Op with supplied attributes'''
Z
zhaoyingli 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
        self.op_type = "adamw"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")

        learning_rate = 0.004
        beta1 = 0.78
        beta2 = 0.836
        epsilon = 1e-4
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
87
            'Beta2Pow': np.array([beta2_pow]).astype("float32"),
Z
zhaoyingli 已提交
88 89 90 91 92 93 94
        }

        self.attrs = {
            'epsilon': epsilon,
            'beta1': beta1,
            'beta2': beta2,
            "coeff": 0.5,
95
            "with_decay": True,
Z
zhaoyingli 已提交
96 97
        }

98 99 100
        param_out, moment1_out, moment2_out = adamw_step(
            self.inputs, self.attrs
        )
Z
zhaoyingli 已提交
101 102 103 104 105 106

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
            'ParamOut': param_out,
            'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1,
107
            'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2,
Z
zhaoyingli 已提交
108 109 110 111 112 113
        }

    def test_check_output(self):
        self.check_output()


114 115 116
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
Z
zhaoyingli 已提交
117 118
class TestAdamW2(OpTest):
    def setUp(self):
119
        '''Test AdamW Op with supplied attributes'''
Z
zhaoyingli 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        self.op_type = "adamw"
        param = np.random.uniform(-1, 1, (2, 2)).astype("float32")
        grad = np.random.uniform(-1, 1, (2, 2)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (2, 2)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((2, 2)).astype("float32")

        learning_rate = 0.004
        beta1 = 0.78
        beta2 = 0.836
        epsilon = 1e-4
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
141
            'Beta2Pow': np.array([beta2_pow]).astype("float32"),
Z
zhaoyingli 已提交
142 143 144 145 146 147 148 149
        }

        self.attrs = {
            'epsilon': epsilon,
            'beta1': beta1,
            'beta2': beta2,
            "lr_ratio": 0.1,
            "coeff": 0.5,
150
            "with_decay": True,
Z
zhaoyingli 已提交
151 152
        }

153
        param_out, moment1_out, moment2_out = adamw_step(
154 155
            self.inputs, self.attrs
        )
Z
zhaoyingli 已提交
156 157 158 159 160 161

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
            'ParamOut': param_out,
            'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1,
162
            'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2,
Z
zhaoyingli 已提交
163 164 165 166
        }

    def test_check_output(self):
        self.check_output_with_place(core.CUDAPlace(0))
M
MRXLT 已提交
167 168 169 170 171 172


class TestAdamWOp(unittest.TestCase):
    def test_adamw_op_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
Z
Zhou Wei 已提交
173
        a = paddle.to_tensor(value)
174
        linear = paddle.nn.Linear(13, 5)
175 176 177 178 179 180
        adam = paddle.optimizer.AdamW(
            learning_rate=0.01,
            parameters=linear.parameters(),
            apply_decay_param_fun=lambda name: True,
            weight_decay=0.01,
        )
W
WangXi 已提交
181 182 183 184 185 186

        for _ in range(2):
            out = linear(a)
            out.backward()
            adam.step()
            adam.clear_gradients()
M
MRXLT 已提交
187 188 189 190

    def test_adamw_op_coverage(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
Z
Zhou Wei 已提交
191
        a = paddle.to_tensor(value)
192
        linear = paddle.nn.Linear(13, 5)
193 194 195 196 197 198 199
        adam = paddle.optimizer.AdamW(
            learning_rate=0.0,
            parameters=linear.parameters(),
            apply_decay_param_fun=lambda name: True,
            weight_decay=0.01,
        )
        assert adam.__str__() is not None
M
MRXLT 已提交
200 201

    def test_adamw_op(self):
202
        paddle.enable_static()
M
MRXLT 已提交
203 204 205 206 207 208 209 210
        place = fluid.CPUPlace()
        shape = [2, 3, 8, 8]
        exe = fluid.Executor(place)
        train_prog = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(train_prog, startup):
            with fluid.unique_name.guard():
                data = fluid.data(name="data", shape=shape)
211
                conv = paddle.static.nn.conv2d(data, 8, 3)
M
MRXLT 已提交
212 213
                loss = paddle.mean(conv)

214
                beta1 = paddle.static.create_global_var(
215 216
                    shape=[1], value=0.85, dtype='float32', persistable=True
                )
217
                beta2 = paddle.static.create_global_var(
218 219
                    shape=[1], value=0.95, dtype='float32', persistable=True
                )
M
MRXLT 已提交
220
                betas = [beta1, beta2]
221 222 223 224 225 226 227
                opt = paddle.optimizer.AdamW(
                    learning_rate=1e-5,
                    beta1=beta1,
                    beta2=beta2,
                    weight_decay=0.01,
                    epsilon=1e-8,
                )
M
MRXLT 已提交
228 229 230 231 232 233
                opt.minimize(loss)

        exe.run(startup)
        data_np = np.random.random(shape).astype('float32')
        rets = exe.run(train_prog, feed={"data": data_np}, fetch_list=[loss])
        assert rets[0] is not None
234
        paddle.disable_static()
M
MRXLT 已提交
235

M
MRXLT 已提交
236 237 238 239
    def test_adamw_op_invalid_input(self):
        paddle.disable_static()
        linear = paddle.nn.Linear(10, 10)
        with self.assertRaises(ValueError):
240 241 242
            adam = paddle.optimizer.AdamW(
                0.1, beta1=-1, parameters=linear.parameters()
            )
M
MRXLT 已提交
243
        with self.assertRaises(ValueError):
244 245 246
            adam = paddle.optimizer.AdamW(
                0.1, beta2=-1, parameters=linear.parameters()
            )
M
MRXLT 已提交
247
        with self.assertRaises(ValueError):
248 249 250
            adam = paddle.optimizer.AdamW(
                0.1, epsilon=-1, parameters=linear.parameters()
            )
M
MRXLT 已提交
251

M
MRXLT 已提交
252

253 254 255 256 257 258 259
class TestAdamWOpGroup(TestAdamWOp):
    def test_adamw_op_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear_1 = paddle.nn.Linear(13, 5)
        linear_2 = paddle.nn.Linear(5, 3)
260 261 262 263 264 265 266 267 268
        adam = paddle.optimizer.AdamW(
            learning_rate=0.01,
            parameters=[
                {'params': linear_1.parameters()},
                {'params': linear_2.parameters(), 'weight_decay': 0.001},
            ],
            apply_decay_param_fun=lambda name: True,
            weight_decay=0.01,
        )
269 270 271 272 273 274 275 276 277

        for _ in range(2):
            out = linear_1(a)
            out = linear_2(out)
            out.backward()
            adam.step()
            adam.clear_gradients()


278 279 280 281 282 283 284 285 286 287
class TestAdamWOpMultiPrecison(unittest.TestCase):
    def _test_adamw_op_dygraph_place_amp(self, place, use_amp=False):
        paddle.disable_static()
        paddle.seed(10)
        paddle.set_device(place)

        input = paddle.randn((5, 5))

        model = paddle.nn.Linear(5, 5)

288 289 290 291 292 293 294 295 296 297 298
        optimizer = paddle.optimizer.AdamW(
            parameters=[
                {
                    'params': model.parameters(),
                    'weight_decay': 0.001,
                    'beta1': 0.1,
                    'beta2': 0.99,
                }
            ],
            multi_precision=use_amp,
        )
299 300

        for idx in range(2):
301
            if place == 'gpu' and use_amp:
302 303 304
                model = paddle.amp.decorate(models=model, level='O2')
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)

305
            if place == 'gpu' and use_amp:
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
                with paddle.amp.auto_cast(level='O2'):
                    output = model(input)
                    loss = paddle.mean(output)
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.step(optimizer)
                optimizer.clear_grad()
            else:
                output = model(input)
                loss = paddle.mean(output)
                loss.backward()
                optimizer.step()
                optimizer.clear_grad()

    def _get_places(self):
        places = ['cpu']
        if paddle.is_compiled_with_cuda():
            places.append('gpu')
        return places

    def test_main(self):
        for place in self._get_places():
            use_amp_list = [True, False]
            for use_amp in use_amp_list:
                self._test_adamw_op_dygraph_place_amp(place, use_amp)


class TestAdamWOpError(unittest.TestCase):
    def test_api_errors(self):
        def test_weight_decay_dtype():
            linear = paddle.nn.Linear(13, 5)
337 338 339 340 341
            adam = paddle.optimizer.AdamW(
                learning_rate=0.01,
                parameters=linear.parameters(),
                weight_decay=1,
            )
342 343

        def test_parameters_dtype1():
344 345 346 347 348
            adam = paddle.optimizer.AdamW(
                learning_rate=0.01,
                parameters=paddle.randn((5, 5)),
                weight_decay=0.1,
            )
349 350 351 352 353 354

        def test_parameters_dtype2():
            linear = paddle.nn.Linear(13, 5)
            adam = paddle.optimizer.AdamW(
                learning_rate=0.01,
                parameters={'params': linear.parameters()},
355 356
                weight_decay=0.1,
            )
357 358

        def test_parameters_dtype3():
359 360 361
            adam = paddle.optimizer.AdamW(
                learning_rate=0.01, parameters=None, weight_decay=0.1
            )
362 363 364 365 366 367

        def test_parameters_dtype4():
            linear = paddle.nn.Linear(13, 5)
            adam = paddle.optimizer.AdamW(
                learning_rate=0.01,
                parameters={'params': set(linear.parameters())},
368 369
                weight_decay=0.1,
            )
370 371 372

        def test_learning_rate_dtype():
            linear = paddle.nn.Linear(13, 5)
373 374 375 376 377
            adam = paddle.optimizer.AdamW(
                learning_rate=1,
                parameters=linear.parameters(),
                weight_decay=0.1,
            )
378 379 380

        def test_grad_clip_dtype():
            linear = paddle.nn.Linear(13, 5)
381 382 383 384 385 386
            adam = paddle.optimizer.AdamW(
                learning_rate=0.01,
                parameters=linear.parameters(),
                weight_decay=0.1,
                grad_clip=0.1,
            )
387 388 389 390 391 392 393 394 395 396

        self.assertRaises(TypeError, test_weight_decay_dtype)
        self.assertRaises(TypeError, test_parameters_dtype1)
        self.assertRaises(TypeError, test_parameters_dtype2)
        self.assertRaises(AttributeError, test_parameters_dtype3)
        self.assertRaises(TypeError, test_parameters_dtype4)
        self.assertRaises(TypeError, test_learning_rate_dtype)
        self.assertRaises(TypeError, test_grad_clip_dtype)


W
wangguanzhong 已提交
397 398 399 400 401 402 403 404 405
class TestAdamWOpGroupWithLR(TestAdamWOp):
    def test_adamw_op_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear_1 = paddle.nn.Linear(13, 5)
        linear_2 = paddle.nn.Linear(5, 3)
        adam = paddle.optimizer.AdamW(
            learning_rate=paddle.optimizer.lr.PiecewiseDecay(
406 407 408 409 410 411 412 413 414 415 416 417
                boundaries=[3, 6], values=[0.1, 0.2, 0.3]
            ),
            parameters=[
                {
                    'params': linear_1.parameters(),
                    'learning_rate': 0.1,
                },
                {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                },
            ],
W
wangguanzhong 已提交
418
            apply_decay_param_fun=lambda name: True,
419 420
            weight_decay=0.01,
        )
W
wangguanzhong 已提交
421 422 423 424 425 426 427 428 429

        for _ in range(2):
            out = linear_1(a)
            out = linear_2(out)
            out.backward()
            adam.step()
            adam.clear_gradients()


430 431 432 433 434 435 436 437
def simple_lr_setting(param, decay_rate, n_layers):
    if "fc_0" in param.name or "linear_1" in param.name:
        depth = int(param.name.split("_")[2]) + 1
    elif "fc_1" in param.name or "linear_2" in param.name:
        depth = int(param.name.split("_")[2]) + 2
    else:
        depth = 0

438
    return decay_rate ** (n_layers + 2 - depth)
439 440


441 442 443
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
444
class TestAdamWOpLayerwiseLR(TestAdamWOp):
Z
zhaoyingli 已提交
445
    def setUp(self):
Z
zhaoyingli 已提交
446 447 448
        random.seed(2022)
        np.random.seed(2022)
        paddle.seed(2022)
Z
zhaoyingli 已提交
449

450 451
    def test_adamw_op_dygraph(self):
        paddle.disable_static()
Z
zhaoyingli 已提交
452
        linear1 = paddle.nn.Linear(
453 454
            13, 8, bias_attr=paddle.nn.initializer.Constant(value=1.0)
        )
Z
zhaoyingli 已提交
455
        linear2 = paddle.nn.Linear(
456 457
            8, 5, bias_attr=paddle.nn.initializer.Constant(value=1.0)
        )
458

C
chentianyu03 已提交
459 460 461 462 463 464
        # fix the linear name, simple_lr_setting function will use the name
        linear1.weight.name = "linear_1.w_0"
        linear1.bias.name = "linear_1.b_0"
        linear2.weight.name = "linear_2.w_0"
        linear2.bias.name = "linear_2.b_0"

Z
zhaoyingli 已提交
465 466 467 468 469 470 471 472 473 474 475 476 477 478
        fc1_w = np.array(linear1.weight)
        fc1_w_mon1 = np.zeros_like(fc1_w)
        fc1_w_mon2 = np.zeros_like(fc1_w)
        fc1_b = np.array(linear1.bias)
        fc1_b_mon1 = np.zeros_like(fc1_b)
        fc1_b_mon2 = np.zeros_like(fc1_b)

        fc2_w = np.array(linear2.weight)
        fc2_w_mon1 = np.zeros_like(fc2_w)
        fc2_w_mon2 = np.zeros_like(fc2_w)
        fc2_b = np.array(linear2.bias)
        fc2_b_mon1 = np.zeros_like(fc2_b)
        fc2_b_mon2 = np.zeros_like(fc2_b)

479
        simple_lr_fun = partial(simple_lr_setting, decay_rate=0.8, n_layers=2)
Z
zhaoyingli 已提交
480 481 482 483
        learning_rate = 0.001
        weight_decay = 0.01
        beta1 = 0.9
        beta2 = 0.999
484

485 486 487 488 489 490 491 492 493 494 495 496
        opt = paddle.optimizer.AdamW(
            learning_rate=learning_rate,
            parameters=[
                {'params': linear1.parameters()},
                {
                    'params': linear2.parameters(),
                },
            ],
            apply_decay_param_fun=lambda name: True,
            weight_decay=weight_decay,
            lr_ratio=simple_lr_fun,
        )
497

Z
zhaoyingli 已提交
498 499 500 501 502 503 504 505
        def get_numpy_output(param, grad, moment1, moment2, lr_ratio, t):
            np_inputs = {
                'Param': param,
                'Grad': grad,
                'Moment1': moment1,
                'Moment2': moment2,
                'LearningRate': np.array([learning_rate]).astype("float32"),
                'Beta1Pow': np.array([beta1**t]).astype("float32"),
506
                'Beta2Pow': np.array([beta2**t]).astype("float32"),
Z
zhaoyingli 已提交
507 508 509 510 511 512 513 514
            }

            np_attrs = {
                'epsilon': 1e-8,
                'beta1': beta1,
                'beta2': beta2,
                "lr_ratio": lr_ratio,
                "coeff": weight_decay,
515
                "with_decay": True,
Z
zhaoyingli 已提交
516
            }
517
            param_out, moment1_out, moment2_out = adamw_step(
518 519
                np_inputs, np_attrs
            )
Z
zhaoyingli 已提交
520 521
            return param_out, moment1_out, moment2_out

Z
zhaoyingli 已提交
522
        for i in range(5):
Z
zhaoyingli 已提交
523
            a = paddle.to_tensor(
524 525
                np.random.uniform(-1, 1, (2, 13)).astype("float32")
            )
526 527
            a1 = linear1(a)
            out = linear2(a1)
Z
zhaoyingli 已提交
528
            out = paddle.mean(out)
529
            out.backward()
Z
zhaoyingli 已提交
530 531

            fc1_w, fc1_w_mon1, fc1_w_mon2 = get_numpy_output(
532 533 534 535 536 537 538
                fc1_w,
                np.array(linear1.weight.grad),
                fc1_w_mon1,
                fc1_w_mon2,
                simple_lr_fun(linear1.weight),
                i + 1,
            )
Z
zhaoyingli 已提交
539
            fc1_b, fc1_b_mon1, fc1_b_mon2 = get_numpy_output(
540 541 542 543 544 545 546
                fc1_b,
                np.array(linear1.bias.grad),
                fc1_b_mon1,
                fc1_b_mon2,
                simple_lr_fun(linear1.bias),
                i + 1,
            )
Z
zhaoyingli 已提交
547
            fc2_w, fc2_w_mon1, fc2_w_mon2 = get_numpy_output(
548 549 550 551 552 553 554
                fc2_w,
                np.array(linear2.weight.grad),
                fc2_w_mon1,
                fc2_w_mon2,
                simple_lr_fun(linear2.weight),
                i + 1,
            )
Z
zhaoyingli 已提交
555
            fc2_b, fc2_b_mon1, fc2_b_mon2 = get_numpy_output(
556 557 558 559 560 561 562
                fc2_b,
                np.array(linear2.bias.grad),
                fc2_b_mon1,
                fc2_b_mon2,
                simple_lr_fun(linear2.bias),
                i + 1,
            )
Z
zhaoyingli 已提交
563 564 565 566 567 568 569 570

            opt.step()
            opt.clear_gradients()

            np.testing.assert_allclose(linear1.weight.numpy(), fc1_w, rtol=1e-6)
            np.testing.assert_allclose(linear1.bias.numpy(), fc1_b, rtol=1e-6)
            np.testing.assert_allclose(linear2.weight.numpy(), fc2_w, rtol=1e-6)
            np.testing.assert_allclose(linear2.bias.numpy(), fc2_b, rtol=1e-6)
571 572 573

    def test_adamw_op(self):
        paddle.enable_static()
Z
zhaoyingli 已提交
574
        place = fluid.CUDAPlace(0)
Z
zhaoyingli 已提交
575 576 577 578 579 580 581

        learning_rate = 0.0001
        beta1 = 0.85
        beta2 = 0.95
        weight_decay = 0.01
        epsilon = 1e-8

582 583 584 585 586 587 588
        train_prog = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(train_prog, startup):
            with fluid.unique_name.guard():
                x = fluid.data(name='x', shape=[None, 10], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')

Z
zhaoyingli 已提交
589 590 591
                weight_attr1 = paddle.framework.ParamAttr(name="linear_0.w_0")
                bias_attr1 = paddle.framework.ParamAttr(
                    name="linear_0.b_0",
592 593
                    initializer=paddle.nn.initializer.Constant(value=1.0),
                )
Z
zhaoyingli 已提交
594 595 596
                weight_attr2 = paddle.framework.ParamAttr(name="linear_1.w_0")
                bias_attr2 = paddle.framework.ParamAttr(
                    name="linear_1.b_0",
597 598 599 600 601 602 603 604
                    initializer=paddle.nn.initializer.Constant(value=1.0),
                )
                linear1 = paddle.nn.Linear(
                    10, 32, weight_attr=weight_attr1, bias_attr=bias_attr1
                )
                linear2 = paddle.nn.Linear(
                    32, 1, weight_attr=weight_attr2, bias_attr=bias_attr2
                )
Z
zhaoyingli 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617

                out = linear1(x)
                out = linear2(out)

                fc1_w_mon1 = np.zeros((linear1.weight.shape)).astype("float32")
                fc1_w_mon2 = np.zeros((linear1.weight.shape)).astype("float32")
                fc1_b_mon1 = np.zeros((linear1.bias.shape)).astype("float32")
                fc1_b_mon2 = np.zeros((linear1.bias.shape)).astype("float32")
                fc2_w_mon1 = np.zeros((linear2.weight.shape)).astype("float32")
                fc2_w_mon2 = np.zeros((linear2.weight.shape)).astype("float32")
                fc2_b_mon1 = np.zeros((linear2.bias.shape)).astype("float32")
                fc2_b_mon2 = np.zeros((linear2.bias.shape)).astype("float32")

618 619 620
                cost = paddle.nn.functional.square_error_cost(
                    input=out, label=y
                )
621
                avg_cost = paddle.mean(cost)
622

623 624 625 626 627 628 629 630 631 632 633 634
                simple_lr_fun = partial(
                    simple_lr_setting, decay_rate=0.8, n_layers=2
                )

                opt = paddle.optimizer.AdamW(
                    learning_rate=learning_rate,
                    beta1=beta1,
                    beta2=beta2,
                    weight_decay=weight_decay,
                    epsilon=epsilon,
                    lr_ratio=simple_lr_fun,
                )
635 636
                opt.minimize(avg_cost)

Z
zhaoyingli 已提交
637 638 639 640 641 642 643 644
        def get_numpy_output(param, grad, moment1, moment2, lr_ratio, t):
            np_inputs = {
                'Param': param,
                'Grad': grad,
                'Moment1': moment1,
                'Moment2': moment2,
                'LearningRate': np.array([learning_rate]).astype("float32"),
                'Beta1Pow': np.array([beta1**t]).astype("float32"),
645
                'Beta2Pow': np.array([beta2**t]).astype("float32"),
Z
zhaoyingli 已提交
646 647 648 649 650 651 652 653
            }

            np_attrs = {
                'epsilon': epsilon,
                'beta1': beta1,
                'beta2': beta2,
                "lr_ratio": lr_ratio,
                "coeff": weight_decay,
654
                "with_decay": True,
Z
zhaoyingli 已提交
655
            }
656
            param_out, moment1_out, moment2_out = adamw_step(
657 658
                np_inputs, np_attrs
            )
Z
zhaoyingli 已提交
659 660 661
            return param_out, moment1_out, moment2_out

        fetch_list1 = [
662 663 664 665
            "linear_0.w_0",
            "linear_0.b_0",
            "linear_1.w_0",
            "linear_1.b_0",
Z
zhaoyingli 已提交
666 667
        ]
        fetch_list2 = [
668 669 670 671 672 673 674 675
            "linear_0.w_0",
            "linear_0.w_0@GRAD",
            "linear_0.b_0",
            "linear_0.b_0@GRAD",
            "linear_1.w_0",
            "linear_1.w_0@GRAD",
            "linear_1.b_0",
            "linear_1.b_0@GRAD",
Z
zhaoyingli 已提交
676 677
        ]

678 679
        exe = fluid.Executor(place)
        exe.run(startup)
Z
zhaoyingli 已提交
680
        test_prog = train_prog.clone(for_test=True)
Z
zhaoyingli 已提交
681 682

        for i in range(5):
683 684
            inputs = np.random.random(size=[8, 10]).astype('float32')
            outputs = np.random.random(size=[8, 1]).astype('float32')
Z
zhaoyingli 已提交
685

686 687 688 689 690 691 692 693 694 695
            param = exe.run(
                test_prog,
                feed={"x": inputs, "y": outputs},
                fetch_list=fetch_list1,
            )
            params_and_gras = exe.run(
                train_prog,
                feed={"x": inputs, "y": outputs},
                fetch_list=fetch_list2,
            )
Z
zhaoyingli 已提交
696 697 698 699 700 701 702 703 704 705 706

            fc1_w = param[0]
            fc1_w_grad = params_and_gras[1]
            fc1_b = param[1]
            fc1_b_grad = params_and_gras[3]
            fc2_w = param[2]
            fc2_w_grad = params_and_gras[5]
            fc2_b = param[3]
            fc2_b_grad = params_and_gras[7]

            fc1_w, fc1_w_mon1, fc1_w_mon2 = get_numpy_output(
707 708 709 710 711 712 713
                fc1_w,
                fc1_w_grad,
                fc1_w_mon1,
                fc1_w_mon2,
                simple_lr_fun(linear1.weight),
                i + 1,
            )
Z
zhaoyingli 已提交
714
            fc1_b, fc1_b_mon1, fc1_b_mon2 = get_numpy_output(
715 716 717 718 719 720 721
                fc1_b,
                fc1_b_grad,
                fc1_b_mon1,
                fc1_b_mon2,
                simple_lr_fun(linear1.bias),
                i + 1,
            )
Z
zhaoyingli 已提交
722
            fc2_w, fc2_w_mon1, fc2_w_mon2 = get_numpy_output(
723 724 725 726 727 728 729
                fc2_w,
                fc2_w_grad,
                fc2_w_mon1,
                fc2_w_mon2,
                simple_lr_fun(linear2.weight),
                i + 1,
            )
Z
zhaoyingli 已提交
730
            fc2_b, fc2_b_mon1, fc2_b_mon2 = get_numpy_output(
731 732 733 734 735 736 737
                fc2_b,
                fc2_b_grad,
                fc2_b_mon1,
                fc2_b_mon2,
                simple_lr_fun(linear2.bias),
                i + 1,
            )
Z
zhaoyingli 已提交
738 739 740 741 742

            np.testing.assert_allclose(params_and_gras[0], fc1_w, rtol=1e-6)
            np.testing.assert_allclose(params_and_gras[2], fc1_b, rtol=1e-6)
            np.testing.assert_allclose(params_and_gras[4], fc2_w, rtol=1e-6)
            np.testing.assert_allclose(params_and_gras[6], fc2_b, rtol=1e-6)
743 744 745 746

        paddle.disable_static()


M
MRXLT 已提交
747 748
if __name__ == "__main__":
    unittest.main()