jit.py 56.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import os
import pickle
19
import warnings
20
import functools
21
from collections import OrderedDict
22 23

import six
24
import paddle
25
from paddle.fluid import core
26 27
from paddle.fluid.compiler import BuildStrategy, CompiledProgram, ExecutionStrategy
from paddle.fluid.data_feeder import check_type
28
from paddle.fluid.dygraph.base import program_desc_tracing_guard, switch_to_static_graph
29
from paddle.fluid.dygraph.dygraph_to_static import logging_utils
30
from paddle.fluid.dygraph.dygraph_to_static.logging_utils import set_code_level, set_verbosity
31
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator, StaticLayer, unwrap_decorators
32
from paddle.fluid.dygraph.io import EXTRA_VAR_INFO_FILENAME, VARIABLE_FILENAME, TranslatedLayer
33 34
from paddle.fluid.dygraph.layers import Layer
from paddle.fluid.executor import Executor, scope_guard
35 36 37
from paddle.fluid.framework import Block, ParamBase, Program, Variable
from paddle.fluid.framework import _current_expected_place, _dygraph_guard, _dygraph_tracer
from paddle.fluid.framework import dygraph_only, in_dygraph_mode
38
from paddle.fluid.wrapped_decorator import wrap_decorator
39

40 41
__all__ = [
    'TracedLayer', 'declarative', 'dygraph_to_static_func', 'set_code_level',
C
Chen Weihang 已提交
42
    'set_verbosity', 'save', 'load', 'SaveLoadConfig'
43
]
44 45 46 47 48 49 50 51 52 53 54 55


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


def _extract_vars(inputs, result_list):
    if isinstance(inputs, Variable):
56
        result_list.append(inputs)
57
    elif isinstance(inputs, (list, tuple)):
58 59
        for var in inputs:
            _extract_vars(var, result_list)
60 61 62 63
    else:
        raise TypeError(
            "The type of 'each element of inputs' in fluid.dygraph.jit.TracedLayer.trace must be fluid.Variable, but received {}.".
            format(type(inputs)))
64 65 66 67 68 69 70 71


def extract_vars(inputs):
    result_list = []
    _extract_vars(inputs, result_list)
    return result_list


72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
def _dygraph_to_static_func_(dygraph_func):
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @dygraph_to_static_func only converts imperative dygraph APIs into
    declarative net-building APIs, which means it doesn't return immediate
    digital result as imperative mode. Users should handle Program and Executor
    by themselves.

    Note:
    This decorator is NOT our recommended way to transform imperative function
    to declarative function. We will remove this decorator after we finalize
    cleaning up code.

    Args:
        dygraph_func (callable): callable imperative function.

    Returns:
        Callable: converting imperative dygraph APIs into declarative
        net-building APIs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np
          from paddle.fluid.dygraph.jit import dygraph_to_static_func

          @dygraph_to_static_func
          def func(x):
              if fluid.layers.mean(x) < 0:
                  x_v = x - 1
              else:
                  x_v = x + 1

               return x_v

          x = fluid.layers.fill_constant(shape=[3, 3], value=0, dtype='float64')

          x_v = func(x)
          exe = fluid.Executor(fluid.CPUPlace())
          out = exe.run(fetch_list=[x_v])
          print(out[0])
          # [[1. 1. 1.]
          #  [1. 1. 1.]
          #  [1. 1. 1.]]

    """

    # TODO: remove this decorator after we finalize training API
121 122
    def __impl__(*args, **kwargs):
        program_translator = ProgramTranslator()
123
        if in_dygraph_mode() or not program_translator.enable_to_static:
124
            logging_utils.warn(
125
                "The decorator 'dygraph_to_static_func' doesn't work in "
126
                "dygraph mode or set ProgramTranslator.enable to False. "
127 128 129 130
                "We will just return dygraph output.")
            return dygraph_func(*args, **kwargs)
        static_func = program_translator.get_func(dygraph_func)
        return static_func(*args, **kwargs)
131 132 133 134

    return __impl__


135
dygraph_to_static_func = wrap_decorator(_dygraph_to_static_func_)
136

137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
def copy_decorator_attrs(original_func, decorated_obj):
    """
    Copies some necessary attributes from original function into decorated function.

    Args:
        original_func(callable): the original decorated function.
        decorated_obj(StaticLayer): the target decorated StaticLayer object.
    """
    decorator_name = "declarative"

    decorated_obj.__name__ = original_func.__name__
    decorated_obj._decorator_name = decorator_name
    decorated_obj.__wrapped__ = original_func
    decorated_obj.__doc__ = original_func.__doc__
    if hasattr(original_func, "__module__"):
        decorated_obj.__module__ = original_func.__module__

    return decorated_obj


def declarative(function=None, input_spec=None):
159 160 161
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @declarative handles the Program and Executor of static mode and returns
162 163 164 165
    the result as dygraph Tensor(s). Users could use the returned dygraph
    Tensor(s) to do imperative training, inference, or other operations. If the
    decorated function calls other imperative function, the called one will be
    converted into declarative function as well.
166

167
    Args:
168 169 170
        function (callable): callable imperative function.
        input_spec(list[InputSpec]): list of InputSpec to specific the shape/dtype/name
            information of each input Tensor.
171

172
    Returns:
173
        Tensor(s): containing the numerical result.
174

175 176
    Examples:
        .. code-block:: python
177

178 179 180
          import paddle.fluid as fluid
          import numpy as np
          from paddle.fluid.dygraph.jit import declarative
181

182
          fluid.enable_dygraph()
183

184 185 186 187 188 189 190 191
          @declarative
          def func(x):
              x = fluid.dygraph.to_variable(x)
              if fluid.layers.mean(x) < 0:
                  x_v = x - 1
              else:
                  x_v = x + 1
              return x_v
192

193 194 195
          x = np.ones([1, 2])
          x_v = func(x)
          print(x_v.numpy()) # [[2. 2.]]
196

197
    """
198

199 200 201 202 203 204
    def decorated(python_func):
        """
        Decorates a python function into a StaticLayer object.
        """
        # Step 1. unwrap the function if it is already decorated.
        _, python_func = unwrap_decorators(python_func)
205

206 207 208 209 210 211 212
        # Step 2. copy some attributes from original python function.
        static_layer = copy_decorator_attrs(
            original_func=python_func,
            decorated_obj=StaticLayer(
                function=python_func, input_spec=input_spec))

        return static_layer
213

214 215
    # for usage: `declarative(foo, ...)`
    if function is not None:
216 217 218
        if isinstance(function, Layer):
            if isinstance(function.forward, StaticLayer):
                class_name = function.__class__.__name__
219
                logging_utils.warn(
220 221 222 223 224 225
                    "`{}.forward` has already been decorated somewhere. It will be redecorated to replace previous one.".
                    format(class_name))
            function.forward = decorated(function.forward)
            return function
        else:
            return decorated(function)
226

227 228
    # for usage: `@declarative`
    return decorated
229 230


231 232 233 234 235 236 237 238 239 240 241 242
class SaveLoadConfig(object):
    """
    The additional configuration options may be used in function 
    :ref:`api_imperative_jit_save` that save :ref:`api_imperative_TranslatedLayer` 
    or used in function :ref:`api_imperative_jit_load` that 
    load :ref:`api_imperative_TranslatedLayer` .
    
    Examples:
        1. Using ``SaveLoadConfig`` when saving model

        .. code-block:: python

243 244 245
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
246

247
            class SimpleNet(nn.Layer):
248 249
                def __init__(self, in_size, out_size):
                    super(SimpleNet, self).__init__()
250
                    self._linear = nn.Linear(in_size, out_size)
251

252
                @paddle.jit.to_static
253 254 255 256 257 258
                def forward(self, x):
                    y = self._linear(x)
                    z = self._linear(y)
                    return z

            # enable dygraph mode
259
            paddle.disable_static() 
260 261 262

            # train model
            net = SimpleNet(8, 8)
263 264
            adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
            x = paddle.randn([4, 8], 'float32')
265 266
            for i in range(10):
                out = net(x)
267
                loss = paddle.tensor.mean(out)
268
                loss.backward()
269 270
                adam.step()
                adam.clear_grad()
271 272 273

            # use SaveLoadconfig when saving model
            model_path = "simplenet.example.model"
274 275 276
            config = paddle.SaveLoadConfig()
            config.model_filename = "__simplenet__"
            paddle.jit.save(
277 278
                layer=net,
                model_path=model_path,
279
                config=config)
280 281 282 283 284

        2. Using ``SaveLoadConfig`` when loading model

        .. code-block:: python

285
            import paddle
286 287

            # enable dygraph mode
288
            paddle.disable_static() 
289 290 291

            # use SaveLoadconfig when loading model
            model_path = "simplenet.example.model"
292 293 294
            config = paddle.SaveLoadConfig()
            config.model_filename = "__simplenet__"
            infer_net = paddle.jit.load(model_path, config=config)
295
            # inference
296
            x = paddle.randn([4, 8], 'float32')
297 298 299 300 301 302 303 304
            pred = infer_net(x)
    """

    def __init__(self):
        self._output_spec = None
        self._model_filename = None
        self._params_filename = None
        self._separate_params = False
305 306
        # used for `paddle.load`
        self._keep_name_table = False
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

        # NOTE: Users rarely use following configs, so these configs are not open to users,
        # reducing user learning costs, but we retain the configuration capabilities

        # If True, programs are modified to only support direct inference deployment. 
        # Otherwise,more information will be stored for flexible optimization and re-training. 
        # Currently, only True is supported
        self._export_for_deployment = True

        # If True, It will save inference program only, and do not save params of Program
        self._program_only = False

    @property
    def output_spec(self):
        """
        Selects the output targets of the saved model ( :ref:`api_imperative_TranslatedLayer` ).
        By default, all return variables of original Layer's forward function
        are kept as the output of the saved TranslatedLayer.

        The ``output_spec`` type should be list[Variable]. If the provided ``output_spec``
        list is not all output variables, the saved model will be pruned according to the
        given ``output_spec`` list.

        .. note::
            The ``output_spec`` is only used when saving model.

        Examples:
            .. code-block:: python

336 337 338
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
339

340
                class SimpleNet(nn.Layer):
341 342
                    def __init__(self, in_size, out_size):
                        super(SimpleNet, self).__init__()
343
                        self._linear = nn.Linear(in_size, out_size)
344

345
                    @paddle.jit.to_static
346 347 348
                    def forward(self, x):
                        y = self._linear(x)
                        z = self._linear(y)
349
                        loss = paddle.tensor.mean(z)
350 351 352
                        return z, loss

                # enable dygraph mode
353
                paddle.disable_static() 
354 355 356

                # train model
                net = SimpleNet(8, 8)
357 358
                adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
                x = paddle.randn([4, 8], 'float32')
359 360 361
                for i in range(10):
                    out, loss = net(x)
                    loss.backward()
362 363
                    adam.step()
                    adam.clear_grad()
364 365 366

                # use SaveLoadconfig.output_spec
                model_path = "simplenet.example.model.output_spec"
367 368 369
                config = paddle.SaveLoadConfig()
                config.output_spec = [out]
                paddle.jit.save(
370 371
                    layer=net,
                    model_path=model_path,
372
                    config=config)
373

374 375
                infer_net = paddle.jit.load(model_path)
                x = paddle.randn([4, 8], 'float32')
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
                pred = infer_net(x)
        """
        return self._output_spec

    @output_spec.setter
    def output_spec(self, spec):
        if not isinstance(spec, list):
            raise TypeError(
                "The SaveLoadConfig.output_spec should be 'list', but received input type is %s."
                % type(input))
            for var in spec:
                if not isinstance(var, core.VarBase):
                    raise TypeError(
                        "The element in SaveLoadConfig.output_spec list should be 'Variable', but received element's type is %s."
                        % type(var))
        self._output_spec = spec

    @property
    def model_filename(self):
        """
        The name of file to save the translated program of target Layer.
        Default filename is :code:`__model__` .

399
        Examples:
400 401
            .. code-block:: python

402 403 404
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
405

406
                class SimpleNet(nn.Layer):
407 408
                    def __init__(self, in_size, out_size):
                        super(SimpleNet, self).__init__()
409
                        self._linear = nn.Linear(in_size, out_size)
410

411
                    @paddle.jit.to_static
412 413 414 415 416 417
                    def forward(self, x):
                        y = self._linear(x)
                        z = self._linear(y)
                        return z

                # enable dygraph mode
418
                paddle.disable_static() 
419 420 421

                # train model
                net = SimpleNet(8, 8)
422 423
                adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
                x = paddle.randn([4, 8], 'float32')
424 425
                for i in range(10):
                    out = net(x)
426
                    loss = paddle.tensor.mean(out)
427
                    loss.backward()
428 429
                    adam.step()
                    adam.clear_grad()
430 431

                # saving with configs.model_filename
432 433 434 435
                model_path = "simplenet.example.model.model_filename"
                config = paddle.SaveLoadConfig()
                config.model_filename = "__simplenet__"
                paddle.jit.save(
436 437
                    layer=net,
                    model_path=model_path,
438
                    config=config)
439 440

                # loading with configs.model_filename
441 442
                infer_net = paddle.jit.load(model_path, config=config)
                x = paddle.randn([4, 8], 'float32')
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
                pred = infer_net(x)
        """
        return self._model_filename

    @model_filename.setter
    def model_filename(self, filename):
        if not isinstance(filename, six.string_types):
            raise TypeError(
                "The SaveLoadConfig.model_filename should be str, but received input's type is %s."
                % type(filename))
        if len(filename) == 0:
            raise ValueError(
                "The SaveLoadConfig.model_filename is empty string.")
        self._model_filename = filename

    @property
    def params_filename(self):
        """
        The name of file to save all persistable variables in target Layer. 
        Default file name is :code:`__variables__` .
        
464
        Examples:
465 466
            .. code-block:: python

467 468 469
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
470

471
                class SimpleNet(nn.Layer):
472 473
                    def __init__(self, in_size, out_size):
                        super(SimpleNet, self).__init__()
474
                        self._linear = nn.Linear(in_size, out_size)
475

476
                    @paddle.jit.to_static
477 478 479 480 481 482
                    def forward(self, x):
                        y = self._linear(x)
                        z = self._linear(y)
                        return z

                # enable dygraph mode
483
                paddle.disable_static() 
484 485 486

                # train model
                net = SimpleNet(8, 8)
487 488
                adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
                x = paddle.randn([4, 8], 'float32')
489 490
                for i in range(10):
                    out = net(x)
491
                    loss = paddle.tensor.mean(out)
492
                    loss.backward()
493 494
                    adam.step()
                    adam.clear_grad()
495 496

                model_path = "simplenet.example.model.params_filename"
497 498
                config = paddle.SaveLoadConfig()
                config.params_filename = "__params__"
499 500

                # saving with configs.params_filename
501
                paddle.jit.save(
502 503
                    layer=net,
                    model_path=model_path,
504
                    config=config)
505 506

                # loading with configs.params_filename
507 508
                infer_net = paddle.jit.load(model_path, config=config)
                x = paddle.randn([4, 8], 'float32')
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
                pred = infer_net(x)
        """
        return self._params_filename

    @params_filename.setter
    def params_filename(self, filename):
        if not isinstance(filename, six.string_types):
            raise TypeError(
                "The SaveLoadConfig.params_filename should be str, but received input's type is %s."
                % type(filename))
        if len(filename) == 0:
            raise ValueError(
                "The SaveLoadConfig.params_filename is empty string.")
        self._params_filename = filename

    # NOTE: [why not use params_filename=None control params saved separately]
    # The new save interface does not recommend parameters to be saved separately. 
    # Here, the concept should be separated as clearly as possible. 
    # Setting params_filename=None only means that the saved file name is set 
    # and without any other meaning. New separate_params control for file saved
    # separately can makes the concept clearer.
    @property
    def separate_params(self):
        """
        Configure whether to save the Layer parameters as separete files.
        (In order to be compatible with the behavior of :ref:`api_fluid_io_save_inference_model` )

        If True, each parameter will be saved to a file separately, the file name is the parameter name,
        and the SaveLoadConfig.params_filename configuration will not take effect. Default False.

        Examples:
            .. code-block:: python

542 543 544
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
545

546
                class SimpleNet(nn.Layer):
547 548
                    def __init__(self, in_size, out_size):
                        super(SimpleNet, self).__init__()
549
                        self._linear = nn.Linear(in_size, out_size)
550

551
                    @paddle.jit.to_static
552 553 554 555 556 557
                    def forward(self, x):
                        y = self._linear(x)
                        z = self._linear(y)
                        return z

                # enable dygraph mode
558
                paddle.disable_static() 
559 560 561

                # train model
                net = SimpleNet(8, 8)
562 563
                adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
                x = paddle.randn([4, 8], 'float32')
564 565
                for i in range(10):
                    out = net(x)
566
                    loss = paddle.tensor.mean(out)
567
                    loss.backward()
568 569
                    adam.step()
                    adam.clear_grad()
570 571

                model_path = "simplenet.example.model.separate_params"
572 573
                config = paddle.jit.SaveLoadConfig()
                config.separate_params = True
574 575

                # saving with configs.separate_params
576
                paddle.jit.save(
577 578
                    layer=net,
                    model_path=model_path,
579
                    config=config)
580 581 582 583
                # [result] the saved model directory contains:
                # linear_0.b_0  linear_0.w_0  __model__  __variables.info__

                # loading with configs.params_filename
584 585
                infer_net = paddle.jit.load(model_path, config=config)
                x = paddle.randn([4, 8], 'float32')
586 587 588 589 590 591 592 593 594 595 596 597
                pred = infer_net(x)
        """
        return self._separate_params

    @separate_params.setter
    def separate_params(self, value):
        if not isinstance(value, bool):
            raise TypeError(
                "The SaveLoadConfig.separate_params should be bool value, but received input's type is %s."
                % type(value))
        self._separate_params = value

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
    @property
    def keep_name_table(self):
        """
        Configures whether keep ``structured_name -> parameter_name`` dict in loaded state dict.
        This dict is the debugging information saved when call `paddle.save`. 
        It is generally only used for debugging and does not affect the actual training or inference. 
        By default, it will not be retained in `paddle.load` result. Default: False.
        
        .. note::
            Only used for ``paddle.load``.

        Examples:
            .. code-block:: python

                import paddle
            
                paddle.disable_static()

                linear = paddle.nn.Linear(5, 1)

                state_dict = linear.state_dict()
                paddle.save(state_dict, "paddle_dy")

                configs = paddle.SaveLoadConfig()
                configs.keep_name_table = True
                para_state_dict, _ = paddle.load("paddle_dy", configs)

                print(para_state_dict)
                # the name_table is 'StructuredToParameterName@@'
                # {'bias': array([0.], dtype=float32), 
                #  'StructuredToParameterName@@': 
                #     {'bias': u'linear_0.b_0', 'weight': u'linear_0.w_0'}, 
                #  'weight': array([[ 0.04230034],
                #     [-0.1222527 ],
                #     [ 0.7392676 ],
                #     [-0.8136974 ],
                #     [ 0.01211023]], dtype=float32)}
        """
        return self._keep_name_table

    @keep_name_table.setter
    def keep_name_table(self, value):
        if not isinstance(value, bool):
            raise TypeError(
                "The SaveLoadConfig.keep_name_table should be bool value, but received input's type is %s."
                % type(value))
        self._keep_name_table = value

646

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
def _get_input_var_names(inputs, input_spec):
    name_none_error = "The %s's name is None. " \
        "When using jit.save, please set InputSepc's name in " \
        "to_static(input_spec=[]) and jit.save(input_spec=[]) " \
        "and make sure they are consistent."
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of InputSpec or example Tensor " \
        "in input_spec is the same as the name of InputSpec in " \
        "`to_static` decorated on the Layer.forward method."
    result_list = []
    input_var_names = [var.name for var in inputs if isinstance(var, Variable)]
    if input_spec is None:
        # no prune
        result_list = input_var_names
    elif input_spec is not None and len(input_spec) == len(input_var_names):
        # no prune
        result_list = input_var_names
        # if input spec name not in input_var_names, only raise warning 
        for spec in input_spec:
            if spec.name is None:
                warnings.warn(name_none_error % spec)
            elif spec.name not in input_var_names:
                warnings.warn(name_no_exists_error % spec.name)
            else:
                # do nothing
                pass
    else:
        # prune
        for spec in input_spec:
            if spec.name is None:
                # name is None, the input_spec only can be InputSpec
                raise ValueError(name_none_error % spec)
            elif spec.name not in input_var_names:
                # the input_spec can be `InputSpec` or `VarBase`
                raise ValueError(name_no_exists_error % spec.name)
            else:
                result_list.append(spec.name)

    return result_list


def _get_output_vars(outputs, output_spec):
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of example Tensor " \
        "in configs.output_spec is the output tensor of " \
        "Layer.forward method."
    result_list = []
    output_vars_dict = OrderedDict()
    for var in outputs:
        if isinstance(var, Variable):
            output_vars_dict[var.name] = var
    if output_spec is None:
        result_list = output_vars_dict.values()
    elif output_spec is not None and len(output_spec) == len(output_vars_dict):
        result_list = output_vars_dict.values()
        for var in output_spec:
            if var.name not in output_vars_dict:
                warnings.warn(name_no_exists_error % var.name)
    else:
        for var in output_spec:
            if var.name not in output_vars_dict:
                raise ValueError(name_no_exists_error % var.name)
            else:
                result_list.append(output_vars_dict[var.name])
    return result_list


714 715 716 717 718 719 720 721 722 723 724 725 726
# NOTE(chenweihang): change jit.save/load argument `configs` to `config`
def deprecate_save_load_configs(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'configs' in kwargs:
            kwargs['config'] = kwargs['configs']
            kwargs.pop('configs')
        return func(*args, **kwargs)

    return wrapper


@deprecate_save_load_configs
727
@switch_to_static_graph
728
def save(layer, model_path, input_spec=None, config=None):
729 730 731 732 733 734 735 736 737 738
    """
    Saves input declarative Layer as :ref:`api_imperative_TranslatedLayer` 
    format model, which can be used for inference or fine-tuning after loading.

    It will save the translated program and all related persistable 
    variables of input declarative Layer to given ``model_path``.
    
    The default saved translated program file name is ``__model__``,
    and the default saved persistable variables file name is ``__variables__``,
    and it also saved some additional variable description information to file 
739
    ``__variables.info__``, these additional information is used in fine-tuning.
740 741 742 743 744 745 746 747 748

    The saved model can be loaded by follow APIs:
      - :ref:`api_imperative_jit_load`
      - :ref:`api_fluid_io_load_inference_model` (need pass ``params_filename='__variables__'``)
      - Other C++ inference APIs

    Args:
        layer (Layer): the Layer to be saved. The Layer should be decorated by `@declarative`.
        model_path (str): the directory to save the model.
749
        input_spec (list[Variable], optional): Describes the input of the saved model. 
750 751 752
            It is the example inputs that will be passed to saved TranslatedLayer's forward
            function. If None, all input variables of the original Layer's forward function
            would be the inputs of the saved model. Default None.
753
        config (SaveLoadConfig, optional): :ref:`api_imperative_jit_saveLoadConfig` object
754 755 756 757 758 759 760 761
            that specifies additional configuration options. Default None.
    Returns:
        None

    Examples:
        .. code-block:: python

            import numpy as np
762 763 764
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
765

766 767 768
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
769

770 771 772 773 774 775 776
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
777

778 779 780 781
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
782

783 784
                def __len__(self):
                    return self.num_samples
785

786 787
            class LinearNet(nn.Layer):
                def __init__(self):
788
                    super(LinearNet, self).__init__()
789
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
790

791
                @paddle.jit.to_static
792 793 794
                def forward(self, x):
                    return self._linear(x)

795 796 797 798 799 800 801 802 803 804 805
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

806
            # enable dygraph mode
807 808
            place = paddle.CPUPlace()
            paddle.disable_static(place) 
809

810
            # 1. train & save model.
811

812 813 814 815
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
816

817 818 819 820 821 822 823 824
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
825

826 827
            # train
            train(layer, loader, loss_fn, adam)
828

829
            # save
830
            model_path = "linear.example.model"
831
            paddle.jit.save(layer, model_path)
832 833 834 835
    """

    # 1. input check
    prog_translator = ProgramTranslator()
836
    if not prog_translator.enable_to_static:
837
        raise RuntimeError(
838
            "The paddle.jit.save doesn't work when setting ProgramTranslator.enable to False."
839 840 841
        )
    if not isinstance(layer, Layer):
        raise TypeError(
842
            "The input layer of paddle.jit.save should be 'Layer', but received layer type is %s."
843 844
            % type(layer))

845
    configs = config
846 847 848
    if configs is None:
        configs = SaveLoadConfig()

849 850
    # avoid change user given input_spec
    inner_input_spec = None
851 852 853 854 855
    if input_spec is not None:
        if not isinstance(input_spec, list):
            raise TypeError(
                "The input input_spec should be 'list', but received input_spec's type is %s."
                % type(input_spec))
856
        inner_input_spec = []
857
        for var in input_spec:
858 859 860 861 862 863
            if isinstance(var, paddle.static.InputSpec):
                inner_input_spec.append(var)
            elif isinstance(var, (core.VarBase, Variable)):
                inner_input_spec.append(
                    paddle.static.InputSpec.from_tensor(var))
            else:
864
                raise TypeError(
865
                    "The element in input_spec list should be 'Variable' or `paddle.static.InputSpec`, but received element's type is %s."
866 867
                    % type(var))

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
    # 2. get program from Layer
    # TODO(chenweihang): add support for other method, not only forward
    if isinstance(layer.forward, StaticLayer):
        concrete_program = layer.forward.concrete_program
    else:
        # transform in jit.save, if input_spec is incomplete, declarative will throw error
        static_forward = declarative(layer.forward, input_spec=inner_input_spec)
        concrete_program = static_forward.concrete_program
        # the input_spec has been used in declarative, which is equal to 
        # @declarative with input_spec and jit.save without input_spec,
        # avoid needless warning
        inner_input_spec = None

    # 3. build input & output of save_infernece_model
    # NOTE(chenweihang): [ Get input variables name ]
    # There are two cases, whether to prune the inputs or not
    # - not prune inputs (recommend):
    #   - the len(input_spec) == len((concrete_program.inputs) - 1
    #   - here can use concrete_program.inputs directly
    # - prune inputs:
    #   - the input_spec length < len((concrete_program.inputs) - 1
    #   - the input_spec's name should be in concrete_program.inputs
    input_var_names = _get_input_var_names(concrete_program.inputs,
                                           inner_input_spec)

    # NOTE(chenweihang): [ Get output variables ]
    # the rule is like [ Get input variables name ]. For output var, 
    # we only support VarBase spec, and actually, we only need the 
    # var name of output, and we don't recommended to use output_spec
    output_vars = _get_output_vars(concrete_program.outputs,
                                   configs.output_spec)

    # NOTE(chenweihang): we maintain the mapping of variable name to
901 902 903 904
    # structured name, the buffer variable (non-persistable)
    # saved to inference program may not need by dygraph Layer, 
    # we only record the state_dict variable's structured name
    state_names_dict = dict()
905
    for structured_name, var in six.iteritems(layer.state_dict()):
906 907
        state_names_dict[var.name] = structured_name

908
    # 4. share parameters from Layer to scope & record var info
909 910
    scope = core.Scope()
    extra_var_info = dict()
911
    for param_or_buffer in concrete_program.parameters:
912 913 914 915 916 917
        # share to scope
        param_or_buffer_tensor = scope.var(param_or_buffer.name).get_tensor()
        src_tensor = param_or_buffer.value().get_tensor()
        param_or_buffer_tensor._share_data_with(src_tensor)
        # record var info
        extra_info_dict = dict()
918 919 920
        if param_or_buffer.name in state_names_dict:
            extra_info_dict['structured_name'] = state_names_dict[
                param_or_buffer.name]
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
        extra_info_dict['stop_gradient'] = param_or_buffer.stop_gradient
        if isinstance(param_or_buffer, ParamBase):
            extra_info_dict['trainable'] = param_or_buffer.trainable
        extra_var_info[param_or_buffer.name] = extra_info_dict

    # 5. save inference model
    from paddle.fluid.io import save_inference_model

    # VARIABLE_FILENAME keep nameing style consistent with '__model__'
    if configs.params_filename is None:
        configs.params_filename = VARIABLE_FILENAME

    with scope_guard(scope):
        save_inference_model(
            dirname=model_path,
            feeded_var_names=input_var_names,
            target_vars=output_vars,
            executor=Executor(_current_expected_place()),
            main_program=concrete_program.main_program.clone(),
            model_filename=configs.model_filename,
            params_filename=None
            if configs.separate_params else configs.params_filename,
            export_for_deployment=configs._export_for_deployment,
            program_only=configs._program_only)

946
        # NOTE(chenweihang): [ Save extra variable info ]
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
        # save_inference_model will lose some important variable information, including:
        #   - Variable name and correspondence (when saved variables as one file)
        #   - Variable.stop_gradient information
        #   - Which persistent variable are parameter and which are not
        #   - Parameter.trainable information
        #
        # The lost information cannot be recovered when it is loaded again, 
        # so if we want to perform fine-tune after loading, we may need to 
        # configure redundant information to proceed.
        #
        # Due to compatibility issues, we cannot change the original storage structure, 
        # but we can save these information in `jit.save` without changing the original 
        # storage to improve user experience. So we save extra information into
        # file `__variables.info__`
        extra_var_info_path = os.path.join(model_path, EXTRA_VAR_INFO_FILENAME)
        with open(extra_var_info_path, 'wb') as f:
            pickle.dump(extra_var_info, f, protocol=2)


966
@deprecate_save_load_configs
967
@dygraph_only
968
def load(model_path, config=None):
969 970 971 972 973 974 975 976 977 978
    """
    :api_attr: imperative

    Load model saved by :ref:`api_imperative_jit_save` or :ref:`api_fluid_io_save_inference_model`
    as :ref:`api_imperative_TranslatedLayer`, then performing inference or fine-tune training.

    .. note::
        For some historical reasons, if you load model saved by :ref:`api_fluid_io_save_inference_model`,
        there will be the following limitations when using it in fine-tuning:
        1. Imperative mode do not support LoDTensor. All original model's feed targets or parametars that depend on LoD are temporarily unavailable.
979
        2. All saved model's feed targets need to be passed into TranslatedLayer's forward function.
980 981 982 983 984
        3. The variable's ``stop_gradient`` information is lost and can not be recovered.
        4. The parameter's ``trainable`` information is lost and can not be recovered.

    Args:
        model_path (str): The directory path where the model is saved.
985
        config (SaveLoadConfig, optional): :ref:`api_imperative_jit_saveLoadConfig` object that specifies 
986 987 988 989 990 991 992 993 994 995 996
            additional configuration options. Default None.

    Returns:
        TranslatedLayer: A Layer object can run saved translated model.

    Examples:
        1. Load model saved by :ref:`api_imperative_jit_save` then performing inference and fine-tune training.

        .. code-block:: python

            import numpy as np
997 998 999
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1000

1001 1002 1003
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1004

1005 1006
            IMAGE_SIZE = 784
            CLASS_NUM = 10
1007

1008 1009 1010 1011
            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1012

1013 1014 1015 1016
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1017

1018 1019 1020 1021 1022
                def __len__(self):
                    return self.num_samples

            class LinearNet(nn.Layer):
                def __init__(self):
1023
                    super(LinearNet, self).__init__()
1024
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1025

1026
                @paddle.jit.to_static
1027 1028 1029
                def forward(self, x):
                    return self._linear(x)

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1041
            # enable dygraph mode
1042 1043
            place = paddle.CPUPlace()
            paddle.disable_static(place) 
1044 1045

            # 1. train & save model.
1046

1047
            # create network
1048 1049 1050 1051
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

1052
            # create data loader
1053 1054 1055 1056 1057 1058 1059
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1060

1061 1062
            # train
            train(layer, loader, loss_fn, adam)
1063

1064 1065 1066
            # save
            model_path = "linear.example.model"
            paddle.jit.save(layer, model_path)
1067

1068
            # 2. load model
1069

1070 1071
            # load
            loaded_layer = paddle.jit.load(model_path)
1072 1073

            # inference
1074 1075 1076
            loaded_layer.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
            pred = loaded_layer(x)
1077 1078

            # fine-tune
1079 1080 1081
            loaded_layer.train()
            adam = opt.Adam(learning_rate=0.001, parameters=loaded_layer.parameters())
            train(loaded_layer, loader, loss_fn, adam)
1082 1083 1084 1085 1086 1087 1088


        2. Load model saved by :ref:`api_fluid_io_save_inference_model` then performing and fine-tune training.

        .. code-block:: python

            import numpy as np
1089
            import paddle
1090
            import paddle.fluid as fluid
1091 1092
            import paddle.nn as nn
            import paddle.optimizer as opt
1093

1094 1095 1096
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1097

1098 1099 1100 1101 1102 1103 1104
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1105

1106 1107 1108 1109
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1110

1111 1112
                def __len__(self):
                    return self.num_samples
1113

1114
            image = fluid.data(name='image', shape=[None, 784], dtype='float32')
1115
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1116
            pred = fluid.layers.fc(input=image, size=10, act='softmax')
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
            loss = fluid.layers.cross_entropy(input=pred, label=label)
            avg_loss = fluid.layers.mean(loss)

            optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            optimizer.minimize(avg_loss)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

1127 1128 1129 1130 1131 1132 1133 1134 1135
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                feed_list=[image, label],
                places=place,
                batch_size=BATCH_SIZE, 
                shuffle=True,
                drop_last=True,
                num_workers=2)
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145

            # 1. train and save inference model
            for data in loader():
                exe.run(
                    fluid.default_main_program(),
                    feed=data, 
                    fetch_list=[avg_loss])

            model_path = "fc.example.model"
            fluid.io.save_inference_model(
1146 1147 1148
                model_path, ["image"], [pred], exe)

            # 2. load model
1149 1150

            # enable dygraph mode
1151 1152 1153 1154
            paddle.disable_static(place)

            # load
            fc = paddle.jit.load(model_path)
1155

1156 1157 1158
            # inference
            fc.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1159 1160
            pred = fc(x)

1161
            # fine-tune
1162
            fc.train()
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=fc.parameters())
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
            for epoch_id in range(EPOCH_NUM):
                for batch_id, (image, label) in enumerate(loader()):
                    out = fc(image)
                    loss = loss_fn(out, label)
                    loss.backward()
                    adam.step()
                    adam.clear_grad()
                    print("Epoch {} batch {}: loss = {}".format(
                        epoch_id, batch_id, np.mean(loss.numpy())))
1180
    """
1181
    return TranslatedLayer._construct(model_path, config)
1182 1183


1184
@dygraph_only
Z
Zeng Jinle 已提交
1185 1186 1187 1188 1189
def _trace(layer,
           inputs,
           feed_prefix='feed_',
           fetch_prefix='fetch_',
           tmp_prefix='t_'):
1190
    assert isinstance(layer, Layer)
1191 1192 1193 1194 1195 1196 1197 1198 1199

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
1200
        original_outputs = layer(*inputs)
1201 1202 1203 1204
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
1205
        out_vars = [var for var in outputs]
1206

1207
        program_desc, feed_names, fetch_names, parameters = tracer.create_program_desc(
Z
Zeng Jinle 已提交
1208
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix)
1209 1210 1211 1212 1213
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

1214
    return original_outputs, program, feed_names, fetch_names, parameters
1215 1216 1217 1218


class TracedLayer(object):
    """
1219 1220
    :api_attr: imperative
    
1221 1222 1223 1224 1225
    TracedLayer is used to convert a forward dygraph model to a static
    graph model. This is mainly used to save the dygraph model for online
    inference using C++. Besides, users can also do inference in Python
    using the converted static graph model, which usually has better
    performance than the original dygraph model.
1226 1227 1228 1229

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
1230 1231

    All TracedLayer objects should not be created by constructor and should
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names
1243
        self._params = parameters
1244 1245 1246 1247 1248

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
1249
            src_tensor = p.value().get_tensor()
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
1273
        This method is the only allowed method to create TracedLayer object.
1274 1275 1276 1277
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
1278
            layer (dygraph.Layer): the layer object to be traced.
1279 1280
            inputs (list(Tensor)|tuple(Tensor)|Tensor): the input tensors of
                the layer object.
1281 1282

        Returns:
1283
            tuple: A tuple of 2 items, whose the first item is the output of
1284 1285
                :code:`layer(*inputs)` , and the second item is the created
                TracedLayer object.
1286

1287
        Examples:
1288 1289 1290
            .. code-block:: python:

                import paddle.fluid as fluid
1291
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
1292 1293 1294
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
1295 1296 1297
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
1298 1299 1300 1301 1302

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
1303
                    layer = ExampleLayer()
1304 1305 1306
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
1307 1308 1309 1310 1311 1312 1313 1314 1315

                    # run the static graph model using Executor inside
                    out_static_graph = static_layer([in_var])

                    print(len(out_static_graph)) # 1
                    print(out_static_graph[0].shape) # (2, 10)

                    # save the static graph model for inference
                    static_layer.save_inference_model(dirname='./saved_infer_model')
1316
        """
1317 1318 1319 1320
        assert isinstance(
            layer, Layer
        ), "The type of 'layer' in fluid.dygraph.jit.TracedLayer.trace must be fluid.dygraph.Layer, but received {}.".format(
            type(layer))
1321 1322
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
1323 1324 1325 1326 1327 1328 1329
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
1330
            build_strategy (BuildStrategy, optional): build strategy of
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

                import paddle.fluid as fluid
1342
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
1343 1344 1345
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
1346 1347 1348
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
1349 1350 1351 1352 1353

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
1354
                    layer = ExampleLayer()
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)

                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])

                    build_strategy = fluid.BuildStrategy()
                    build_strategy.enable_inplace = True

                    exec_strategy = fluid.ExecutionStrategy()
                    exec_strategy.num_threads = 2

                    static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                    out_static_graph = static_layer([in_var])
        """
        assert self._compiled_program is None, "Cannot set strategy after run"
1370 1371 1372 1373 1374 1375 1376 1377
        assert isinstance(
            build_strategy, (type(None), BuildStrategy)
        ), "The type of 'build_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.BuildStrategy, but received {}.".format(
            type(build_strategy))
        assert isinstance(
            exec_strategy, (type(None), ExecutionStrategy)
        ), "The type of 'exec_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.ExecutionStrategy, but received {}.".format(
            type(exec_strategy))
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
            self._program).with_data_parallel(
                build_strategy=self._build_strategy,
                exec_strategy=self._exec_strategy,
                places=self._place)

    def _build_feed(self, inputs):
        assert isinstance(inputs, (list, tuple)), \
            "Inputs should be a list or tuple of variables"
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
        if in_dygraph_mode():
            for x, name in zip(inputs, self._feed_names):
1396
                feed_dict[name] = x.value().get_tensor()
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
        return self._exe.run(self._compiled_program,
                             feed=feed,
                             fetch_list=self._fetch_names)

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
    def save_inference_model(self, dirname, feed=None, fetch=None):
        """
1419 1420
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
1421 1422

        Args:
1423
            dirname (str): the directory to save the inference model.
1424
            feed (list[int], optional): the input variable indices of the saved
1425
                inference model. If None, all input variables of the
1426 1427 1428 1429 1430 1431 1432 1433
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.

        Returns:
1434
            None
1435 1436 1437 1438 1439

        Examples:
            .. code-block:: python:

                import paddle.fluid as fluid
1440
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
1441 1442 1443
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
1444 1445 1446
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
1447 1448 1449 1450

                    def forward(self, input):
                        return self._fc(input)

1451 1452 1453
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')

1454
                with fluid.dygraph.guard():
1455
                    layer = ExampleLayer()
1456 1457
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
1458
                    static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
1459 1460

                place = fluid.CPUPlace()
1461 1462
                exe = fluid.Executor(place)
                program, feed_vars, fetch_vars = fluid.io.load_inference_model(save_dirname,
1463
                                                    exe)
1464 1465 1466

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
1467
        """
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
        check_type(dirname, "dirname", str,
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        check_type(feed, "feed", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(feed, list):
            for f in feed:
                check_type(f, "each element of feed", int,
                           "fluid.dygraph.jit.TracedLayer.save_inference_model")
        check_type(fetch, "fetch", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(fetch, list):
            for f in fetch:
                check_type(f, "each element of fetch", int,
                           "fluid.dygraph.jit.TracedLayer.save_inference_model")

1483
        from paddle.fluid.io import save_inference_model
1484 1485 1486 1487 1488

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

1489
            return [all_vars[idx] for idx in partial_vars]
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

1500
            save_inference_model(
1501 1502 1503 1504 1505
                dirname=dirname,
                feeded_var_names=feeded_var_names,
                target_vars=target_vars,
                executor=self._exe,
                main_program=self._program.clone())