operator.cc 61.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include "paddle/fluid/framework/operator.h"

17
#include <glog/logging.h>
P
peizhilin 已提交
18 19
#include <sstream>
#include <string>
20

21
#include "gflags/gflags.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/framework/data_transform.h"
23
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
24
#include "paddle/fluid/framework/details/nan_inf_utils.h"
25
#include "paddle/fluid/framework/op_call_stack.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/shape_inference.h"
27
#include "paddle/fluid/framework/transfer_scope_cache.h"
28
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/var_type.h"
L
Leo Chen 已提交
30
#include "paddle/fluid/platform/enforce.h"
31
#include "paddle/fluid/platform/profiler.h"
32 33 34 35 36 37

namespace paddle {
namespace framework {
class LoDTensor;
}  // namespace framework
}  // namespace paddle
38
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
39 40
#include "paddle/fluid/platform/xpu/xpu_info.h"
#include "paddle/fluid/platform/xpu/xpu_op_list.h"
41
#endif
Q
Qiao Longfei 已提交
42

43 44 45 46
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

D
dzhwinter 已提交
47
DECLARE_bool(benchmark);
48
DECLARE_bool(check_nan_inf);
49
DECLARE_bool(enable_unused_var_check);
50 51
PADDLE_DEFINE_EXPORTED_int32(inner_op_parallelism, 0,
                             "number of threads for inner op");
D
dzhwinter 已提交
52

Q
Qiao Longfei 已提交
53 54 55
namespace paddle {
namespace framework {

56 57 58 59 60 61
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
62

63 64
static DDim GetDimsDebug(const Scope& scope, const std::string& name,
                         bool get_actual_dim = false) {
65
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
66 67
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
68 69
  }

M
minqiyang 已提交
70 71 72 73 74 75 76 77 78
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
79 80
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
81 82 83 84 85
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
86 87 88 89 90 91
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
92 93 94 95 96
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
97

M
minqiyang 已提交
98 99 100
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
101 102
      return "";
    }
Y
Yu Yang 已提交
103
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
104
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
105 106 107 108
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
109
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
110
    }
111 112
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
113 114 115 116 117
  } else {
    return "";
  }
}

L
Leo Chen 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
static std::string GetPlace(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
  } else if (var->IsType<SelectedRows>()) {
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

147 148 149 150 151 152
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
153 154
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
155 156 157 158 159
  }

  return -1;
}

160
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
161 162 163 164 165 166 167
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
168 169 170
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
171 172 173 174 175
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
176 177 178 179 180
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
181
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
182 183 184 185 186 187
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
188
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
189 190 191 192 193 194
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

195
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
196 197 198
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
199
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
200 201 202 203
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
204
#else
205
      auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
P
peizhilin 已提交
206
      platform::SetDeviceId(dev_id);
207 208 209
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
210 211 212 213
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
214 215 216
#else
      auto dev_id = BOOST_GET_CONST(platform::XPUPlace, place).device;
      platform::SetXPUDeviceId(dev_id);
217 218 219 220 221 222 223 224 225 226
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
      auto dev_id = BOOST_GET_CONST(platform::NPUPlace, place).device;
      platform::SetNPUDeviceId(dev_id);
227
#endif
P
peizhilin 已提交
228
    }
P
peizhilin 已提交
229

230
    {
231 232 233 234 235 236
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
      platform::RecordEvent op_type_record_event(Type());
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
237
          op_name, platform::EventRole::kUniqueOp);
P
peizhilin 已提交
238 239
      RunImpl(scope, place);
    }
240

Z
Zhang Ting 已提交
241
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
242
  } catch (platform::EnforceNotMet& exception) {
243
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
244
    throw std::move(exception);
245 246 247 248 249 250
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
251
  } catch (...) {
252
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
253
    std::rethrow_exception(std::current_exception());
254
  }
255 256
}

257
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
258
  return inputs_.find(name) != inputs_.end();
259 260
}

261
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
262
  auto& ins = Inputs(name);
263 264
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
265
      platform::errors::InvalidArgument(
266 267
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
268
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
269 270
}

Y
Yu Yang 已提交
271 272
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
273
  auto it = inputs_.find(name);
274 275 276 277
  PADDLE_ENFORCE_NE(
      it, inputs_.end(),
      platform::errors::NotFound("Operator %s does not have the input %s.",
                                 type_, name));
Y
Yu Yang 已提交
278
  return it->second;
Y
Yan Chunwei 已提交
279 280
}

281
bool OperatorBase::HasOutputs(const std::string& name) const {
282
  if (outputs_.find(name) != outputs_.end()) {
283 284 285 286 287 288
    return true;
  } else {
    return false;
  }
}

289
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
290
  auto& outs = Outputs(name);
291 292 293 294 295
  PADDLE_ENFORCE_LE(
      outs.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
296
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
297 298
}

Y
Yu Yang 已提交
299 300
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
301
  auto it = outputs_.find(name);
302 303 304 305
  PADDLE_ENFORCE_NE(
      it, outputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
306
  return it->second;
Y
Yan Chunwei 已提交
307 308
}

309
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
310
  std::stringstream ss;
Y
Yu Yang 已提交
311
  ss << "Op(" << type_ << "), inputs:{";
312

313
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
314 315
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
316 317
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
318 319
  }

Y
Yu Yang 已提交
320 321
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
322 323
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
324 325
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
326 327
      auto var_name = input.second[i];
      ss << var_name;
328
      if (scope) {
Q
Qiao Longfei 已提交
329 330 331 332 333 334 335
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
336 337 338
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
339
          ss << ":" << dtype;
340 341
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
342
          ss << "(" << GetPlace(*scope, var_name) << ")";
343
        }
344
      }
Y
Yu Yang 已提交
345 346 347
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
348
    }
Y
Yu Yang 已提交
349
    ss << "]";
Y
Yu Yang 已提交
350 351
    ++it;
    if (it != inputs_.end()) {
352 353
      ss << ", ";
    }
Q
Qiao Longfei 已提交
354
  }
Y
Yu Yang 已提交
355
  ss << "}, outputs:{";
Y
Yu Yang 已提交
356 357
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
358 359
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
360 361
      auto var_name = output.second[i];
      ss << var_name;
362
      if (scope) {
Q
Qiao Longfei 已提交
363 364 365 366 367 368 369
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
370 371
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
372 373
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
374
          ss << "(" << GetPlace(*scope, var_name) << ")";
375
        }
376
      }
Y
Yu Yang 已提交
377 378 379
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
380
    }
Y
Yu Yang 已提交
381
    ss << "]";
Y
Yu Yang 已提交
382 383
    ++it;
    if (it != outputs_.end()) {
384 385
      ss << ", ";
    }
Q
Qiao Longfei 已提交
386
  }
Y
Yu Yang 已提交
387
  ss << "}.";
Q
Qiao Longfei 已提交
388 389 390
  return ss.str();
}

Y
Yu Yang 已提交
391
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
392 393
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
394
                           const AttributeMap& attrs)
S
sneaxiy 已提交
395 396 397 398 399 400
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
401 402 403 404 405 406 407 408
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
409
}
410

Q
qijun 已提交
411 412
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
413
  for (auto& o : inputs_) {
Q
qijun 已提交
414 415 416 417 418 419
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
420 421 422 423 424 425 426 427 428 429
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
430
  auto& info = Info();
Y
Yu Yang 已提交
431 432

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
433
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
434 435 436 437 438 439 440 441 442
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
443 444
}

445
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
446
  if (info_ == nullptr || info_->proto_ == nullptr) return;
447

S
sneaxiy 已提交
448
  for (auto& in : info_->Proto().inputs()) {
449
    if (!in.dispensable() && !in.extra()) {
450 451 452 453
      PADDLE_ENFORCE_NE(
          inputs_.find(in.name()), inputs_.end(),
          platform::errors::NotFound("Operator %s's input (%s) is not set.",
                                     Type(), in.name()));
454
    }
455 456
  }

S
sneaxiy 已提交
457
  for (auto& out : info_->Proto().outputs()) {
458
    if (!out.dispensable() && !out.extra()) {
459 460 461 462
      PADDLE_ENFORCE_NE(
          outputs_.find(out.name()), outputs_.end(),
          platform::errors::NotFound("Operator %s's output (%s) is not set.",
                                     Type(), out.name()));
463
    }
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
480
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
481
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
482 483
}

C
chengduo 已提交
484
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
485 486 487 488
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
489
  } else {
490 491 492
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
493 494 495
  }
}

C
chengduo 已提交
496
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
497
  if (var->IsType<LoDTensor>()) {
498
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
499
  } else if (var->IsType<SelectedRows>()) {
500
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
501
  } else {
502 503 504
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
505 506 507
  }
}

508
bool ExecutionContext::HasInput(const std::string& name) const {
509
  auto* var = InputVar(name);
510 511 512 513
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
514
  auto* var = OutputVar(name);
515 516 517
  return var != nullptr;
}

X
Xin Pan 已提交
518
const Variable* ExecutionContext::InputVar(const std::string& name) const {
519 520
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
521 522 523
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

524 525
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
526
      platform::errors::InvalidArgument(
527 528
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
529 530 531
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
532
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
533 534 535
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

536 537 538 539 540
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
541 542 543
  return it->second.empty() ? nullptr : it->second[0];
}

544
template <>
545
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
546
  return Input<LoDTensor>(name);
547 548 549
}

template <>
550
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
551
    const std::string& name) const {
552 553
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
554 555
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
556 557 558 559 560
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
561
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
562
                   if (var == nullptr) return nullptr;
563 564 565 566 567
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
568 569 570 571 572
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

573
template <>
574
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
575
  return Output<LoDTensor>(name);
576 577 578
}

template <>
579
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
580
    const std::string& name) const {
H
hong 已提交
581 582 583
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
584 585
    return {};
  }
586
  std::vector<Tensor*> res;
587 588 589 590 591
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
592
                 });
593 594 595
  return res;
}

Y
Yu Yang 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

611 612
class RuntimeInferShapeContext : public InferShapeContext {
 public:
613
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
614
      : op_(op), ctx_(ctx) {}
615 616

  bool HasInput(const std::string& name) const override {
617
    // has only one input
X
Xin Pan 已提交
618
    const auto& ins = ctx_.inputs;
619 620
    auto it = ins.find(name);
    if (it == ins.end()) {
621 622
      return false;
    }
623
    const auto& in = it->second;
X
Xin Pan 已提交
624
    if (in.size() == 0) return false;
625 626 627 628
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
629
    return in[0] != nullptr;
630 631 632
  }

  bool HasOutput(const std::string& name) const override {
633
    // has only one output
X
Xin Pan 已提交
634
    const auto& outs = ctx_.outputs;
635 636
    auto it = outs.find(name);
    if (it == outs.end()) {
637 638
      return false;
    }
639
    const auto& out = it->second;
X
Xin Pan 已提交
640
    if (out.size() == 0) {
641 642
      return false;
    }
643 644 645 646
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
647
    return out[0] != nullptr;
648 649 650
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
651 652
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
653
    if (it == ins.end() || it->second.empty()) {
654 655
      return false;
    }
X
Xin Pan 已提交
656 657
    for (auto& input : it->second) {
      if (input == nullptr) {
658 659 660 661 662 663 664
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
665 666
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
667
    if (it == outs.end() || it->second.empty()) {
668 669
      return false;
    }
X
Xin Pan 已提交
670 671
    for (auto& output : it->second) {
      if (output == nullptr) {
672 673 674 675 676 677 678 679
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
680
  std::vector<std::string> Inputs(const std::string& name) const override {
681 682 683
    return op_.Inputs(name);
  }

H
hong 已提交
684
  std::vector<std::string> Outputs(const std::string& name) const override {
685 686 687
    return op_.Outputs(name);
  }

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

711 712
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
713 714
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
731 732 733

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
734

735 736 737 738 739
    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));
740 741 742 743 744 745 746 747 748 749 750 751

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
752
      PADDLE_THROW(platform::errors::Unimplemented(
753
          "Currently, the input type of ShareDim only can be LoDTensor "
754
          "or SelectedRows."));
755 756 757
    }
  }

H
hong 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
776
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
803 804
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
805 806
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
823 824

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
825
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
826
    Variable* out_var = out_it->second.at(j);
827 828 829 830
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
831
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
832 833
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
834

M
mozga-intel 已提交
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
854 855
  }

856
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
857
    PADDLE_THROW(platform::errors::PreconditionNotMet(
858
        "GetLoDLevel is only used in compile time. The calculation of "
859
        "output's actual lod is different among operators so that should be "
860
        "set in the runtime kernel."));
861 862
  }

863 864
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
865
    PADDLE_THROW(platform::errors::PreconditionNotMet(
866
        "SetLoDLevel is only used in compile time. The calculation of "
867
        "output's actual lod is different among operators so that should be "
868
        "set in the runtime kernel."));
C
chengduo 已提交
869 870
  }

871 872
  bool IsRuntime() const override { return true; }

873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
892 893
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
894 895 896 897 898
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
X
Xin Pan 已提交
899 900 901 902 903 904 905 906
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
907 908 909 910 911 912 913 914 915 916
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
917 918
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
919 920 921 922 923
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
X
Xin Pan 已提交
924 925 926 927 928 929 930 931 932
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

933
 protected:
X
Xin Pan 已提交
934
  DDim GetDim(Variable* var) const {
935 936
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
937 938 939 940 941
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
942 943 944 945
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
946 947 948
    }
  }

X
Xin Pan 已提交
949 950 951 952 953 954 955 956
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
957
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
958 959
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
960 961
  }

X
Xin Pan 已提交
962
  void SetDim(Variable* var, const DDim& dim) {
963 964 965 966 967
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
968 969 970 971
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
972 973 974 975 976 977
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
978 979 980 981 982 983
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
X
Xin Pan 已提交
984 985 986 987 988
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
989 990 991
    }
  }

F
fengjiayi 已提交
992 993
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
994 995
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
996 997
  }

X
Xin Pan 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1009 1010 1011
    return ToVarType(var->Type());
  }

1012 1013 1014
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1015 1016 1017 1018
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1019 1020 1021 1022 1023
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1024 1025 1026 1027
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1028
    return it->second;
F
fengjiayi 已提交
1029 1030
  }

1031
  const OperatorBase& op_;
X
Xin Pan 已提交
1032
  const RuntimeContext& ctx_;
1033 1034
};

1035 1036
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1037 1038 1039 1040
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
1041 1042
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
1043 1044
    return;
  }
1045 1046 1047 1048 1049 1050 1051 1052
  PADDLE_ENFORCE_NE(
      framework::TensorContainsInf(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                              op_type, name));
  PADDLE_ENFORCE_NE(
      framework::TensorContainsNAN(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains NAN.",
                              op_type, name));
C
chengduoZH 已提交
1053 1054
}

1055 1056
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1057 1058
  auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
  return std::any_of(op_kernels.begin(), op_kernels.end(),
1059
                     [data_type](OpKernelMap::const_reference kern_pair) {
1060 1061
                       return platform::is_cpu_place(kern_pair.first.place_) &&
                              kern_pair.first.library_type_ ==
1062 1063
                                  LibraryType::kMKLDNN &&
                              kern_pair.first.data_type_ == data_type;
1064 1065 1066
                     });
}

1067 1068
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1069 1070 1071
  bool use_mkldnn_ctx = ctx.HasAttr("use_mkldnn") &&
                        ctx.Attr<bool>("use_mkldnn") &&
                        platform::is_cpu_place(ctx.GetPlace());
1072
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1073 1074
}

B
baojun-nervana 已提交
1075
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1076 1077
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1078
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
B
baojun-nervana 已提交
1079 1080 1081
  this->InferShape(&infer_shape_ctx);
}

L
luotao1 已提交
1082 1083
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1084 1085
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1086 1087 1088
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1089
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1090
    all_kernels_must_compute_runtime_shape_ = true;
1091
  const Scope* cur_scope = &scope;
1092
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1093 1094
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1095
    pre_scope_ = cur_scope;
L
luotao1 已提交
1096
  } else {
1097 1098 1099 1100 1101 1102
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1103 1104 1105 1106 1107 1108 1109 1110
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1111
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1112
  auto* dev_ctx = pool.Get(place);
1113

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1124
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
1125
    ChooseKernel(*runtime_ctx, scope, place);
1126 1127
  }

Y
yuyang18 已提交
1128 1129
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1130 1131
  Scope* transfer_scope = nullptr;
  {
1132
    platform::RecordEvent record_event("prepare_data",
1133
                                       platform::EventRole::kInnerOp);
1134 1135 1136 1137
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
1138
  }
Y
yuyang18 已提交
1139 1140 1141 1142
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1143 1144
  if (!(kernel_type_->place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(kernel_type_->place_);
1145
  }
Q
QI JUN 已提交
1146

1147
  if (!all_kernels_must_compute_runtime_shape_) {
1148
    platform::RecordEvent record_event("infer_shape",
1149
                                       platform::EventRole::kInnerOp);
1150
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1151 1152
    this->InferShape(&infer_shape_ctx);
  }
1153 1154 1155 1156 1157

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1158 1159
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1160
  {
1161
    platform::RecordEvent record_event("compute",
1162
                                       platform::EventRole::kInnerOp);
1163 1164
    (*kernel_func_)(
        ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
1165
  }
D
dzhwinter 已提交
1166

Y
yuyang18 已提交
1167
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1168
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1169
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1170
  }
1171 1172 1173 1174 1175 1176 1177

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1178 1179 1180 1181 1182 1183 1184 1185
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1186

D
dzhwinter 已提交
1187
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1188
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1189
    dev_ctx->Wait();
L
Leo Chen 已提交
1190 1191 1192
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_CUDA_SUCCESS(cudaGetLastError());
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
1193 1194 1195 1196
#endif
#if defined(PADDLE_WITH_HIP)
    PADDLE_ENFORCE_CUDA_SUCCESS(hipGetLastError());
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
L
Leo Chen 已提交
1197
#endif
D
dzhwinter 已提交
1198
  }
C
chengduoZH 已提交
1199 1200

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1201
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1202
  }
1203 1204 1205 1206 1207 1208 1209

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1210
}
X
Xin Pan 已提交
1211

L
Liu Yiqun 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220
void OperatorWithKernel::ChooseKernel(const RuntimeContext& ctx,
                                      const Scope& scope,
                                      const platform::Place& place) const {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place);

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1221 1222 1223 1224 1225
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));
L
Liu Yiqun 已提交
1226 1227 1228 1229

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = this->GetExpectedKernelType(
1230
      ExecutionContext(*this, scope, *dev_ctx, ctx));
1231 1232 1233
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1244 1245 1246 1247
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
      if (SupportGPU()) {
        expected_kernel_key.place_ = dev_ctx->GetPlace();
B
Baibaifan 已提交
1248 1249
      } else if (SupportNPU()) {
        expected_kernel_key.place_ = dev_ctx->GetPlace();
1250 1251 1252 1253 1254 1255 1256 1257
      } else {
        expected_kernel_key.place_ = platform::CPUPlace();
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
C
cc 已提交
1258 1259
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
L
Liu Yiqun 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270

  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1271 1272
#endif
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
1273 1274 1275 1276
  if (is_xpu_place(expected_kernel_key.place_) &&
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1277 1278 1279 1280 1281 1282
    VLOG(3) << "missing XPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
      is_npu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1293
#endif
1294 1295 1296 1297
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator (%s) does not have kernel for %s.", type_,
                        KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
1298

1299 1300 1301 1302 1303
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1304 1305
}

Y
yuyang18 已提交
1306 1307 1308 1309
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1310
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1311
    auto* origin_var = scope.FindVar(var_name);
1312 1313 1314
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1315
    auto* original_tensor =
C
chengduo 已提交
1316
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1317
    auto* var = transfer_scope.FindVar(var_name);
1318 1319
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                     "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1320
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1321
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1322
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
1323 1324 1325 1326 1327
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
1328 1329 1330
  }
}

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
      auto src_type = grad_tensor->type();
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
      auto dst_type = tensor->saved_type();
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
1398
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1399
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1400 1401
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1402
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1403

1404
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1405 1406 1407 1408
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1409 1410
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1411 1412 1413
    }
  }

Y
yuyang18 已提交
1414
  for (auto& var_name_item : Inputs()) {
1415 1416
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1417

X
Xin Pan 已提交
1418 1419 1420 1421
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1422
      auto* var = input_vars[i];
X
Xin Pan 已提交
1423

Y
yuyang18 已提交
1424
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1425
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1426 1427 1428
        continue;
      }

C
chengduo 已提交
1429
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1445 1446
            (paddle::platform::MKLDNNDeviceContext::tls()
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

M
minqiyang 已提交
1479 1480
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1481

1482 1483 1484
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1485
      // We use a thread_local cache to fix that issue, the key in the cache is
1486 1487 1488 1489 1490
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1491 1492
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1493
      // variables, that behavior a lot different.
1494 1495 1496 1497 1498 1499 1500 1501 1502
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1503 1504
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1505
        enable_cache_transfer_scope_ = true;
1506
      }
1507
      if (!new_scope) {
Y
yuyang18 已提交
1508 1509
        new_scope = &scope.NewScope();
      }
1510 1511 1512 1513
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1514
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1515 1516
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1517
      if (enable_cache_runtime_context_) {
1518 1519
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
1520 1521

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
1522
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1523
      input_vars[i] = trans_var;
L
Leo Chen 已提交
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
            VLOG(4) << "Found inplace between input(" << var_name_item.first
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
1541
      Tensor out;
Y
yuyang18 已提交
1542
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1543 1544 1545
      SetTensorToVariable(*var, out, trans_var);
    }
  }
L
Leo Chen 已提交
1546

1547 1548 1549 1550 1551 1552
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
1553 1554 1555 1556 1557 1558

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
1559 1560
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
1561 1562 1563

  return new_scope;
}
Q
Qiao Longfei 已提交
1564

1565 1566 1567
void OperatorWithKernel::ParseInputDataType(
    const ExecutionContext& ctx, const std::string& name,
    proto::VarType::Type* data_type) const {
1568
  proto::VarType::Type default_data_type =
1569
      static_cast<proto::VarType::Type>(-1);
H
hong 已提交
1570
  const std::vector<Variable*> vars = ctx.MultiInputVar(name);
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
      } else if (var->IsType<SelectedRows>()) {
        t = &(var->Get<SelectedRows>().value());
1581
      } else if (var->IsType<LoDTensorArray>()) {
1582 1583 1584 1585
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
1586 1587
          }
        }
1588 1589
      }
      if (t != nullptr) {
1590 1591 1592 1593 1594
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
            platform::errors::InvalidArgument(
                "The Tensor in the %s Op's Input Variable %s(%s) is "
                "not initialized.",
H
hong 已提交
1595
                Type(), name, ctx.InputNames(name).at(i)));
1596
        proto::VarType::Type tmp = t->type();
1597
        PADDLE_ENFORCE(
1598
            tmp == *data_type || *data_type == default_data_type,
1599 1600 1601 1602 1603 1604
            platform::errors::InvalidArgument(
                "The DataType of %s Op's duplicable Variable %s must be "
                "consistent. The current variable type is (%s), but the "
                "previous variable type is (%s).",
                Type(), name, DataTypeToString(tmp),
                DataTypeToString(*data_type)));
1605 1606 1607 1608 1609 1610
        *data_type = tmp;
      }
    }
  }
}

1611
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1612
    const ExecutionContext& ctx) const {
1613 1614 1615
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
H
hong 已提交
1616 1617
  for (auto& input : ctx.InNameList()) {
    ParseInputDataType(ctx, input, &data_type);
Y
Yu Yang 已提交
1618
  }
1619 1620 1621 1622
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
  ParseInputDataType(ctx, name, &data_type);
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
1634 1635 1636 1637 1638
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
          name, Type()));
1639
  return data_type;
Y
Yu Yang 已提交
1640
}
1641

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
  } else if (var->IsType<SelectedRows>()) {
    t = var->GetMutable<SelectedRows>()->mutable_value();
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
  PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
                        Type(), name, ctx.InputName(name)));
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
    const ExecutionContext& ctx, const std::string& name1,
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
  auto type_a = tensor_a->type();
  auto type_b = tensor_b->type();

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

1702 1703 1704 1705 1706 1707 1708 1709
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1710 1711
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1712 1713
}

Q
Qiao Longfei 已提交
1714
}  // namespace framework
L
liaogang 已提交
1715
}  // namespace paddle