test_adamw_op.py 24.8 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle
Z
zhaoyingli 已提交
17
import random
M
MRXLT 已提交
18 19
import numpy as np
import paddle.fluid as fluid
Z
zhaoyingli 已提交
20
from op_test import OpTest
21
from functools import partial
Z
zhaoyingli 已提交
22
from paddle.framework import core
C
chentianyu03 已提交
23
from paddle.fluid.framework import _test_eager_guard
Z
zhaoyingli 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56


def adamw_step(inputs, attributes):
    param = inputs['Param']
    grad = inputs['Grad']
    moment1 = inputs['Moment1']
    moment2 = inputs['Moment2']
    lr = inputs['LearningRate']
    beta1_pow = inputs['Beta1Pow']
    beta2_pow = inputs['Beta2Pow']

    epsilon = attributes['epsilon']

    if 'lr_ratio' in attributes:
        lr = lr * attributes['lr_ratio']

    if attributes["with_decay"]:
        coeff = attributes["coeff"]
        decay = 1.0 - lr * coeff
        param2 = param * decay
        param = param2.copy()

    if 'beta1' in attributes:
        beta1 = attributes['beta1']
    else:
        beta1 = inputs['Beta1Tensor'][0]
    if 'beta2' in attributes:
        beta2 = attributes['beta2']
    else:
        beta2 = inputs['Beta2Tensor'][0]

    moment1_out = beta1 * moment1 + (1 - beta1) * grad
    moment2_out = beta2 * moment2 + (1 - beta2) * np.square(grad)
Z
zhaoyingli 已提交
57 58
    denom = (np.sqrt(moment2_out) / np.sqrt(1.0 - beta2_pow)) + epsilon
    param_out = param + ((moment1_out / denom) * (-(lr / (1.0 - beta1_pow))))
Z
zhaoyingli 已提交
59 60 61 62 63
    return param_out, moment1_out, moment2_out


class TestAdamW(OpTest):
    def setUp(self):
64
        '''Test AdamW Op with supplied attributes'''
Z
zhaoyingli 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
        self.op_type = "adamw"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((102, 105)).astype("float32")

        learning_rate = 0.004
        beta1 = 0.78
        beta2 = 0.836
        epsilon = 1e-4
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
86
            'Beta2Pow': np.array([beta2_pow]).astype("float32"),
Z
zhaoyingli 已提交
87 88 89 90 91 92 93
        }

        self.attrs = {
            'epsilon': epsilon,
            'beta1': beta1,
            'beta2': beta2,
            "coeff": 0.5,
94
            "with_decay": True,
Z
zhaoyingli 已提交
95 96
        }

97 98 99
        param_out, moment1_out, moment2_out = adamw_step(
            self.inputs, self.attrs
        )
Z
zhaoyingli 已提交
100 101 102 103 104 105

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
            'ParamOut': param_out,
            'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1,
106
            'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2,
Z
zhaoyingli 已提交
107 108 109 110 111 112
        }

    def test_check_output(self):
        self.check_output()


113 114 115
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
Z
zhaoyingli 已提交
116 117
class TestAdamW2(OpTest):
    def setUp(self):
118
        '''Test AdamW Op with supplied attributes'''
Z
zhaoyingli 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
        self.op_type = "adamw"
        param = np.random.uniform(-1, 1, (2, 2)).astype("float32")
        grad = np.random.uniform(-1, 1, (2, 2)).astype("float32")
        moment1 = np.random.uniform(-1, 1, (2, 2)).astype("float32")
        # The second moment is positive
        moment2 = np.random.random((2, 2)).astype("float32")

        learning_rate = 0.004
        beta1 = 0.78
        beta2 = 0.836
        epsilon = 1e-4
        beta1_pow = beta1**10
        beta2_pow = beta2**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment1': moment1,
            'Moment2': moment2,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32"),
140
            'Beta2Pow': np.array([beta2_pow]).astype("float32"),
Z
zhaoyingli 已提交
141 142 143 144 145 146 147 148
        }

        self.attrs = {
            'epsilon': epsilon,
            'beta1': beta1,
            'beta2': beta2,
            "lr_ratio": 0.1,
            "coeff": 0.5,
149
            "with_decay": True,
Z
zhaoyingli 已提交
150 151
        }

152
        param_out, moment1_out, moment2_out = adamw_step(
153 154
            self.inputs, self.attrs
        )
Z
zhaoyingli 已提交
155 156 157 158 159 160

        self.outputs = {
            'Moment1Out': moment1_out,
            'Moment2Out': moment2_out,
            'ParamOut': param_out,
            'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1,
161
            'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2,
Z
zhaoyingli 已提交
162 163 164 165
        }

    def test_check_output(self):
        self.check_output_with_place(core.CUDAPlace(0))
M
MRXLT 已提交
166 167 168 169 170 171


class TestAdamWOp(unittest.TestCase):
    def test_adamw_op_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
Z
Zhou Wei 已提交
172
        a = paddle.to_tensor(value)
173
        linear = paddle.nn.Linear(13, 5)
174 175 176 177 178 179
        adam = paddle.optimizer.AdamW(
            learning_rate=0.01,
            parameters=linear.parameters(),
            apply_decay_param_fun=lambda name: True,
            weight_decay=0.01,
        )
W
WangXi 已提交
180 181 182 183 184 185

        for _ in range(2):
            out = linear(a)
            out.backward()
            adam.step()
            adam.clear_gradients()
M
MRXLT 已提交
186 187 188 189

    def test_adamw_op_coverage(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
Z
Zhou Wei 已提交
190
        a = paddle.to_tensor(value)
191
        linear = paddle.nn.Linear(13, 5)
192 193 194 195 196 197 198
        adam = paddle.optimizer.AdamW(
            learning_rate=0.0,
            parameters=linear.parameters(),
            apply_decay_param_fun=lambda name: True,
            weight_decay=0.01,
        )
        assert adam.__str__() is not None
M
MRXLT 已提交
199 200

    def test_adamw_op(self):
201
        paddle.enable_static()
M
MRXLT 已提交
202 203 204 205 206 207 208 209 210 211 212
        place = fluid.CPUPlace()
        shape = [2, 3, 8, 8]
        exe = fluid.Executor(place)
        train_prog = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(train_prog, startup):
            with fluid.unique_name.guard():
                data = fluid.data(name="data", shape=shape)
                conv = fluid.layers.conv2d(data, 8, 3)
                loss = paddle.mean(conv)

213 214 215 216 217 218
                beta1 = fluid.layers.create_global_var(
                    shape=[1], value=0.85, dtype='float32', persistable=True
                )
                beta2 = fluid.layers.create_global_var(
                    shape=[1], value=0.95, dtype='float32', persistable=True
                )
M
MRXLT 已提交
219
                betas = [beta1, beta2]
220 221 222 223 224 225 226
                opt = paddle.optimizer.AdamW(
                    learning_rate=1e-5,
                    beta1=beta1,
                    beta2=beta2,
                    weight_decay=0.01,
                    epsilon=1e-8,
                )
M
MRXLT 已提交
227 228 229 230 231 232
                opt.minimize(loss)

        exe.run(startup)
        data_np = np.random.random(shape).astype('float32')
        rets = exe.run(train_prog, feed={"data": data_np}, fetch_list=[loss])
        assert rets[0] is not None
233
        paddle.disable_static()
M
MRXLT 已提交
234

M
MRXLT 已提交
235 236 237 238
    def test_adamw_op_invalid_input(self):
        paddle.disable_static()
        linear = paddle.nn.Linear(10, 10)
        with self.assertRaises(ValueError):
239 240 241
            adam = paddle.optimizer.AdamW(
                0.1, beta1=-1, parameters=linear.parameters()
            )
M
MRXLT 已提交
242
        with self.assertRaises(ValueError):
243 244 245
            adam = paddle.optimizer.AdamW(
                0.1, beta2=-1, parameters=linear.parameters()
            )
M
MRXLT 已提交
246
        with self.assertRaises(ValueError):
247 248 249
            adam = paddle.optimizer.AdamW(
                0.1, epsilon=-1, parameters=linear.parameters()
            )
M
MRXLT 已提交
250

C
chentianyu03 已提交
251 252 253 254 255
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_adamw_op_dygraph()
            self.test_adamw_op_invalid_input()

M
MRXLT 已提交
256

257 258 259 260 261 262 263
class TestAdamWOpGroup(TestAdamWOp):
    def test_adamw_op_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear_1 = paddle.nn.Linear(13, 5)
        linear_2 = paddle.nn.Linear(5, 3)
264 265 266 267 268 269 270 271 272
        adam = paddle.optimizer.AdamW(
            learning_rate=0.01,
            parameters=[
                {'params': linear_1.parameters()},
                {'params': linear_2.parameters(), 'weight_decay': 0.001},
            ],
            apply_decay_param_fun=lambda name: True,
            weight_decay=0.01,
        )
273 274 275 276 277 278 279 280 281

        for _ in range(2):
            out = linear_1(a)
            out = linear_2(out)
            out.backward()
            adam.step()
            adam.clear_gradients()


282 283 284 285 286 287 288 289 290 291
class TestAdamWOpMultiPrecison(unittest.TestCase):
    def _test_adamw_op_dygraph_place_amp(self, place, use_amp=False):
        paddle.disable_static()
        paddle.seed(10)
        paddle.set_device(place)

        input = paddle.randn((5, 5))

        model = paddle.nn.Linear(5, 5)

292 293 294 295 296 297 298 299 300 301 302
        optimizer = paddle.optimizer.AdamW(
            parameters=[
                {
                    'params': model.parameters(),
                    'weight_decay': 0.001,
                    'beta1': 0.1,
                    'beta2': 0.99,
                }
            ],
            multi_precision=use_amp,
        )
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

        for idx in range(2):
            if place == 'gpu' and use_amp == True:
                model = paddle.amp.decorate(models=model, level='O2')
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)

            if place == 'gpu' and use_amp == True:
                with paddle.amp.auto_cast(level='O2'):
                    output = model(input)
                    loss = paddle.mean(output)
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.step(optimizer)
                optimizer.clear_grad()
            else:
                output = model(input)
                loss = paddle.mean(output)
                loss.backward()
                optimizer.step()
                optimizer.clear_grad()

    def _get_places(self):
        places = ['cpu']
        if paddle.is_compiled_with_cuda():
            places.append('gpu')
        return places

    def test_main(self):
        for place in self._get_places():
            use_amp_list = [True, False]
            for use_amp in use_amp_list:
                self._test_adamw_op_dygraph_place_amp(place, use_amp)


class TestAdamWOpError(unittest.TestCase):
    def test_api_errors(self):
        def test_weight_decay_dtype():
            linear = paddle.nn.Linear(13, 5)
341 342 343 344 345
            adam = paddle.optimizer.AdamW(
                learning_rate=0.01,
                parameters=linear.parameters(),
                weight_decay=1,
            )
346 347

        def test_parameters_dtype1():
348 349 350 351 352
            adam = paddle.optimizer.AdamW(
                learning_rate=0.01,
                parameters=paddle.randn((5, 5)),
                weight_decay=0.1,
            )
353 354 355 356 357 358

        def test_parameters_dtype2():
            linear = paddle.nn.Linear(13, 5)
            adam = paddle.optimizer.AdamW(
                learning_rate=0.01,
                parameters={'params': linear.parameters()},
359 360
                weight_decay=0.1,
            )
361 362

        def test_parameters_dtype3():
363 364 365
            adam = paddle.optimizer.AdamW(
                learning_rate=0.01, parameters=None, weight_decay=0.1
            )
366 367 368 369 370 371

        def test_parameters_dtype4():
            linear = paddle.nn.Linear(13, 5)
            adam = paddle.optimizer.AdamW(
                learning_rate=0.01,
                parameters={'params': set(linear.parameters())},
372 373
                weight_decay=0.1,
            )
374 375 376

        def test_learning_rate_dtype():
            linear = paddle.nn.Linear(13, 5)
377 378 379 380 381
            adam = paddle.optimizer.AdamW(
                learning_rate=1,
                parameters=linear.parameters(),
                weight_decay=0.1,
            )
382 383 384

        def test_grad_clip_dtype():
            linear = paddle.nn.Linear(13, 5)
385 386 387 388 389 390
            adam = paddle.optimizer.AdamW(
                learning_rate=0.01,
                parameters=linear.parameters(),
                weight_decay=0.1,
                grad_clip=0.1,
            )
391 392 393 394 395 396 397 398 399 400

        self.assertRaises(TypeError, test_weight_decay_dtype)
        self.assertRaises(TypeError, test_parameters_dtype1)
        self.assertRaises(TypeError, test_parameters_dtype2)
        self.assertRaises(AttributeError, test_parameters_dtype3)
        self.assertRaises(TypeError, test_parameters_dtype4)
        self.assertRaises(TypeError, test_learning_rate_dtype)
        self.assertRaises(TypeError, test_grad_clip_dtype)


W
wangguanzhong 已提交
401 402 403 404 405 406 407 408 409
class TestAdamWOpGroupWithLR(TestAdamWOp):
    def test_adamw_op_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear_1 = paddle.nn.Linear(13, 5)
        linear_2 = paddle.nn.Linear(5, 3)
        adam = paddle.optimizer.AdamW(
            learning_rate=paddle.optimizer.lr.PiecewiseDecay(
410 411 412 413 414 415 416 417 418 419 420 421
                boundaries=[3, 6], values=[0.1, 0.2, 0.3]
            ),
            parameters=[
                {
                    'params': linear_1.parameters(),
                    'learning_rate': 0.1,
                },
                {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                },
            ],
W
wangguanzhong 已提交
422
            apply_decay_param_fun=lambda name: True,
423 424
            weight_decay=0.01,
        )
W
wangguanzhong 已提交
425 426 427 428 429 430 431 432 433

        for _ in range(2):
            out = linear_1(a)
            out = linear_2(out)
            out.backward()
            adam.step()
            adam.clear_gradients()


434 435 436 437 438 439 440 441
def simple_lr_setting(param, decay_rate, n_layers):
    if "fc_0" in param.name or "linear_1" in param.name:
        depth = int(param.name.split("_")[2]) + 1
    elif "fc_1" in param.name or "linear_2" in param.name:
        depth = int(param.name.split("_")[2]) + 2
    else:
        depth = 0

442
    return decay_rate ** (n_layers + 2 - depth)
443 444


445 446 447
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
448
class TestAdamWOpLayerwiseLR(TestAdamWOp):
Z
zhaoyingli 已提交
449
    def setUp(self):
Z
zhaoyingli 已提交
450 451 452
        random.seed(2022)
        np.random.seed(2022)
        paddle.seed(2022)
Z
zhaoyingli 已提交
453

454 455
    def test_adamw_op_dygraph(self):
        paddle.disable_static()
Z
zhaoyingli 已提交
456
        linear1 = paddle.nn.Linear(
457 458
            13, 8, bias_attr=paddle.nn.initializer.Constant(value=1.0)
        )
Z
zhaoyingli 已提交
459
        linear2 = paddle.nn.Linear(
460 461
            8, 5, bias_attr=paddle.nn.initializer.Constant(value=1.0)
        )
462

C
chentianyu03 已提交
463 464 465 466 467 468
        # fix the linear name, simple_lr_setting function will use the name
        linear1.weight.name = "linear_1.w_0"
        linear1.bias.name = "linear_1.b_0"
        linear2.weight.name = "linear_2.w_0"
        linear2.bias.name = "linear_2.b_0"

Z
zhaoyingli 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482
        fc1_w = np.array(linear1.weight)
        fc1_w_mon1 = np.zeros_like(fc1_w)
        fc1_w_mon2 = np.zeros_like(fc1_w)
        fc1_b = np.array(linear1.bias)
        fc1_b_mon1 = np.zeros_like(fc1_b)
        fc1_b_mon2 = np.zeros_like(fc1_b)

        fc2_w = np.array(linear2.weight)
        fc2_w_mon1 = np.zeros_like(fc2_w)
        fc2_w_mon2 = np.zeros_like(fc2_w)
        fc2_b = np.array(linear2.bias)
        fc2_b_mon1 = np.zeros_like(fc2_b)
        fc2_b_mon2 = np.zeros_like(fc2_b)

483
        simple_lr_fun = partial(simple_lr_setting, decay_rate=0.8, n_layers=2)
Z
zhaoyingli 已提交
484 485 486 487
        learning_rate = 0.001
        weight_decay = 0.01
        beta1 = 0.9
        beta2 = 0.999
488

489 490 491 492 493 494 495 496 497 498 499 500
        opt = paddle.optimizer.AdamW(
            learning_rate=learning_rate,
            parameters=[
                {'params': linear1.parameters()},
                {
                    'params': linear2.parameters(),
                },
            ],
            apply_decay_param_fun=lambda name: True,
            weight_decay=weight_decay,
            lr_ratio=simple_lr_fun,
        )
501

Z
zhaoyingli 已提交
502 503 504 505 506 507 508 509
        def get_numpy_output(param, grad, moment1, moment2, lr_ratio, t):
            np_inputs = {
                'Param': param,
                'Grad': grad,
                'Moment1': moment1,
                'Moment2': moment2,
                'LearningRate': np.array([learning_rate]).astype("float32"),
                'Beta1Pow': np.array([beta1**t]).astype("float32"),
510
                'Beta2Pow': np.array([beta2**t]).astype("float32"),
Z
zhaoyingli 已提交
511 512 513 514 515 516 517 518
            }

            np_attrs = {
                'epsilon': 1e-8,
                'beta1': beta1,
                'beta2': beta2,
                "lr_ratio": lr_ratio,
                "coeff": weight_decay,
519
                "with_decay": True,
Z
zhaoyingli 已提交
520
            }
521
            param_out, moment1_out, moment2_out = adamw_step(
522 523
                np_inputs, np_attrs
            )
Z
zhaoyingli 已提交
524 525
            return param_out, moment1_out, moment2_out

Z
zhaoyingli 已提交
526
        for i in range(5):
Z
zhaoyingli 已提交
527
            a = paddle.to_tensor(
528 529
                np.random.uniform(-1, 1, (2, 13)).astype("float32")
            )
530 531
            a1 = linear1(a)
            out = linear2(a1)
Z
zhaoyingli 已提交
532
            out = paddle.mean(out)
533
            out.backward()
Z
zhaoyingli 已提交
534 535

            fc1_w, fc1_w_mon1, fc1_w_mon2 = get_numpy_output(
536 537 538 539 540 541 542
                fc1_w,
                np.array(linear1.weight.grad),
                fc1_w_mon1,
                fc1_w_mon2,
                simple_lr_fun(linear1.weight),
                i + 1,
            )
Z
zhaoyingli 已提交
543
            fc1_b, fc1_b_mon1, fc1_b_mon2 = get_numpy_output(
544 545 546 547 548 549 550
                fc1_b,
                np.array(linear1.bias.grad),
                fc1_b_mon1,
                fc1_b_mon2,
                simple_lr_fun(linear1.bias),
                i + 1,
            )
Z
zhaoyingli 已提交
551
            fc2_w, fc2_w_mon1, fc2_w_mon2 = get_numpy_output(
552 553 554 555 556 557 558
                fc2_w,
                np.array(linear2.weight.grad),
                fc2_w_mon1,
                fc2_w_mon2,
                simple_lr_fun(linear2.weight),
                i + 1,
            )
Z
zhaoyingli 已提交
559
            fc2_b, fc2_b_mon1, fc2_b_mon2 = get_numpy_output(
560 561 562 563 564 565 566
                fc2_b,
                np.array(linear2.bias.grad),
                fc2_b_mon1,
                fc2_b_mon2,
                simple_lr_fun(linear2.bias),
                i + 1,
            )
Z
zhaoyingli 已提交
567 568 569 570 571 572 573 574

            opt.step()
            opt.clear_gradients()

            np.testing.assert_allclose(linear1.weight.numpy(), fc1_w, rtol=1e-6)
            np.testing.assert_allclose(linear1.bias.numpy(), fc1_b, rtol=1e-6)
            np.testing.assert_allclose(linear2.weight.numpy(), fc2_w, rtol=1e-6)
            np.testing.assert_allclose(linear2.bias.numpy(), fc2_b, rtol=1e-6)
575 576 577

    def test_adamw_op(self):
        paddle.enable_static()
Z
zhaoyingli 已提交
578
        place = fluid.CUDAPlace(0)
Z
zhaoyingli 已提交
579 580 581 582 583 584 585

        learning_rate = 0.0001
        beta1 = 0.85
        beta2 = 0.95
        weight_decay = 0.01
        epsilon = 1e-8

586 587 588 589 590 591 592
        train_prog = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(train_prog, startup):
            with fluid.unique_name.guard():
                x = fluid.data(name='x', shape=[None, 10], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')

Z
zhaoyingli 已提交
593 594 595
                weight_attr1 = paddle.framework.ParamAttr(name="linear_0.w_0")
                bias_attr1 = paddle.framework.ParamAttr(
                    name="linear_0.b_0",
596 597
                    initializer=paddle.nn.initializer.Constant(value=1.0),
                )
Z
zhaoyingli 已提交
598 599 600
                weight_attr2 = paddle.framework.ParamAttr(name="linear_1.w_0")
                bias_attr2 = paddle.framework.ParamAttr(
                    name="linear_1.b_0",
601 602 603 604 605 606 607 608
                    initializer=paddle.nn.initializer.Constant(value=1.0),
                )
                linear1 = paddle.nn.Linear(
                    10, 32, weight_attr=weight_attr1, bias_attr=bias_attr1
                )
                linear2 = paddle.nn.Linear(
                    32, 1, weight_attr=weight_attr2, bias_attr=bias_attr2
                )
Z
zhaoyingli 已提交
609 610 611 612 613 614 615 616 617 618 619 620 621 622

                out = linear1(x)
                out = linear2(out)

                fc1_w_mon1 = np.zeros((linear1.weight.shape)).astype("float32")
                fc1_w_mon2 = np.zeros((linear1.weight.shape)).astype("float32")
                fc1_b_mon1 = np.zeros((linear1.bias.shape)).astype("float32")
                fc1_b_mon2 = np.zeros((linear1.bias.shape)).astype("float32")
                fc2_w_mon1 = np.zeros((linear2.weight.shape)).astype("float32")
                fc2_w_mon2 = np.zeros((linear2.weight.shape)).astype("float32")
                fc2_b_mon1 = np.zeros((linear2.bias.shape)).astype("float32")
                fc2_b_mon2 = np.zeros((linear2.bias.shape)).astype("float32")

                cost = fluid.layers.square_error_cost(input=out, label=y)
623
                avg_cost = paddle.mean(cost)
624

625 626 627 628 629 630 631 632 633 634 635 636
                simple_lr_fun = partial(
                    simple_lr_setting, decay_rate=0.8, n_layers=2
                )

                opt = paddle.optimizer.AdamW(
                    learning_rate=learning_rate,
                    beta1=beta1,
                    beta2=beta2,
                    weight_decay=weight_decay,
                    epsilon=epsilon,
                    lr_ratio=simple_lr_fun,
                )
637 638
                opt.minimize(avg_cost)

Z
zhaoyingli 已提交
639 640 641 642 643 644 645 646
        def get_numpy_output(param, grad, moment1, moment2, lr_ratio, t):
            np_inputs = {
                'Param': param,
                'Grad': grad,
                'Moment1': moment1,
                'Moment2': moment2,
                'LearningRate': np.array([learning_rate]).astype("float32"),
                'Beta1Pow': np.array([beta1**t]).astype("float32"),
647
                'Beta2Pow': np.array([beta2**t]).astype("float32"),
Z
zhaoyingli 已提交
648 649 650 651 652 653 654 655
            }

            np_attrs = {
                'epsilon': epsilon,
                'beta1': beta1,
                'beta2': beta2,
                "lr_ratio": lr_ratio,
                "coeff": weight_decay,
656
                "with_decay": True,
Z
zhaoyingli 已提交
657
            }
658
            param_out, moment1_out, moment2_out = adamw_step(
659 660
                np_inputs, np_attrs
            )
Z
zhaoyingli 已提交
661 662 663
            return param_out, moment1_out, moment2_out

        fetch_list1 = [
664 665 666 667
            "linear_0.w_0",
            "linear_0.b_0",
            "linear_1.w_0",
            "linear_1.b_0",
Z
zhaoyingli 已提交
668 669
        ]
        fetch_list2 = [
670 671 672 673 674 675 676 677
            "linear_0.w_0",
            "linear_0.w_0@GRAD",
            "linear_0.b_0",
            "linear_0.b_0@GRAD",
            "linear_1.w_0",
            "linear_1.w_0@GRAD",
            "linear_1.b_0",
            "linear_1.b_0@GRAD",
Z
zhaoyingli 已提交
678 679
        ]

680 681
        exe = fluid.Executor(place)
        exe.run(startup)
Z
zhaoyingli 已提交
682
        test_prog = train_prog.clone(for_test=True)
Z
zhaoyingli 已提交
683 684

        for i in range(5):
685 686
            inputs = np.random.random(size=[8, 10]).astype('float32')
            outputs = np.random.random(size=[8, 1]).astype('float32')
Z
zhaoyingli 已提交
687

688 689 690 691 692 693 694 695 696 697
            param = exe.run(
                test_prog,
                feed={"x": inputs, "y": outputs},
                fetch_list=fetch_list1,
            )
            params_and_gras = exe.run(
                train_prog,
                feed={"x": inputs, "y": outputs},
                fetch_list=fetch_list2,
            )
Z
zhaoyingli 已提交
698 699 700 701 702 703 704 705 706 707 708

            fc1_w = param[0]
            fc1_w_grad = params_and_gras[1]
            fc1_b = param[1]
            fc1_b_grad = params_and_gras[3]
            fc2_w = param[2]
            fc2_w_grad = params_and_gras[5]
            fc2_b = param[3]
            fc2_b_grad = params_and_gras[7]

            fc1_w, fc1_w_mon1, fc1_w_mon2 = get_numpy_output(
709 710 711 712 713 714 715
                fc1_w,
                fc1_w_grad,
                fc1_w_mon1,
                fc1_w_mon2,
                simple_lr_fun(linear1.weight),
                i + 1,
            )
Z
zhaoyingli 已提交
716
            fc1_b, fc1_b_mon1, fc1_b_mon2 = get_numpy_output(
717 718 719 720 721 722 723
                fc1_b,
                fc1_b_grad,
                fc1_b_mon1,
                fc1_b_mon2,
                simple_lr_fun(linear1.bias),
                i + 1,
            )
Z
zhaoyingli 已提交
724
            fc2_w, fc2_w_mon1, fc2_w_mon2 = get_numpy_output(
725 726 727 728 729 730 731
                fc2_w,
                fc2_w_grad,
                fc2_w_mon1,
                fc2_w_mon2,
                simple_lr_fun(linear2.weight),
                i + 1,
            )
Z
zhaoyingli 已提交
732
            fc2_b, fc2_b_mon1, fc2_b_mon2 = get_numpy_output(
733 734 735 736 737 738 739
                fc2_b,
                fc2_b_grad,
                fc2_b_mon1,
                fc2_b_mon2,
                simple_lr_fun(linear2.bias),
                i + 1,
            )
Z
zhaoyingli 已提交
740 741 742 743 744

            np.testing.assert_allclose(params_and_gras[0], fc1_w, rtol=1e-6)
            np.testing.assert_allclose(params_and_gras[2], fc1_b, rtol=1e-6)
            np.testing.assert_allclose(params_and_gras[4], fc2_w, rtol=1e-6)
            np.testing.assert_allclose(params_and_gras[6], fc2_b, rtol=1e-6)
745 746 747 748

        paddle.disable_static()


M
MRXLT 已提交
749 750
if __name__ == "__main__":
    unittest.main()