test_adamw_op.py 20.1 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle
Z
zhaoyingli 已提交
17
import random
M
MRXLT 已提交
18 19
import numpy as np
import paddle.fluid as fluid
Z
zhaoyingli 已提交
20
from op_test import OpTest
21
from functools import partial
Z
zhaoyingli 已提交
22
from paddle.framework import core
C
chentianyu03 已提交
23
from paddle.fluid.framework import _test_eager_guard
Z
zhaoyingli 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56


def adamw_step(inputs, attributes):
    param = inputs['Param']
    grad = inputs['Grad']
    moment1 = inputs['Moment1']
    moment2 = inputs['Moment2']
    lr = inputs['LearningRate']
    beta1_pow = inputs['Beta1Pow']
    beta2_pow = inputs['Beta2Pow']

    epsilon = attributes['epsilon']

    if 'lr_ratio' in attributes:
        lr = lr * attributes['lr_ratio']

    if attributes["with_decay"]:
        coeff = attributes["coeff"]
        decay = 1.0 - lr * coeff
        param2 = param * decay
        param = param2.copy()

    if 'beta1' in attributes:
        beta1 = attributes['beta1']
    else:
        beta1 = inputs['Beta1Tensor'][0]
    if 'beta2' in attributes:
        beta2 = attributes['beta2']
    else:
        beta2 = inputs['Beta2Tensor'][0]

    moment1_out = beta1 * moment1 + (1 - beta1) * grad
    moment2_out = beta2 * moment2 + (1 - beta2) * np.square(grad)
Z
zhaoyingli 已提交
57 58
    denom = (np.sqrt(moment2_out) / np.sqrt(1.0 - beta2_pow)) + epsilon
    param_out = param + ((moment1_out / denom) * (-(lr / (1.0 - beta1_pow))))
Z
zhaoyingli 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    return param_out, moment1_out, moment2_out


class TestAdamW(OpTest):
    def setUp(self):
        '''Test AdamW Op with supplied attributes
        '''
        self.op_type = "adamw"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")

        learning_rate = 0.004
        beta1 = 0.78
        beta2 = 0.836
        epsilon = 1e-4
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32")
        }

        self.attrs = {
            'epsilon': epsilon,
            'beta1': beta1,
            'beta2': beta2,
            "coeff": 0.5,
            "with_decay": True
        }

        param_out, moment1_out, \
            moment2_out = adamw_step(self.inputs, self.attrs)

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
            'ParamOut': param_out,
            'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1,
            'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2
        }

    def test_check_output(self):
        self.check_output()


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestAdamW2(OpTest):
    def setUp(self):
        '''Test AdamW Op with supplied attributes
        '''
        self.op_type = "adamw"
        param = np.random.uniform(-1, 1, (2, 2)).astype("float32")
        grad = np.random.uniform(-1, 1, (2, 2)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (2, 2)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((2, 2)).astype("float32")

        learning_rate = 0.004
        beta1 = 0.78
        beta2 = 0.836
        epsilon = 1e-4
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32")
        }

        self.attrs = {
            'epsilon': epsilon,
            'beta1': beta1,
            'beta2': beta2,
            "lr_ratio": 0.1,
            "coeff": 0.5,
            "with_decay": True
        }

        param_out, moment1_out, moment2_out = adamw_step(self.inputs,
                                                         self.attrs)

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
            'ParamOut': param_out,
            'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1,
            'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2
        }

    def test_check_output(self):
        self.check_output_with_place(core.CUDAPlace(0))
M
MRXLT 已提交
165 166 167 168 169 170


class TestAdamWOp(unittest.TestCase):
    def test_adamw_op_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
Z
Zhou Wei 已提交
171
        a = paddle.to_tensor(value)
172
        linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
173 174 175 176 177
        adam = paddle.optimizer.AdamW(
            learning_rate=0.01,
            parameters=linear.parameters(),
            apply_decay_param_fun=lambda name: True,
            weight_decay=0.01)
W
WangXi 已提交
178 179 180 181 182 183

        for _ in range(2):
            out = linear(a)
            out.backward()
            adam.step()
            adam.clear_gradients()
M
MRXLT 已提交
184 185 186 187

    def test_adamw_op_coverage(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
Z
Zhou Wei 已提交
188
        a = paddle.to_tensor(value)
189
        linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
190 191 192 193 194 195 196 197
        adam = paddle.optimizer.AdamW(
            learning_rate=0.0,
            parameters=linear.parameters(),
            apply_decay_param_fun=lambda name: True,
            weight_decay=0.01)
        assert (adam.__str__() is not None)

    def test_adamw_op(self):
198
        paddle.enable_static()
M
MRXLT 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
        place = fluid.CPUPlace()
        shape = [2, 3, 8, 8]
        exe = fluid.Executor(place)
        train_prog = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(train_prog, startup):
            with fluid.unique_name.guard():
                data = fluid.data(name="data", shape=shape)
                conv = fluid.layers.conv2d(data, 8, 3)
                loss = paddle.mean(conv)

                beta1 = fluid.layers.create_global_var(
                    shape=[1], value=0.85, dtype='float32', persistable=True)
                beta2 = fluid.layers.create_global_var(
                    shape=[1], value=0.95, dtype='float32', persistable=True)
                betas = [beta1, beta2]
                opt = paddle.optimizer.AdamW(
                    learning_rate=1e-5,
                    beta1=beta1,
                    beta2=beta2,
                    weight_decay=0.01,
                    epsilon=1e-8)
                opt.minimize(loss)

        exe.run(startup)
        data_np = np.random.random(shape).astype('float32')
        rets = exe.run(train_prog, feed={"data": data_np}, fetch_list=[loss])
        assert rets[0] is not None
227
        paddle.disable_static()
M
MRXLT 已提交
228

M
MRXLT 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241
    def test_adamw_op_invalid_input(self):
        paddle.disable_static()
        linear = paddle.nn.Linear(10, 10)
        with self.assertRaises(ValueError):
            adam = paddle.optimizer.AdamW(
                0.1, beta1=-1, parameters=linear.parameters())
        with self.assertRaises(ValueError):
            adam = paddle.optimizer.AdamW(
                0.1, beta2=-1, parameters=linear.parameters())
        with self.assertRaises(ValueError):
            adam = paddle.optimizer.AdamW(
                0.1, epsilon=-1, parameters=linear.parameters())

C
chentianyu03 已提交
242 243 244 245 246
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_adamw_op_dygraph()
            self.test_adamw_op_invalid_input()

M
MRXLT 已提交
247

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
class TestAdamWOpGroup(TestAdamWOp):
    def test_adamw_op_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear_1 = paddle.nn.Linear(13, 5)
        linear_2 = paddle.nn.Linear(5, 3)
        adam = paddle.optimizer.AdamW(
            learning_rate=0.01,
            parameters=[{
                'params': linear_1.parameters()
            }, {
                'params': linear_2.parameters(),
                'weight_decay': 0.001
            }],
            apply_decay_param_fun=lambda name: True,
            weight_decay=0.01)

        for _ in range(2):
            out = linear_1(a)
            out = linear_2(out)
            out.backward()
            adam.step()
            adam.clear_gradients()


W
wangguanzhong 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
class TestAdamWOpGroupWithLR(TestAdamWOp):
    def test_adamw_op_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear_1 = paddle.nn.Linear(13, 5)
        linear_2 = paddle.nn.Linear(5, 3)
        adam = paddle.optimizer.AdamW(
            learning_rate=paddle.optimizer.lr.PiecewiseDecay(
                boundaries=[3, 6], values=[0.1, 0.2, 0.3]),
            parameters=[{
                'params': linear_1.parameters(),
                'learning_rate': 0.1,
            }, {
                'params': linear_2.parameters(),
                'weight_decay': 0.001,
            }],
            apply_decay_param_fun=lambda name: True,
            weight_decay=0.01)

        for _ in range(2):
            out = linear_1(a)
            out = linear_2(out)
            out.backward()
            adam.step()
            adam.clear_gradients()


302 303 304 305 306 307 308 309 310 311 312
def simple_lr_setting(param, decay_rate, n_layers):
    if "fc_0" in param.name or "linear_1" in param.name:
        depth = int(param.name.split("_")[2]) + 1
    elif "fc_1" in param.name or "linear_2" in param.name:
        depth = int(param.name.split("_")[2]) + 2
    else:
        depth = 0

    return decay_rate**(n_layers + 2 - depth)


Z
zhaoyingli 已提交
313 314
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
315
class TestAdamWOpLayerwiseLR(TestAdamWOp):
Z
zhaoyingli 已提交
316
    def setUp(self):
Z
zhaoyingli 已提交
317 318 319
        random.seed(2022)
        np.random.seed(2022)
        paddle.seed(2022)
Z
zhaoyingli 已提交
320

321 322
    def test_adamw_op_dygraph(self):
        paddle.disable_static()
Z
zhaoyingli 已提交
323 324 325 326
        linear1 = paddle.nn.Linear(
            13, 8, bias_attr=paddle.nn.initializer.Constant(value=1.0))
        linear2 = paddle.nn.Linear(
            8, 5, bias_attr=paddle.nn.initializer.Constant(value=1.0))
327

C
chentianyu03 已提交
328 329 330 331 332 333
        # fix the linear name, simple_lr_setting function will use the name
        linear1.weight.name = "linear_1.w_0"
        linear1.bias.name = "linear_1.b_0"
        linear2.weight.name = "linear_2.w_0"
        linear2.bias.name = "linear_2.b_0"

Z
zhaoyingli 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347
        fc1_w = np.array(linear1.weight)
        fc1_w_mon1 = np.zeros_like(fc1_w)
        fc1_w_mon2 = np.zeros_like(fc1_w)
        fc1_b = np.array(linear1.bias)
        fc1_b_mon1 = np.zeros_like(fc1_b)
        fc1_b_mon2 = np.zeros_like(fc1_b)

        fc2_w = np.array(linear2.weight)
        fc2_w_mon1 = np.zeros_like(fc2_w)
        fc2_w_mon2 = np.zeros_like(fc2_w)
        fc2_b = np.array(linear2.bias)
        fc2_b_mon1 = np.zeros_like(fc2_b)
        fc2_b_mon2 = np.zeros_like(fc2_b)

348
        simple_lr_fun = partial(simple_lr_setting, decay_rate=0.8, n_layers=2)
Z
zhaoyingli 已提交
349 350 351 352
        learning_rate = 0.001
        weight_decay = 0.01
        beta1 = 0.9
        beta2 = 0.999
353

Z
zhaoyingli 已提交
354 355
        opt = paddle.optimizer.AdamW(
            learning_rate=learning_rate,
356 357 358 359 360 361
            parameters=[{
                'params': linear1.parameters()
            }, {
                'params': linear2.parameters(),
            }],
            apply_decay_param_fun=lambda name: True,
Z
zhaoyingli 已提交
362
            weight_decay=weight_decay,
363 364
            lr_ratio=simple_lr_fun)

Z
zhaoyingli 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
        def get_numpy_output(param, grad, moment1, moment2, lr_ratio, t):
            np_inputs = {
                'Param': param,
                'Grad': grad,
                'Moment1': moment1,
                'Moment2': moment2,
                'LearningRate': np.array([learning_rate]).astype("float32"),
                'Beta1Pow': np.array([beta1**t]).astype("float32"),
                'Beta2Pow': np.array([beta2**t]).astype("float32")
            }

            np_attrs = {
                'epsilon': 1e-8,
                'beta1': beta1,
                'beta2': beta2,
                "lr_ratio": lr_ratio,
                "coeff": weight_decay,
                "with_decay": True
            }
            param_out, moment1_out, moment2_out = adamw_step(np_inputs,
                                                             np_attrs)
            return param_out, moment1_out, moment2_out

Z
zhaoyingli 已提交
388
        for i in range(5):
Z
zhaoyingli 已提交
389 390
            a = paddle.to_tensor(
                np.random.uniform(-1, 1, (2, 13)).astype("float32"))
391 392
            a1 = linear1(a)
            out = linear2(a1)
Z
zhaoyingli 已提交
393
            out = paddle.mean(out)
394
            out.backward()
Z
zhaoyingli 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419

            fc1_w, fc1_w_mon1, fc1_w_mon2 = get_numpy_output(
                fc1_w,
                np.array(linear1.weight.grad), fc1_w_mon1, fc1_w_mon2,
                simple_lr_fun(linear1.weight), i + 1)
            fc1_b, fc1_b_mon1, fc1_b_mon2 = get_numpy_output(
                fc1_b,
                np.array(linear1.bias.grad), fc1_b_mon1, fc1_b_mon2,
                simple_lr_fun(linear1.bias), i + 1)
            fc2_w, fc2_w_mon1, fc2_w_mon2 = get_numpy_output(
                fc2_w,
                np.array(linear2.weight.grad), fc2_w_mon1, fc2_w_mon2,
                simple_lr_fun(linear2.weight), i + 1)
            fc2_b, fc2_b_mon1, fc2_b_mon2 = get_numpy_output(
                fc2_b,
                np.array(linear2.bias.grad), fc2_b_mon1, fc2_b_mon2,
                simple_lr_fun(linear2.bias), i + 1)

            opt.step()
            opt.clear_gradients()

            np.testing.assert_allclose(linear1.weight.numpy(), fc1_w, rtol=1e-6)
            np.testing.assert_allclose(linear1.bias.numpy(), fc1_b, rtol=1e-6)
            np.testing.assert_allclose(linear2.weight.numpy(), fc2_w, rtol=1e-6)
            np.testing.assert_allclose(linear2.bias.numpy(), fc2_b, rtol=1e-6)
420 421 422

    def test_adamw_op(self):
        paddle.enable_static()
Z
zhaoyingli 已提交
423
        place = fluid.CUDAPlace(0)
Z
zhaoyingli 已提交
424 425 426 427 428 429 430

        learning_rate = 0.0001
        beta1 = 0.85
        beta2 = 0.95
        weight_decay = 0.01
        epsilon = 1e-8

431 432 433 434 435 436 437
        train_prog = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(train_prog, startup):
            with fluid.unique_name.guard():
                x = fluid.data(name='x', shape=[None, 10], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')

Z
zhaoyingli 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
                weight_attr1 = paddle.framework.ParamAttr(name="linear_0.w_0")
                bias_attr1 = paddle.framework.ParamAttr(
                    name="linear_0.b_0",
                    initializer=paddle.nn.initializer.Constant(value=1.0))
                weight_attr2 = paddle.framework.ParamAttr(name="linear_1.w_0")
                bias_attr2 = paddle.framework.ParamAttr(
                    name="linear_1.b_0",
                    initializer=paddle.nn.initializer.Constant(value=1.0))
                linear1 = paddle.nn.Linear(
                    10, 32, weight_attr=weight_attr1, bias_attr=bias_attr1)
                linear2 = paddle.nn.Linear(
                    32, 1, weight_attr=weight_attr2, bias_attr=bias_attr2)

                out = linear1(x)
                out = linear2(out)

                fc1_w_mon1 = np.zeros((linear1.weight.shape)).astype("float32")
                fc1_w_mon2 = np.zeros((linear1.weight.shape)).astype("float32")
                fc1_b_mon1 = np.zeros((linear1.bias.shape)).astype("float32")
                fc1_b_mon2 = np.zeros((linear1.bias.shape)).astype("float32")
                fc2_w_mon1 = np.zeros((linear2.weight.shape)).astype("float32")
                fc2_w_mon2 = np.zeros((linear2.weight.shape)).astype("float32")
                fc2_b_mon1 = np.zeros((linear2.bias.shape)).astype("float32")
                fc2_b_mon2 = np.zeros((linear2.bias.shape)).astype("float32")

                cost = fluid.layers.square_error_cost(input=out, label=y)
464 465 466 467 468 469
                avg_cost = fluid.layers.mean(cost)

                simple_lr_fun = partial(
                    simple_lr_setting, decay_rate=0.8, n_layers=2)

                opt = paddle.optimizer.AdamW(
Z
zhaoyingli 已提交
470
                    learning_rate=learning_rate,
471 472
                    beta1=beta1,
                    beta2=beta2,
Z
zhaoyingli 已提交
473 474
                    weight_decay=weight_decay,
                    epsilon=epsilon,
475 476 477
                    lr_ratio=simple_lr_fun)
                opt.minimize(avg_cost)

Z
zhaoyingli 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
        def get_numpy_output(param, grad, moment1, moment2, lr_ratio, t):
            np_inputs = {
                'Param': param,
                'Grad': grad,
                'Moment1': moment1,
                'Moment2': moment2,
                'LearningRate': np.array([learning_rate]).astype("float32"),
                'Beta1Pow': np.array([beta1**t]).astype("float32"),
                'Beta2Pow': np.array([beta2**t]).astype("float32")
            }

            np_attrs = {
                'epsilon': epsilon,
                'beta1': beta1,
                'beta2': beta2,
                "lr_ratio": lr_ratio,
                "coeff": weight_decay,
                "with_decay": True
            }
            param_out, moment1_out, moment2_out = adamw_step(np_inputs,
                                                             np_attrs)
            return param_out, moment1_out, moment2_out

        fetch_list1 = [
            "linear_0.w_0", "linear_0.b_0", "linear_1.w_0", "linear_1.b_0"
        ]
        fetch_list2 = [
            "linear_0.w_0", "linear_0.w_0@GRAD", "linear_0.b_0",
            "linear_0.b_0@GRAD", "linear_1.w_0", "linear_1.w_0@GRAD",
            "linear_1.b_0", "linear_1.b_0@GRAD"
        ]

510 511
        exe = fluid.Executor(place)
        exe.run(startup)
Z
zhaoyingli 已提交
512
        test_prog = train_prog.clone(for_test=True)
Z
zhaoyingli 已提交
513 514

        for i in range(5):
515 516
            inputs = np.random.random(size=[8, 10]).astype('float32')
            outputs = np.random.random(size=[8, 1]).astype('float32')
Z
zhaoyingli 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552

            param = exe.run(test_prog,
                            feed={"x": inputs,
                                  "y": outputs},
                            fetch_list=fetch_list1)
            params_and_gras = exe.run(train_prog,
                                      feed={"x": inputs,
                                            "y": outputs},
                                      fetch_list=fetch_list2)

            fc1_w = param[0]
            fc1_w_grad = params_and_gras[1]
            fc1_b = param[1]
            fc1_b_grad = params_and_gras[3]
            fc2_w = param[2]
            fc2_w_grad = params_and_gras[5]
            fc2_b = param[3]
            fc2_b_grad = params_and_gras[7]

            fc1_w, fc1_w_mon1, fc1_w_mon2 = get_numpy_output(
                fc1_w, fc1_w_grad, fc1_w_mon1, fc1_w_mon2,
                simple_lr_fun(linear1.weight), i + 1)
            fc1_b, fc1_b_mon1, fc1_b_mon2 = get_numpy_output(
                fc1_b, fc1_b_grad, fc1_b_mon1, fc1_b_mon2,
                simple_lr_fun(linear1.bias), i + 1)
            fc2_w, fc2_w_mon1, fc2_w_mon2 = get_numpy_output(
                fc2_w, fc2_w_grad, fc2_w_mon1, fc2_w_mon2,
                simple_lr_fun(linear2.weight), i + 1)
            fc2_b, fc2_b_mon1, fc2_b_mon2 = get_numpy_output(
                fc2_b, fc2_b_grad, fc2_b_mon1, fc2_b_mon2,
                simple_lr_fun(linear2.bias), i + 1)

            np.testing.assert_allclose(params_and_gras[0], fc1_w, rtol=1e-6)
            np.testing.assert_allclose(params_and_gras[2], fc1_b, rtol=1e-6)
            np.testing.assert_allclose(params_and_gras[4], fc2_w, rtol=1e-6)
            np.testing.assert_allclose(params_and_gras[6], fc2_b, rtol=1e-6)
553 554 555 556

        paddle.disable_static()


M
MRXLT 已提交
557 558
if __name__ == "__main__":
    unittest.main()