test_adamw_op.py 25.6 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle
Z
zhaoyingli 已提交
17
import random
M
MRXLT 已提交
18 19
import numpy as np
import paddle.fluid as fluid
Z
zhaoyingli 已提交
20
from op_test import OpTest
21
from functools import partial
Z
zhaoyingli 已提交
22
from paddle.framework import core
C
chentianyu03 已提交
23
from paddle.fluid.framework import _test_eager_guard
Z
zhaoyingli 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56


def adamw_step(inputs, attributes):
    param = inputs['Param']
    grad = inputs['Grad']
    moment1 = inputs['Moment1']
    moment2 = inputs['Moment2']
    lr = inputs['LearningRate']
    beta1_pow = inputs['Beta1Pow']
    beta2_pow = inputs['Beta2Pow']

    epsilon = attributes['epsilon']

    if 'lr_ratio' in attributes:
        lr = lr * attributes['lr_ratio']

    if attributes["with_decay"]:
        coeff = attributes["coeff"]
        decay = 1.0 - lr * coeff
        param2 = param * decay
        param = param2.copy()

    if 'beta1' in attributes:
        beta1 = attributes['beta1']
    else:
        beta1 = inputs['Beta1Tensor'][0]
    if 'beta2' in attributes:
        beta2 = attributes['beta2']
    else:
        beta2 = inputs['Beta2Tensor'][0]

    moment1_out = beta1 * moment1 + (1 - beta1) * grad
    moment2_out = beta2 * moment2 + (1 - beta2) * np.square(grad)
Z
zhaoyingli 已提交
57 58
    denom = (np.sqrt(moment2_out) / np.sqrt(1.0 - beta2_pow)) + epsilon
    param_out = param + ((moment1_out / denom) * (-(lr / (1.0 - beta1_pow))))
Z
zhaoyingli 已提交
59 60 61 62
    return param_out, moment1_out, moment2_out


class TestAdamW(OpTest):
63

Z
zhaoyingli 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    def setUp(self):
        '''Test AdamW Op with supplied attributes
        '''
        self.op_type = "adamw"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")

        learning_rate = 0.004
        beta1 = 0.78
        beta2 = 0.836
        epsilon = 1e-4
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32")
        }

        self.attrs = {
            'epsilon': epsilon,
            'beta1': beta1,
            'beta2': beta2,
            "coeff": 0.5,
            "with_decay": True
        }

        param_out, moment1_out, \
            moment2_out = adamw_step(self.inputs, self.attrs)

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
            'ParamOut': param_out,
            'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1,
            'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2
        }

    def test_check_output(self):
        self.check_output()


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestAdamW2(OpTest):
117

Z
zhaoyingli 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    def setUp(self):
        '''Test AdamW Op with supplied attributes
        '''
        self.op_type = "adamw"
        param = np.random.uniform(-1, 1, (2, 2)).astype("float32")
        grad = np.random.uniform(-1, 1, (2, 2)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (2, 2)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((2, 2)).astype("float32")

        learning_rate = 0.004
        beta1 = 0.78
        beta2 = 0.836
        epsilon = 1e-4
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
            'Beta2Pow': np.array([beta2_pow]).astype("float32")
        }

        self.attrs = {
            'epsilon': epsilon,
            'beta1': beta1,
            'beta2': beta2,
            "lr_ratio": 0.1,
            "coeff": 0.5,
            "with_decay": True
        }

154 155
        param_out, moment1_out, moment2_out = adamw_step(
            self.inputs, self.attrs)
Z
zhaoyingli 已提交
156 157 158 159 160 161 162 163 164 165 166

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
            'ParamOut': param_out,
            'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1,
            'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2
        }

    def test_check_output(self):
        self.check_output_with_place(core.CUDAPlace(0))
M
MRXLT 已提交
167 168 169


class TestAdamWOp(unittest.TestCase):
170

M
MRXLT 已提交
171 172 173
    def test_adamw_op_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
Z
Zhou Wei 已提交
174
        a = paddle.to_tensor(value)
175
        linear = paddle.nn.Linear(13, 5)
176 177 178 179
        adam = paddle.optimizer.AdamW(learning_rate=0.01,
                                      parameters=linear.parameters(),
                                      apply_decay_param_fun=lambda name: True,
                                      weight_decay=0.01)
W
WangXi 已提交
180 181 182 183 184 185

        for _ in range(2):
            out = linear(a)
            out.backward()
            adam.step()
            adam.clear_gradients()
M
MRXLT 已提交
186 187 188 189

    def test_adamw_op_coverage(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
Z
Zhou Wei 已提交
190
        a = paddle.to_tensor(value)
191
        linear = paddle.nn.Linear(13, 5)
192 193 194 195
        adam = paddle.optimizer.AdamW(learning_rate=0.0,
                                      parameters=linear.parameters(),
                                      apply_decay_param_fun=lambda name: True,
                                      weight_decay=0.01)
M
MRXLT 已提交
196 197 198
        assert (adam.__str__() is not None)

    def test_adamw_op(self):
199
        paddle.enable_static()
M
MRXLT 已提交
200 201 202 203 204 205 206 207 208 209 210
        place = fluid.CPUPlace()
        shape = [2, 3, 8, 8]
        exe = fluid.Executor(place)
        train_prog = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(train_prog, startup):
            with fluid.unique_name.guard():
                data = fluid.data(name="data", shape=shape)
                conv = fluid.layers.conv2d(data, 8, 3)
                loss = paddle.mean(conv)

211 212 213 214 215 216 217 218
                beta1 = fluid.layers.create_global_var(shape=[1],
                                                       value=0.85,
                                                       dtype='float32',
                                                       persistable=True)
                beta2 = fluid.layers.create_global_var(shape=[1],
                                                       value=0.95,
                                                       dtype='float32',
                                                       persistable=True)
M
MRXLT 已提交
219
                betas = [beta1, beta2]
220 221 222 223 224
                opt = paddle.optimizer.AdamW(learning_rate=1e-5,
                                             beta1=beta1,
                                             beta2=beta2,
                                             weight_decay=0.01,
                                             epsilon=1e-8)
M
MRXLT 已提交
225 226 227 228 229 230
                opt.minimize(loss)

        exe.run(startup)
        data_np = np.random.random(shape).astype('float32')
        rets = exe.run(train_prog, feed={"data": data_np}, fetch_list=[loss])
        assert rets[0] is not None
231
        paddle.disable_static()
M
MRXLT 已提交
232

M
MRXLT 已提交
233 234 235 236
    def test_adamw_op_invalid_input(self):
        paddle.disable_static()
        linear = paddle.nn.Linear(10, 10)
        with self.assertRaises(ValueError):
237 238 239
            adam = paddle.optimizer.AdamW(0.1,
                                          beta1=-1,
                                          parameters=linear.parameters())
M
MRXLT 已提交
240
        with self.assertRaises(ValueError):
241 242 243
            adam = paddle.optimizer.AdamW(0.1,
                                          beta2=-1,
                                          parameters=linear.parameters())
M
MRXLT 已提交
244
        with self.assertRaises(ValueError):
245 246 247
            adam = paddle.optimizer.AdamW(0.1,
                                          epsilon=-1,
                                          parameters=linear.parameters())
M
MRXLT 已提交
248

C
chentianyu03 已提交
249 250 251 252 253
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_adamw_op_dygraph()
            self.test_adamw_op_invalid_input()

M
MRXLT 已提交
254

255
class TestAdamWOpGroup(TestAdamWOp):
256

257 258 259 260 261 262
    def test_adamw_op_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear_1 = paddle.nn.Linear(13, 5)
        linear_2 = paddle.nn.Linear(5, 3)
263 264 265 266 267 268 269 270 271 272 273 274
        adam = paddle.optimizer.AdamW(learning_rate=0.01,
                                      parameters=[{
                                          'params':
                                          linear_1.parameters()
                                      }, {
                                          'params':
                                          linear_2.parameters(),
                                          'weight_decay':
                                          0.001
                                      }],
                                      apply_decay_param_fun=lambda name: True,
                                      weight_decay=0.01)
275 276 277 278 279 280 281 282 283

        for _ in range(2):
            out = linear_1(a)
            out = linear_2(out)
            out.backward()
            adam.step()
            adam.clear_gradients()


284
class TestAdamWOpMultiPrecison(unittest.TestCase):
285

286 287 288 289 290 291 292 293 294
    def _test_adamw_op_dygraph_place_amp(self, place, use_amp=False):
        paddle.disable_static()
        paddle.seed(10)
        paddle.set_device(place)

        input = paddle.randn((5, 5))

        model = paddle.nn.Linear(5, 5)

295 296 297 298 299 300 301 302 303 304 305
        optimizer = paddle.optimizer.AdamW(parameters=[{
            'params':
            model.parameters(),
            'weight_decay':
            0.001,
            'beta1':
            0.1,
            'beta2':
            0.99
        }],
                                           multi_precision=use_amp)
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

        for idx in range(2):
            if place == 'gpu' and use_amp == True:
                model = paddle.amp.decorate(models=model, level='O2')
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)

            if place == 'gpu' and use_amp == True:
                with paddle.amp.auto_cast(level='O2'):
                    output = model(input)
                    loss = paddle.mean(output)
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.step(optimizer)
                optimizer.clear_grad()
            else:
                output = model(input)
                loss = paddle.mean(output)
                loss.backward()
                optimizer.step()
                optimizer.clear_grad()

    def _get_places(self):
        places = ['cpu']
        if paddle.is_compiled_with_cuda():
            places.append('gpu')
        return places

    def test_main(self):
        for place in self._get_places():
            use_amp_list = [True, False]
            for use_amp in use_amp_list:
                self._test_adamw_op_dygraph_place_amp(place, use_amp)


class TestAdamWOpError(unittest.TestCase):
341

342
    def test_api_errors(self):
343

344 345
        def test_weight_decay_dtype():
            linear = paddle.nn.Linear(13, 5)
346 347 348
            adam = paddle.optimizer.AdamW(learning_rate=0.01,
                                          parameters=linear.parameters(),
                                          weight_decay=1)
349 350

        def test_parameters_dtype1():
351 352 353
            adam = paddle.optimizer.AdamW(learning_rate=0.01,
                                          parameters=paddle.randn((5, 5)),
                                          weight_decay=0.1)
354 355 356 357 358 359 360 361 362

        def test_parameters_dtype2():
            linear = paddle.nn.Linear(13, 5)
            adam = paddle.optimizer.AdamW(
                learning_rate=0.01,
                parameters={'params': linear.parameters()},
                weight_decay=0.1)

        def test_parameters_dtype3():
363 364 365
            adam = paddle.optimizer.AdamW(learning_rate=0.01,
                                          parameters=None,
                                          weight_decay=0.1)
366 367 368 369 370 371 372 373 374 375

        def test_parameters_dtype4():
            linear = paddle.nn.Linear(13, 5)
            adam = paddle.optimizer.AdamW(
                learning_rate=0.01,
                parameters={'params': set(linear.parameters())},
                weight_decay=0.1)

        def test_learning_rate_dtype():
            linear = paddle.nn.Linear(13, 5)
376 377 378
            adam = paddle.optimizer.AdamW(learning_rate=1,
                                          parameters=linear.parameters(),
                                          weight_decay=0.1)
379 380 381

        def test_grad_clip_dtype():
            linear = paddle.nn.Linear(13, 5)
382 383 384 385
            adam = paddle.optimizer.AdamW(learning_rate=0.01,
                                          parameters=linear.parameters(),
                                          weight_decay=0.1,
                                          grad_clip=0.1)
386 387 388 389 390 391 392 393 394 395

        self.assertRaises(TypeError, test_weight_decay_dtype)
        self.assertRaises(TypeError, test_parameters_dtype1)
        self.assertRaises(TypeError, test_parameters_dtype2)
        self.assertRaises(AttributeError, test_parameters_dtype3)
        self.assertRaises(TypeError, test_parameters_dtype4)
        self.assertRaises(TypeError, test_learning_rate_dtype)
        self.assertRaises(TypeError, test_grad_clip_dtype)


W
wangguanzhong 已提交
396
class TestAdamWOpGroupWithLR(TestAdamWOp):
397

W
wangguanzhong 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
    def test_adamw_op_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear_1 = paddle.nn.Linear(13, 5)
        linear_2 = paddle.nn.Linear(5, 3)
        adam = paddle.optimizer.AdamW(
            learning_rate=paddle.optimizer.lr.PiecewiseDecay(
                boundaries=[3, 6], values=[0.1, 0.2, 0.3]),
            parameters=[{
                'params': linear_1.parameters(),
                'learning_rate': 0.1,
            }, {
                'params': linear_2.parameters(),
                'weight_decay': 0.001,
            }],
            apply_decay_param_fun=lambda name: True,
            weight_decay=0.01)

        for _ in range(2):
            out = linear_1(a)
            out = linear_2(out)
            out.backward()
            adam.step()
            adam.clear_gradients()


425 426 427 428 429 430 431 432 433 434 435
def simple_lr_setting(param, decay_rate, n_layers):
    if "fc_0" in param.name or "linear_1" in param.name:
        depth = int(param.name.split("_")[2]) + 1
    elif "fc_1" in param.name or "linear_2" in param.name:
        depth = int(param.name.split("_")[2]) + 2
    else:
        depth = 0

    return decay_rate**(n_layers + 2 - depth)


Z
zhaoyingli 已提交
436 437
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
438
class TestAdamWOpLayerwiseLR(TestAdamWOp):
439

Z
zhaoyingli 已提交
440
    def setUp(self):
Z
zhaoyingli 已提交
441 442 443
        random.seed(2022)
        np.random.seed(2022)
        paddle.seed(2022)
Z
zhaoyingli 已提交
444

445 446
    def test_adamw_op_dygraph(self):
        paddle.disable_static()
Z
zhaoyingli 已提交
447 448 449 450
        linear1 = paddle.nn.Linear(
            13, 8, bias_attr=paddle.nn.initializer.Constant(value=1.0))
        linear2 = paddle.nn.Linear(
            8, 5, bias_attr=paddle.nn.initializer.Constant(value=1.0))
451

C
chentianyu03 已提交
452 453 454 455 456 457
        # fix the linear name, simple_lr_setting function will use the name
        linear1.weight.name = "linear_1.w_0"
        linear1.bias.name = "linear_1.b_0"
        linear2.weight.name = "linear_2.w_0"
        linear2.bias.name = "linear_2.b_0"

Z
zhaoyingli 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471
        fc1_w = np.array(linear1.weight)
        fc1_w_mon1 = np.zeros_like(fc1_w)
        fc1_w_mon2 = np.zeros_like(fc1_w)
        fc1_b = np.array(linear1.bias)
        fc1_b_mon1 = np.zeros_like(fc1_b)
        fc1_b_mon2 = np.zeros_like(fc1_b)

        fc2_w = np.array(linear2.weight)
        fc2_w_mon1 = np.zeros_like(fc2_w)
        fc2_w_mon2 = np.zeros_like(fc2_w)
        fc2_b = np.array(linear2.bias)
        fc2_b_mon1 = np.zeros_like(fc2_b)
        fc2_b_mon2 = np.zeros_like(fc2_b)

472
        simple_lr_fun = partial(simple_lr_setting, decay_rate=0.8, n_layers=2)
Z
zhaoyingli 已提交
473 474 475 476
        learning_rate = 0.001
        weight_decay = 0.01
        beta1 = 0.9
        beta2 = 0.999
477

478 479 480 481 482 483 484 485 486
        opt = paddle.optimizer.AdamW(learning_rate=learning_rate,
                                     parameters=[{
                                         'params': linear1.parameters()
                                     }, {
                                         'params': linear2.parameters(),
                                     }],
                                     apply_decay_param_fun=lambda name: True,
                                     weight_decay=weight_decay,
                                     lr_ratio=simple_lr_fun)
487

Z
zhaoyingli 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
        def get_numpy_output(param, grad, moment1, moment2, lr_ratio, t):
            np_inputs = {
                'Param': param,
                'Grad': grad,
                'Moment1': moment1,
                'Moment2': moment2,
                'LearningRate': np.array([learning_rate]).astype("float32"),
                'Beta1Pow': np.array([beta1**t]).astype("float32"),
                'Beta2Pow': np.array([beta2**t]).astype("float32")
            }

            np_attrs = {
                'epsilon': 1e-8,
                'beta1': beta1,
                'beta2': beta2,
                "lr_ratio": lr_ratio,
                "coeff": weight_decay,
                "with_decay": True
            }
507 508
            param_out, moment1_out, moment2_out = adamw_step(
                np_inputs, np_attrs)
Z
zhaoyingli 已提交
509 510
            return param_out, moment1_out, moment2_out

Z
zhaoyingli 已提交
511
        for i in range(5):
Z
zhaoyingli 已提交
512 513
            a = paddle.to_tensor(
                np.random.uniform(-1, 1, (2, 13)).astype("float32"))
514 515
            a1 = linear1(a)
            out = linear2(a1)
Z
zhaoyingli 已提交
516
            out = paddle.mean(out)
517
            out.backward()
Z
zhaoyingli 已提交
518 519

            fc1_w, fc1_w_mon1, fc1_w_mon2 = get_numpy_output(
520
                fc1_w, np.array(linear1.weight.grad), fc1_w_mon1, fc1_w_mon2,
Z
zhaoyingli 已提交
521 522
                simple_lr_fun(linear1.weight), i + 1)
            fc1_b, fc1_b_mon1, fc1_b_mon2 = get_numpy_output(
523
                fc1_b, np.array(linear1.bias.grad), fc1_b_mon1, fc1_b_mon2,
Z
zhaoyingli 已提交
524 525
                simple_lr_fun(linear1.bias), i + 1)
            fc2_w, fc2_w_mon1, fc2_w_mon2 = get_numpy_output(
526
                fc2_w, np.array(linear2.weight.grad), fc2_w_mon1, fc2_w_mon2,
Z
zhaoyingli 已提交
527 528
                simple_lr_fun(linear2.weight), i + 1)
            fc2_b, fc2_b_mon1, fc2_b_mon2 = get_numpy_output(
529
                fc2_b, np.array(linear2.bias.grad), fc2_b_mon1, fc2_b_mon2,
Z
zhaoyingli 已提交
530 531 532 533 534 535 536 537 538
                simple_lr_fun(linear2.bias), i + 1)

            opt.step()
            opt.clear_gradients()

            np.testing.assert_allclose(linear1.weight.numpy(), fc1_w, rtol=1e-6)
            np.testing.assert_allclose(linear1.bias.numpy(), fc1_b, rtol=1e-6)
            np.testing.assert_allclose(linear2.weight.numpy(), fc2_w, rtol=1e-6)
            np.testing.assert_allclose(linear2.bias.numpy(), fc2_b, rtol=1e-6)
539 540 541

    def test_adamw_op(self):
        paddle.enable_static()
Z
zhaoyingli 已提交
542
        place = fluid.CUDAPlace(0)
Z
zhaoyingli 已提交
543 544 545 546 547 548 549

        learning_rate = 0.0001
        beta1 = 0.85
        beta2 = 0.95
        weight_decay = 0.01
        epsilon = 1e-8

550 551 552 553 554 555 556
        train_prog = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(train_prog, startup):
            with fluid.unique_name.guard():
                x = fluid.data(name='x', shape=[None, 10], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')

Z
zhaoyingli 已提交
557 558 559 560 561 562 563 564
                weight_attr1 = paddle.framework.ParamAttr(name="linear_0.w_0")
                bias_attr1 = paddle.framework.ParamAttr(
                    name="linear_0.b_0",
                    initializer=paddle.nn.initializer.Constant(value=1.0))
                weight_attr2 = paddle.framework.ParamAttr(name="linear_1.w_0")
                bias_attr2 = paddle.framework.ParamAttr(
                    name="linear_1.b_0",
                    initializer=paddle.nn.initializer.Constant(value=1.0))
565 566 567 568 569 570 571 572
                linear1 = paddle.nn.Linear(10,
                                           32,
                                           weight_attr=weight_attr1,
                                           bias_attr=bias_attr1)
                linear2 = paddle.nn.Linear(32,
                                           1,
                                           weight_attr=weight_attr2,
                                           bias_attr=bias_attr2)
Z
zhaoyingli 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586

                out = linear1(x)
                out = linear2(out)

                fc1_w_mon1 = np.zeros((linear1.weight.shape)).astype("float32")
                fc1_w_mon2 = np.zeros((linear1.weight.shape)).astype("float32")
                fc1_b_mon1 = np.zeros((linear1.bias.shape)).astype("float32")
                fc1_b_mon2 = np.zeros((linear1.bias.shape)).astype("float32")
                fc2_w_mon1 = np.zeros((linear2.weight.shape)).astype("float32")
                fc2_w_mon2 = np.zeros((linear2.weight.shape)).astype("float32")
                fc2_b_mon1 = np.zeros((linear2.bias.shape)).astype("float32")
                fc2_b_mon2 = np.zeros((linear2.bias.shape)).astype("float32")

                cost = fluid.layers.square_error_cost(input=out, label=y)
587 588
                avg_cost = fluid.layers.mean(cost)

589 590 591
                simple_lr_fun = partial(simple_lr_setting,
                                        decay_rate=0.8,
                                        n_layers=2)
592

593 594 595 596 597 598
                opt = paddle.optimizer.AdamW(learning_rate=learning_rate,
                                             beta1=beta1,
                                             beta2=beta2,
                                             weight_decay=weight_decay,
                                             epsilon=epsilon,
                                             lr_ratio=simple_lr_fun)
599 600
                opt.minimize(avg_cost)

Z
zhaoyingli 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
        def get_numpy_output(param, grad, moment1, moment2, lr_ratio, t):
            np_inputs = {
                'Param': param,
                'Grad': grad,
                'Moment1': moment1,
                'Moment2': moment2,
                'LearningRate': np.array([learning_rate]).astype("float32"),
                'Beta1Pow': np.array([beta1**t]).astype("float32"),
                'Beta2Pow': np.array([beta2**t]).astype("float32")
            }

            np_attrs = {
                'epsilon': epsilon,
                'beta1': beta1,
                'beta2': beta2,
                "lr_ratio": lr_ratio,
                "coeff": weight_decay,
                "with_decay": True
            }
620 621
            param_out, moment1_out, moment2_out = adamw_step(
                np_inputs, np_attrs)
Z
zhaoyingli 已提交
622 623 624 625 626 627 628 629 630 631 632
            return param_out, moment1_out, moment2_out

        fetch_list1 = [
            "linear_0.w_0", "linear_0.b_0", "linear_1.w_0", "linear_1.b_0"
        ]
        fetch_list2 = [
            "linear_0.w_0", "linear_0.w_0@GRAD", "linear_0.b_0",
            "linear_0.b_0@GRAD", "linear_1.w_0", "linear_1.w_0@GRAD",
            "linear_1.b_0", "linear_1.b_0@GRAD"
        ]

633 634
        exe = fluid.Executor(place)
        exe.run(startup)
Z
zhaoyingli 已提交
635
        test_prog = train_prog.clone(for_test=True)
Z
zhaoyingli 已提交
636 637

        for i in range(5):
638 639
            inputs = np.random.random(size=[8, 10]).astype('float32')
            outputs = np.random.random(size=[8, 1]).astype('float32')
Z
zhaoyingli 已提交
640 641

            param = exe.run(test_prog,
642 643 644 645
                            feed={
                                "x": inputs,
                                "y": outputs
                            },
Z
zhaoyingli 已提交
646 647
                            fetch_list=fetch_list1)
            params_and_gras = exe.run(train_prog,
648 649 650 651
                                      feed={
                                          "x": inputs,
                                          "y": outputs
                                      },
Z
zhaoyingli 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
                                      fetch_list=fetch_list2)

            fc1_w = param[0]
            fc1_w_grad = params_and_gras[1]
            fc1_b = param[1]
            fc1_b_grad = params_and_gras[3]
            fc2_w = param[2]
            fc2_w_grad = params_and_gras[5]
            fc2_b = param[3]
            fc2_b_grad = params_and_gras[7]

            fc1_w, fc1_w_mon1, fc1_w_mon2 = get_numpy_output(
                fc1_w, fc1_w_grad, fc1_w_mon1, fc1_w_mon2,
                simple_lr_fun(linear1.weight), i + 1)
            fc1_b, fc1_b_mon1, fc1_b_mon2 = get_numpy_output(
                fc1_b, fc1_b_grad, fc1_b_mon1, fc1_b_mon2,
                simple_lr_fun(linear1.bias), i + 1)
            fc2_w, fc2_w_mon1, fc2_w_mon2 = get_numpy_output(
                fc2_w, fc2_w_grad, fc2_w_mon1, fc2_w_mon2,
                simple_lr_fun(linear2.weight), i + 1)
            fc2_b, fc2_b_mon1, fc2_b_mon2 = get_numpy_output(
                fc2_b, fc2_b_grad, fc2_b_mon1, fc2_b_mon2,
                simple_lr_fun(linear2.bias), i + 1)

            np.testing.assert_allclose(params_and_gras[0], fc1_w, rtol=1e-6)
            np.testing.assert_allclose(params_and_gras[2], fc1_b, rtol=1e-6)
            np.testing.assert_allclose(params_and_gras[4], fc2_w, rtol=1e-6)
            np.testing.assert_allclose(params_and_gras[6], fc2_b, rtol=1e-6)
680 681 682 683

        paddle.disable_static()


M
MRXLT 已提交
684 685
if __name__ == "__main__":
    unittest.main()