post_training_quantization.py 77.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16
import os
import re
17 18
import math
import shutil
19 20
import logging
import numpy as np
21

22 23 24 25
try:
    from tqdm import tqdm
except:
    from .utils import tqdm
26
from inspect import isgeneratorfunction
27 28 29
from .... import io
from .... import core
from .... import framework
30
from .... import unique_name
31
from ....executor import global_scope, Executor
32 33
from ....framework import IrGraph
from ....log_helper import get_logger
34
from .quantization_pass import QuantizationTransformPass, QuantizationTransformPassV2, QuantizationFreezePass, QuantWeightPass, AddQuantDequantPass, AddQuantDequantPassV2
35
from .cal_kl_threshold import cal_kl_threshold
36
from .adaround import run_adaround
37
from . import utils
38

39
__all__ = [
40 41 42
    'PostTrainingQuantization',
    'WeightQuantization',
    'PostTrainingQuantizationProgram',
43
]
44

45 46 47
_logger = get_logger(__name__,
                     logging.INFO,
                     fmt='%(asctime)s-%(levelname)s: %(message)s')
48 49


50 51 52 53 54 55 56 57
def _all_persistable_var_names(program):
    persistable_var_names = []
    for var in program.list_vars():
        if var.persistable:
            persistable_var_names.append(var.name)
    return persistable_var_names


58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
def _remove_unused_var_nodes(graph):
    all_used_vars = set()
    ops = graph.all_op_nodes()
    for op_node in ops:
        for input_node in op_node.inputs:
            all_used_vars.add(input_node)
        for output_node in op_node.outputs:
            all_used_vars.add(output_node)

    all_used_vars = {n.node for n in all_used_vars}
    all_unused_vars = {
        n
        for n in filter(lambda node: node.node not in all_used_vars,
                        graph.all_var_nodes())
    }
    graph.safe_remove_nodes(all_unused_vars)
    return graph


def _remove_ctrl_vars(graph):
    remove_ctr_vars = set()
    for node in graph.all_var_nodes():
        if node.is_ctrl_var():
            remove_ctr_vars.add(node)
    graph.safe_remove_nodes(remove_ctr_vars)
    return graph


def _apply_pass(scope,
                graph,
                pass_name,
                attrs=None,
                attr_values=None,
                debug=False):
    ir_pass = core.get_pass(pass_name)
    cpp_graph = graph.graph
    if not cpp_graph.has('__param_scope__'):
        cpp_graph.set_not_owned('__param_scope__', scope)
    if attrs:
        assert attr_values and len(attrs) == len(
98 99
            attr_values
        ), "Different number of pass attributes and their values."
100 101 102 103 104 105 106 107 108
        for attr, value in zip(attrs, attr_values):
            ir_pass.set(attr, value)
    ir_pass.apply(cpp_graph)
    if debug:
        graph.draw('.', 'qat_fp32_{}'.format(pass_name), graph.all_op_nodes())
    _remove_unused_var_nodes(graph)
    return graph


109
class PostTrainingQuantization(object):
110 111 112 113 114 115
    """
    Utilizing post training quantization methon to quantize the FP32 model,
    and it uses calibrate data to get the quantization information for all 
    quantized variables.
    """

116
    def __init__(self,
117 118
                 executor,
                 model_dir,
119
                 scope=None,
120 121
                 model_filename=None,
                 params_filename=None,
122
                 batch_generator=None,
123
                 sample_generator=None,
124
                 data_loader=None,
125 126 127
                 batch_size=10,
                 batch_nums=None,
                 algo="KL",
X
XGZhang 已提交
128
                 hist_percent=0.99999,
129
                 quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
130
                 round_type='round',
131
                 learning_rate=0.001,
132
                 is_full_quantize=False,
X
XGZhang 已提交
133
                 bias_correction=False,
134
                 activation_bits=8,
135 136 137
                 weight_bits=8,
                 activation_quantize_type='range_abs_max',
                 weight_quantize_type='channel_wise_abs_max',
138
                 onnx_format=False,
139
                 freeze_model=True,
140
                 optimize_model=False,
141
                 is_use_cache_file=False,
142
                 skip_tensor_list=None,
143 144 145 146 147
                 same_scale_tensor_list=None,
                 scale_trainable=False,
                 cache_dir=None,
                 scale_dict=None,
                 return_graph=False):
148
        '''
149
        Constructor.
150 151

        Args:
152
            executor(fluid.Executor): The executor to load, run and save the
153
                quantized model.
154 155
            scope(fluid.Scope, optional): The scope of the program, use it to load 
                and save variables. If scope=None, get scope by global_scope(). 
156 157 158 159 160 161 162 163 164
            model_dir(str): The path of the fp32 model that will be quantized, 
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference 
                program. If it is None, the default filename '__model__' will 
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it 
                as the real filename. If parameters were saved in separate files, 
                set it as 'None'. Default is 'None'.
165 166 167 168 169 170 171 172
            batch_generator(Python Generator): The batch generator provides 
                calibrate data for DataLoader, and it returns a batch every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, batch_generator supports lod tensor.
            sample_generator(Python Generator): The sample generator provides
                calibrate data for DataLoader, and it only returns a sample every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, sample_generator dose not support lod tensor.
173 174 175
            data_loader(Python Generator, Paddle.io.DataLoader, optional): The
                Generator or Dataloader provides calibrate data, and it could
                return a batch every time.
176 177 178 179
            batch_size(int, optional): The batch size of DataLoader. Default is 10.
            batch_nums(int, optional): If batch_nums is not None, the number of 
                calibrate data is batch_size*batch_nums. If batch_nums is None, use 
                all data provided by sample_generator as calibrate data.
180 181 182 183
            algo(str, optional): If algo='KL', use KL-divergenc method to
                get the KL threshold for quantized activations and get the abs_max
                value for quantized weights. If algo='abs_max', get the abs max 
                value for activations and weights. If algo= 'min_max', get the min 
X
XGZhang 已提交
184 185 186 187 188 189 190
                and max value for quantized activations and weights. If algo='avg',
                get the average value among the max values for activations. If 
                algo= 'hist', get the value of 'hist_percent' quantile as the threshold.
                If algo='mse', get the value which makes the quantization mse loss 
                minimal. Default is KL.
            hist_percent(float, optional): The threshold of algo 'hist' for activations.
                Default is 0.99999.
191 192
            quantizable_op_type(list[str], optional): List the type of ops 
                that will be quantized. Default is ["conv2d", "depthwise_conv2d", 
193
                "mul"].
194
            round_type(str, optional): The method of converting the quantized weights
195
                value float->int. Currently supports ['round', 'adaround'] methods.
196 197
                Default is `round`, which is rounding nearest to the integer.
                'adaround' is refer to https://arxiv.org/abs/2004.10568.
198
            learning_rate(float, optional): The learning rate of adaround method.
199
            is_full_quantized(bool, optional): If set is_full_quantized as True, 
200
                apply quantization to all supported quantizable op type. If set
201 202
                is_full_quantized as False, only apply quantization to the op type 
                according to the input quantizable_op_type.
X
XGZhang 已提交
203 204
            bias_correction(bool, optional): If set as True, use the bias correction
                method of https://arxiv.org/abs/1810.05723. Default is False.
205
            activation_bits(int): quantization bit number for activation.
206 207 208 209 210 211 212 213 214 215 216 217
            weight_bits(int, optional): quantization bit number for weights.
            activation_quantize_type(str): quantization type for activation,
                now support 'range_abs_max', 'moving_average_abs_max' and 'abs_max'.
                This param only specifies the fake ops in saving quantized model.
                If it is 'range_abs_max' or 'moving_average_abs_max', we save the scale
                obtained by post training quantization in fake ops. Note that, if it
                is 'abs_max', the scale will not be saved in fake ops.
            weight_quantize_type(str): quantization type for weights,
                support 'abs_max' and 'channel_wise_abs_max'. This param only specifies
                the fake ops in saving quantized model, and we save the scale obtained
                by post training quantization in fake ops. Compared to 'abs_max',
                the model accuracy is usually higher when it is 'channel_wise_abs_max'.
218 219
            onnx_format(bool): Whether to export the quantized model with format of ONNX.
                Default is False.
220 221 222 223 224 225
            freeze_model(bool): Whether to convert quantized and trained ``program`` to final 
                quantized ``program``. Default: True.
            skip_tensor_list(list): List of skip quant tensor name. Default: None.
            same_scale_tensor_list(list(list)): The list of tensor keep same scale in the outermost 
                list, the final scale about every list is the max of the scale in the list 
                of tensor. Default: None.
226 227 228 229 230 231 232 233
            optimize_model(bool, optional): If set optimize_model as True, it applies
                some passes to the model before quantization, and it supports
                `conv2d/depthwise_conv2d + bn` pass so far. Some targets require the
                weights are quantized by tensor-wise method, which means the weights
                scale for all channel are the same. However, if fuse
                `conv2d/depthwise_conv2d + bn`, the weights scale for all channel will
                be different. In address this problem, fuse the pattern before
                quantization. Default False.
234
            scale_trainable(bool, optional): whether scale can be train.
235 236
            is_use_cache_file(bool, optional): This param is deprecated.
            cache_dir(str, optional): This param is deprecated.
237 238 239
        Returns:
            None

240 241 242 243 244 245
        Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
            
            exe = fluid.Executor(fluid.CPUPlace())
246 247 248 249 250 251 252 253 254
            model_dir = path/to/fp32_model_params
            # set model_filename as None when the filename is __model__, 
            # otherwise set it as the real filename
            model_filename = None 
            # set params_filename as None when all parameters were saved in 
            # separate files, otherwise set it as the real filename
            params_filename = None
            save_model_path = path/to/save_model_path
            # prepare the sample generator according to the model, and the 
255
            # sample generator must return a sample every time. The reference
256 257 258
            # document: https://www.paddlepaddle.org.cn/documentation/docs/zh
            # /user_guides/howto/prepare_data/use_py_reader.html
            sample_generator = your_sample_generator
259 260 261
            batch_size = 10
            batch_nums = 10
            algo = "KL"
262
            quantizable_op_type = ["conv2d", "depthwise_conv2d", "mul"]
263 264
            ptq = PostTrainingQuantization(
                        executor=exe,
265 266 267 268
                        sample_generator=sample_generator,
                        model_dir=model_dir,
                        model_filename=model_filename,
                        params_filename=params_filename,
269 270 271 272 273 274 275
                        batch_size=batch_size,
                        batch_nums=batch_nums,
                        algo=algo,
                        quantizable_op_type=quantizable_op_type)
            ptq.quantize()
            ptq.save_quantized_model(save_model_path)
        '''
276

277 278 279 280
        self._support_activation_quantize_type = [
            'range_abs_max', 'moving_average_abs_max', 'abs_max'
        ]
        self._support_weight_quantize_type = ['abs_max', 'channel_wise_abs_max']
X
XGZhang 已提交
281
        self._support_algo_type = [
H
handiz 已提交
282
            'KL', 'hist', 'avg', 'mse', 'emd', 'abs_max', 'min_max', 'ptf'
X
XGZhang 已提交
283
        ]
284
        assert round_type in ['adaround', 'round']
285 286
        self._round_type = round_type
        self._learning_rate = learning_rate
287
        self._dynamic_quantize_op_type = ['lstm']
288
        self._support_quantize_op_type = \
289 290
            list(set(utils._weight_supported_quantizable_op_type +
                utils._act_supported_quantizable_op_type +
291
                self._dynamic_quantize_op_type))
292 293

        # Check inputs
294
        assert executor is not None, "The executor cannot be None."
295
        assert any([gen is not None] for gen in [sample_generator,
296 297 298 299 300
            batch_generator, data_loader]), "The sample_generator, batch_generator " \
            "and data_loader cannot be None in the same time."
        if data_loader is not None:
            assert isinstance(data_loader, (io.DataLoader, type(isgeneratorfunction))), \
                "data_loader only accepts `paddle.io.DataLoader` or Generator instance."
301 302
        assert batch_size > 0, "The batch_size should be greater than 0."
        assert algo in self._support_algo_type, \
H
handiz 已提交
303
            "The algo should be KL, hist, mse, avg, abs_max, min_max or ptf."
304 305 306 307 308 309 310 311
        assert activation_quantize_type in self._support_activation_quantize_type, \
            "The activation_quantize_type ({}) should in ({}).".format(
            activation_quantize_type, self._support_activation_quantize_type)
        assert weight_quantize_type in self._support_weight_quantize_type, \
            "The weight_quantize_type ({}) shoud in ({}).".format(
            weight_quantize_type, self._support_weight_quantize_type)

        # Save input params
X
XGZhang 已提交
312
        self._bias_correction = bias_correction
313
        self._executor = executor
314
        self._scope = global_scope() if scope == None else scope
315 316 317
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename
318
        self._sample_generator = sample_generator
319
        self._batch_generator = batch_generator
320 321 322
        self._batch_size = batch_size
        self._batch_nums = batch_nums
        self._algo = algo
X
XGZhang 已提交
323
        self._hist_percent = hist_percent
324 325 326 327
        self._activation_bits = activation_bits
        self._weight_bits = weight_bits
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
328
        self._onnx_format = onnx_format
G
Guanghua Yu 已提交
329
        self._clip_extra = True if self._onnx_format else False
330
        self._skip_tensor_list = skip_tensor_list
331
        self._is_full_quantize = is_full_quantize
332
        if is_full_quantize:
333
            self._quantizable_op_type = self._support_quantize_op_type
334 335 336
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in self._quantizable_op_type:
337
                assert op_type in self._support_quantize_op_type, \
338
                    op_type + " is not supported for quantization."
339
        self._optimize_model = optimize_model
340

341
        # Define variables
342 343 344 345
        self._place = self._executor.place
        self._program = None
        self._feed_list = None
        self._fetch_list = None
346
        self._data_loader = data_loader
347

348
        self._out_scale_op_list = utils._out_scale_op_list
349 350
        self._quantized_weight_var_name = set()
        self._quantized_act_var_name = set()
351
        self._weight_op_pairs = {}
X
XGZhang 已提交
352
        # The vars for alog = KL or hist
353 354
        self._sampling_act_abs_min_max = {}
        self._sampling_act_histogram = {}
355
        self._sampling_data = {}
X
XGZhang 已提交
356
        self._quantized_var_threshold = {}
357 358
        self._histogram_bins = 2048
        # The vars for algo = min_max
359 360
        self._quantized_var_min = {}
        self._quantized_var_max = {}
X
XGZhang 已提交
361 362 363
        # The vars for algo = avg
        self._quantized_var_avg = {}
        # The best loss of algo = mse
364
        self._best_calibration_loss = {}
X
XGZhang 已提交
365 366
        # The threshold for algo = abs_max, mse or avg
        self._quantized_threshold = {}
367 368 369 370 371
        self._same_scale_tensor_list = same_scale_tensor_list
        self._freeze_model = freeze_model
        self._scale_trainable = scale_trainable
        self._scale_dict = scale_dict
        self._return_graph = return_graph
372 373 374

    def quantize(self):
        '''
375 376 377
        Load the FP32 model, and use the calibrate data to calculate the forward-stage.
        Based on the sample data, we can get the quantization information, and obtain
        the final quantized model.
378 379 380 381

        Args:
            None
        Returns:
382 383
            the program of quantized model.
        '''
384
        self._load_model_data()
385
        self._collect_target_varnames()
386
        self._set_activation_persistable()
387

X
XGZhang 已提交
388
        if self._algo in ["KL", "hist"]:
389
            batch_id = 0
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
            with tqdm(
                    total=self._batch_nums,
                    bar_format=
                    'Preparation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}',
                    ncols=80) as t:
                for data in self._data_loader():
                    self._executor.run(program=self._program,
                                       feed=data,
                                       fetch_list=self._fetch_list,
                                       return_numpy=False,
                                       scope=self._scope)
                    self._collect_activation_abs_min_max()
                    batch_id += 1
                    t.update()
                    if self._batch_nums and batch_id >= self._batch_nums:
                        break
            self._init_sampling_act_histogram()

        batch_id = 0
        with tqdm(total=self._batch_nums,
                  bar_format=
                  'Sampling stage, Run batch:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
413 414 415 416 417 418
            for data in self._data_loader():
                self._executor.run(program=self._program,
                                   feed=data,
                                   fetch_list=self._fetch_list,
                                   return_numpy=False,
                                   scope=self._scope)
419
                self._sampling()
420
                batch_id += 1
421
                t.update()
422 423
                if self._batch_nums and batch_id >= self._batch_nums:
                    break
424

X
XGZhang 已提交
425 426 427 428 429 430
        if self._algo == 'avg':
            for var_name in self._quantized_act_var_name:
                self._quantized_threshold[var_name] = \
                np.array(self._quantized_var_avg[var_name]).mean()
        if self._algo in ["KL", "hist"]:
            self._calculate_kl_hist_threshold()
431

432
        if self._round_type == 'adaround':
433 434 435 436 437
            self._adaround_apply()

        self._reset_activation_persistable()

        if self._algo is 'min_max':
438
            self._save_input_threhold()
439 440 441 442
        else:
            self._update_program()

        # save out_threshold for quantized ops.
443
        self._save_output_threshold()
444

445 446 447 448
        if any(op_type in self._quantizable_op_type
               for op_type in self._dynamic_quantize_op_type):
            self._collect_dynamic_quantize_op_threshold(
                self._dynamic_quantize_op_type)
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465

        # Move sub blocks persistable var to global block
        global_block = self._program.global_block()
        for _op in global_block.ops:
            if _op.type == "while":
                _block_id = _op.attr("sub_block").id
                _block = self._program.block(_block_id)
                persistables = []
                for _name, _var in _block.vars.items():
                    if _var.persistable:
                        global_block._clone_variable(_var)
                        persistables.append(_name)
                for _name in persistables:
                    _block._remove_var(_name)
                persistables.extend(_op.input('X'))
                _op.desc.set_input("X", persistables)

466 467 468 469 470
        if not self._return_graph:
            return self._program
        else:
            main_graph = IrGraph(core.Graph(self._program.desc), for_test=True)
            return main_graph
471

472
    def _adaround_apply(self):
473
        assert self._algo != "min_max", "The algo should not be min_max."
474 475 476 477
        if self._algo in ["KL", "hist"]:
            scale_dict = self._quantized_var_threshold
        else:
            scale_dict = self._quantized_threshold
478 479 480 481 482 483 484 485 486 487
        run_adaround(self._data_loader,
                     self._program,
                     self._fetch_list,
                     self._executor,
                     self._scope,
                     self._place,
                     self._quantized_op_pairs,
                     self._weight_op_pairs,
                     scale_dict,
                     num_iterations=self._batch_nums,
488
                     bias_correction=self._bias_correction,
489
                     lr=self._learning_rate)
490

491 492 493 494
    def save_quantized_model(self,
                             save_model_path,
                             model_filename=None,
                             params_filename=None):
495 496 497 498
        '''
        Save the quantized model to the disk.

        Args:
499 500 501 502 503 504 505
            save_model_path(str): The path to save the quantized model.
            model_filename(str, optional): If the model_filename is None,
                save the model to '__model__'. Otherwise, save the model
                to the specified filename. Default: None.
            params_filename(str, optional): If the params_filename is None,
                save params to separted files. Otherwise, save all params
                to the specified filename.
506
        Returns:
507 508
            None
        '''
509 510 511 512 513 514 515
        io.save_inference_model(dirname=save_model_path,
                                model_filename=model_filename,
                                params_filename=params_filename,
                                feeded_var_names=self._feed_list,
                                target_vars=self._fetch_list,
                                executor=self._executor,
                                main_program=self._program,
G
Guanghua Yu 已提交
516
                                clip_extra=self._clip_extra)
517
        _logger.info("The quantized model is saved in " + save_model_path)
518

519
    def _load_model_data(self):
520
        '''
521
        Load model and set data loader.
522
        '''
523 524 525 526 527 528 529
        if self._program is None:
            _logger.info("Load model and set data loader ...")
            [self._program, self._feed_list, self._fetch_list] = \
                io.load_inference_model(dirname=self._model_dir,
                                        executor=self._executor,
                                        model_filename=self._model_filename,
                                        params_filename=self._params_filename)
530 531 532 533

        if self._optimize_model:
            self._optimize_fp32_model()

534 535
        feed_vars = [framework._get_var(str(var_name), self._program) \
            for var_name in self._feed_list]
536 537

        if self._data_loader is not None:
G
Guanghua Yu 已提交
538 539
            self._batch_nums = self._batch_nums if self._batch_nums else len(
                self._data_loader)
540
            return
541 542 543 544
        self._data_loader = io.DataLoader.from_generator(feed_list=feed_vars,
                                                         capacity=3 *
                                                         self._batch_size,
                                                         iterable=True)
545
        if self._sample_generator is not None:
546 547 548 549
            self._data_loader.set_sample_generator(self._sample_generator,
                                                   batch_size=self._batch_size,
                                                   drop_last=True,
                                                   places=self._place)
550
        elif self._batch_generator is not None:
551 552
            self._data_loader.set_batch_generator(self._batch_generator,
                                                  places=self._place)
G
Guanghua Yu 已提交
553 554
        self._batch_nums = self._batch_nums if self._batch_nums else len(
            list(self._data_loader))
555

556 557 558 559 560 561 562 563
    def _optimize_fp32_model(self):
        '''
        Fuse the `conv2d/depthwise_conv2d + bn` in FP32 model.
        '''
        _logger.info("Optimize FP32 model ...")
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)
        graph = _remove_ctrl_vars(graph)
        graph = _apply_pass(self._scope, graph, 'conv_bn_fuse_pass')
564 565
        graph = _apply_pass(self._scope, graph, 'depthwise_conv_bn_fuse_pass')
        graph = _apply_pass(self._scope, graph, 'conv_transpose_bn_fuse_pass')
566 567 568 569
        graph = _apply_pass(self._scope, graph, 'conv_eltwiseadd_bn_fuse_pass')
        graph = _apply_pass(self._scope, graph,
                            'depthwise_conv_eltwiseadd_bn_fuse_pass')

570 571
        self._program = graph.to_program()

572
    def _collect_target_varnames(self):
573 574 575 576
        '''
        Collect the variable names for sampling, and set activation
        variables to be persistable.
        '''
577
        # TODO(juncaipeng), consider the name_scope of skip_quant
578
        _logger.info("Collect quantized variable names ...")
579
        self._quantized_op_pairs = {}
580

581
        def collect_var_name(var_name_list, persistable_var_names, op_type):
582 583 584
            for var_name in var_name_list:
                if var_name in persistable_var_names:
                    self._quantized_weight_var_name.add(var_name)
585
                    self._weight_op_pairs[var_name] = op_type
586 587 588
                else:
                    self._quantized_act_var_name.add(var_name)

589
        persistable_var_names = _all_persistable_var_names(self._program)
590 591
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
592 593 594 595 596 597
                # skip quant form self._skip_tensor_list
                if self._skip_tensor_list is not None:
                    for inp_name in utils._get_op_input_var_names(op):
                        if inp_name in self._skip_tensor_list:
                            op._set_attr("op_namescope", "skip_quant")

598 599 600 601 602 603 604
                op_type = op.type
                if self._is_full_quantize and \
                    op_type not in self._quantizable_op_type:
                    _logger.warning(op_type +
                                    " is not supported for quantization.")
                # For quantized ops, sample inputs and outputs
                if op_type in self._quantizable_op_type:
605 606 607 608
                    collect_var_name(utils._get_op_input_var_names(op),
                                     persistable_var_names, op_type)
                    collect_var_name(utils._get_op_output_var_names(op),
                                     persistable_var_names, op_type)
609
                    # collect quanted op output var name
610 611
                    for out_var_name in utils._get_op_output_var_names(op):
                        for in_var_name in utils._get_op_input_var_names(op):
612 613 614
                            if in_var_name in persistable_var_names:
                                self._quantized_op_pairs[
                                    in_var_name] = out_var_name
615 616
                # For other op, only sample output scale
                elif op_type in self._out_scale_op_list:
617 618
                    collect_var_name(utils._get_op_output_var_names(op),
                                     persistable_var_names, op_type)
619 620 621 622 623 624

    def _set_activation_persistable(self):
        '''
        Set activation variables to be persistable, so can obtain 
        the tensor data in sample_data
        '''
625 626 627 628
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = True

629 630 631 632
    def _reset_activation_persistable(self):
        '''
        Reset activations to be not persistable.
        '''
633
        to_erase = []
634 635 636
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = False
637
                to_erase.append(var.name)
638

639
    def _sampling(self):
640
        '''
641
        Sample the min/max, abs_max or histogram in every iterations.
642 643
        '''
        if self._algo == "abs_max":
644
            self._sample_abs_max()
X
XGZhang 已提交
645 646
        elif self._algo == "avg":
            self._sample_avg()
647
        elif self._algo == "min_max":
648
            self._sample_min_max()
X
XGZhang 已提交
649 650
        elif self._algo == "mse":
            self._sample_mse()
651 652
        elif self._algo == "emd":
            self._sample_emd()
H
handiz 已提交
653 654
        elif self._algo == "ptf":
            self._sample_ptf()
X
XGZhang 已提交
655
        elif self._algo in ["KL", "hist"]:
656
            self._sample_histogram()
657

X
XGZhang 已提交
658 659 660
    def _sample_mse(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
661
                var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
662 663 664 665 666
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
667
                            var_name] in utils._channelwise_quant_axis1_ops:
X
XGZhang 已提交
668 669 670 671 672 673 674 675 676 677
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value
        _logger.info("MSE searching stage ...")
        for var_name in self._quantized_act_var_name:
678
            var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
679 680
            var_tensor = var_tensor.flatten()
            abs_max_value = float(np.max(np.abs(var_tensor)))
X
XGZhang 已提交
681
            abs_max_value = 1e-8 if abs_max_value == 0.0 else abs_max_value
X
XGZhang 已提交
682
            s = 0.3
683 684
            if var_name not in self._best_calibration_loss:
                self._best_calibration_loss[var_name] = float('inf')
X
XGZhang 已提交
685 686 687 688
            while s <= 1.0:
                scale = s * abs_max_value
                s += 0.02
                bins = 2**(self._activation_bits - 1) - 1
689
                if self._onnx_format:
690
                    quant_var = np.clip(np.round(var_tensor / scale * bins),
691 692 693 694 695 696
                                        -bins - 1, bins)
                    quant_dequant_var = quant_var / bins * scale
                else:
                    quant_dequant_var = np.round(
                        np.clip(var_tensor, 0.0, scale) / scale *
                        bins) / bins * scale
X
XGZhang 已提交
697
                mse_loss = ((var_tensor - quant_dequant_var)**2).mean()
698 699 700 701 702 703 704
                if mse_loss <= self._best_calibration_loss[var_name]:
                    self._best_calibration_loss[var_name] = mse_loss
                    self._quantized_threshold[var_name] = scale

    def _sample_emd(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
705
                var_tensor = utils.load_variable_data(self._scope, var_name)
706 707 708 709 710
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
711
                            var_name] in utils._channelwise_quant_axis1_ops:
712 713 714 715 716 717 718 719 720 721
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value
        _logger.info("EMD searching stage ...")
        for var_name in self._quantized_act_var_name:
722
            var_tensor = utils.load_variable_data(self._scope, var_name)
723 724 725 726 727 728 729 730 731 732
            var_tensor = var_tensor.flatten()
            abs_max_value = float(np.max(np.abs(var_tensor)))
            abs_max_value = 1e-8 if abs_max_value == 0.0 else abs_max_value
            s = 0.3
            if var_name not in self._best_calibration_loss:
                self._best_calibration_loss[var_name] = float('inf')
            while s <= 1.0:
                scale = s * abs_max_value
                s += 0.02
                bins = 2**(self._activation_bits - 1) - 1
733
                if self._onnx_format:
734
                    quant_var = np.clip(np.round(var_tensor / scale * bins),
735 736 737 738 739 740
                                        -bins - 1, bins)
                    quant_dequant_var = quant_var / bins * scale
                else:
                    quant_dequant_var = np.round(
                        np.clip(var_tensor, 0.0, scale) / scale *
                        bins) / bins * scale
741 742 743 744 745
                emd_loss = np.abs(
                    np.mean(var_tensor) - np.mean(quant_dequant_var)) + np.abs(
                        np.std(var_tensor) - np.std(quant_dequant_var))
                if emd_loss <= self._best_calibration_loss[var_name]:
                    self._best_calibration_loss[var_name] = emd_loss
X
XGZhang 已提交
746 747 748 749 750
                    self._quantized_threshold[var_name] = scale

    def _sample_avg(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
751
                var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
752 753 754 755 756
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
757
                            var_name] in utils._channelwise_quant_axis1_ops:
X
XGZhang 已提交
758 759 760 761 762 763 764 765 766 767
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value

        for var_name in self._quantized_act_var_name:
768
            var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
769 770 771 772 773 774 775 776
            abs_max_value = float(np.max(np.abs(var_tensor)))
            if (var_name not in self._quantized_var_avg):
                self._quantized_var_avg[var_name] = []
            abs_avg_value = float(np.mean(np.max(  \
            np.abs(var_tensor.reshape(var_tensor.shape[0], -1)), axis=(1))))
            self._quantized_var_avg[var_name].append(abs_avg_value)
            continue

777
    def _sample_abs_max(self):
X
XGZhang 已提交
778
        if self._quantized_threshold == {}:
779
            for var_name in self._quantized_weight_var_name:
780
                var_tensor = utils.load_variable_data(self._scope, var_name)
781 782 783 784
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
785
                    if self._weight_op_pairs[
786
                            var_name] in utils._channelwise_quant_axis1_ops:
787 788 789 790 791 792 793
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
X
XGZhang 已提交
794
                self._quantized_threshold[var_name] = abs_max_value
795 796

        for var_name in self._quantized_act_var_name:
797
            var_tensor = utils.load_variable_data(self._scope, var_name)
798
            abs_max_value = float(np.max(np.abs(var_tensor)))
X
XGZhang 已提交
799 800 801
            if (var_name not in self._quantized_threshold) or \
                (abs_max_value > self._quantized_threshold[var_name]):
                self._quantized_threshold[var_name] = abs_max_value
802

803
    def _sample_min_max(self):
804 805
        if self._quantized_var_min == {} and self._quantized_var_max == {}:
            for var_name in self._quantized_weight_var_name:
806
                var_tensor = utils.load_variable_data(self._scope, var_name)
807 808 809 810 811 812
                if self._weight_quantize_type == "abs_max":
                    min_value = float(np.min(var_tensor))
                    max_value = float(np.max(var_tensor))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    min_value = []
                    max_value = []
813
                    if self._weight_op_pairs[
814
                            var_name] in utils._channelwise_quant_axis1_ops:
815 816 817 818 819 820 821 822 823 824 825
                        for i in range(var_tensor.shape[1]):
                            min_value.append(float(np.min(var_tensor[:, i])))
                            max_value.append(float(np.max(var_tensor[:, i])))
                    else:
                        for i in range(var_tensor.shape[0]):
                            min_value.append(float(np.min(var_tensor[i])))
                            max_value.append(float(np.max(var_tensor[i])))
                self._quantized_var_min[var_name] = min_value
                self._quantized_var_max[var_name] = max_value

        for var_name in self._quantized_act_var_name:
826
            var_tensor = utils.load_variable_data(self._scope, var_name)
827 828 829 830 831 832 833 834
            min_value = float(np.min(var_tensor))
            max_value = float(np.max(var_tensor))
            if (var_name not in self._quantized_var_min) or \
                (min_value < self._quantized_var_min[var_name]):
                self._quantized_var_min[var_name] = min_value
            if (var_name not in self._quantized_var_max) or \
                (max_value > self._quantized_var_max[var_name]):
                self._quantized_var_max[var_name] = max_value
835

836 837
    def _sample_histogram(self):
        for var_name in self._quantized_act_var_name:
838
            var_tensor = utils.load_variable_data(self._scope, var_name)
839 840 841 842 843
            var_tensor_abs = np.abs(var_tensor)
            bins = self._sampling_act_histogram[var_name][1]
            hist, _ = np.histogram(var_tensor_abs, bins=bins)
            self._sampling_act_histogram[var_name][0] += hist

H
handiz 已提交
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
    def l2_loss(self, gt, pred):
        return ((gt - pred)**2).mean()

    def _sample_ptf(self):
        """
        The following code are modified from:
        https://github.com/megvii-research/FQ-ViT/
        """
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
                var_tensor = utils.load_variable_data(self._scope, var_name)
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
                            var_name] in utils._channelwise_quant_axis1_ops:
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value

        for var_name in self._quantized_act_var_name:
            var_tensor = utils.load_variable_data(self._scope, var_name)
            abs_max_value = float(np.max(np.abs(var_tensor)))
            q_max = 2**(self._activation_bits - 1) - 1
            scale8 = abs_max_value / q_max
            scale4 = scale8 / 2
            scale2 = scale4 / 2
            scale1 = scale2 / 2
            quant_dequant_var_scale1 = np.clip(np.round(var_tensor / scale1), 0,
                                               q_max) * scale1
            quant_dequant_var_scale2 = np.clip(np.round(var_tensor / scale2), 0,
                                               q_max) * scale2
            quant_dequant_var_scale4 = np.clip(np.round(var_tensor / scale4), 0,
                                               q_max) * scale4
            quant_dequant_var_scale8 = np.clip(np.round(var_tensor / scale8), 0,
                                               q_max) * scale8
            score1 = self.l2_loss(var_tensor, quant_dequant_var_scale1)
            score2 = self.l2_loss(var_tensor, quant_dequant_var_scale2)
            score4 = self.l2_loss(var_tensor, quant_dequant_var_scale4)
            score8 = self.l2_loss(var_tensor, quant_dequant_var_scale8)
            score = [score1, score2, score4, score8]
            mask = 2**score.index(min(score))
            scale = scale1 * mask
            threshold = q_max * scale
            self._quantized_threshold[var_name] = threshold

896 897 898 899 900 901
    def _save_input_threhold(self):
        '''
        Save input threshold to the quantized op.
        '''
        assert self._algo == "min_max", \
            "The algo should be min_max to save input threshold."
902 903 904
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
                if op.type in self._quantizable_op_type:
905
                    for var_name in utils._get_op_input_var_names(op):
906 907 908 909 910 911 912
                        assert var_name in self._quantized_var_min
                        assert var_name in self._quantized_var_max
                        op._set_attr(var_name + ".min",
                                     self._quantized_var_min[var_name])
                        op._set_attr(var_name + ".max",
                                     self._quantized_var_max[var_name])
                        op._set_attr("with_quant_attr", True)
913

914
    def _collect_activation_abs_min_max(self):
915
        '''
916 917
        Collect the abs_min and abs_max for all activation. When algo = KL,
        get the min and max value, and then calculate the threshold.
918
        '''
919
        for var_name in self._quantized_act_var_name:
920
            var_tensor = utils.load_variable_data(self._scope, var_name)
921 922 923 924
            var_tensor = np.abs(var_tensor)
            min_value = float(np.min(var_tensor))
            max_value = float(np.max(var_tensor))
            if var_name not in self._sampling_act_abs_min_max:
925 926 927
                self._sampling_act_abs_min_max[var_name] = [
                    min_value, max_value
                ]
928 929 930 931 932 933 934 935 936 937 938 939 940 941
            else:
                if min_value < self._sampling_act_abs_min_max[var_name][0]:
                    self._sampling_act_abs_min_max[var_name][0] = min_value
                if max_value > self._sampling_act_abs_min_max[var_name][1]:
                    self._sampling_act_abs_min_max[var_name][1] = max_value

    def _init_sampling_act_histogram(self):
        '''
        Based on the min/max value, init the sampling_act_histogram.
        '''
        for var_name in self._quantized_act_var_name:
            if var_name not in self._sampling_act_histogram:
                min_val = self._sampling_act_abs_min_max[var_name][0]
                max_val = self._sampling_act_abs_min_max[var_name][1]
942 943 944
                hist, hist_edeges = np.histogram([],
                                                 bins=self._histogram_bins,
                                                 range=(min_val, max_val))
945
                self._sampling_act_histogram[var_name] = [hist, hist_edeges]
946

X
XGZhang 已提交
947
    def _calculate_kl_hist_threshold(self):
948
        '''
X
XGZhang 已提交
949
        Calculate the KL or hist threshold of quantized variables.
950
        '''
X
XGZhang 已提交
951 952
        _logger.info("Calculate {} threshold ...".format(self._algo))
        assert self._algo in ["KL", "hist"], "The algo should be KL or hist."
953 954

        # Abs_max threshold for weights
955
        for var_name in self._quantized_weight_var_name:
956
            weight_data = utils.load_variable_data(self._scope, var_name)
957
            if self._weight_quantize_type == "abs_max":
958
                weight_threshold = float(np.max(np.abs(weight_data)))
959 960
            elif self._weight_quantize_type == "channel_wise_abs_max":
                weight_threshold = []
961
                if self._weight_op_pairs[
962
                        var_name] in utils._channelwise_quant_axis1_ops:
963 964 965 966 967 968 969
                    for i in range(weight_data.shape[1]):
                        weight_threshold.append(
                            float(np.max(np.abs(weight_data[:, i]))))
                else:
                    for i in range(weight_data.shape[0]):
                        weight_threshold.append(
                            float(np.max(np.abs(weight_data[i]))))
X
XGZhang 已提交
970
            self._quantized_var_threshold[var_name] = weight_threshold
971

972 973
        for var_name in self._quantized_act_var_name:
            hist, hist_edeges = self._sampling_act_histogram[var_name]
X
XGZhang 已提交
974
            if self._algo == "KL":
975
                bin_width = hist_edeges[1] - hist_edeges[0]
X
XGZhang 已提交
976
                self._quantized_var_threshold[var_name] = \
977
                    cal_kl_threshold(hist, bin_width, self._activation_bits)
X
XGZhang 已提交
978 979 980
            elif self._algo == "hist":
                self._quantized_var_threshold[var_name] = \
                    self._get_hist_scaling_factor(hist, hist_edeges)
981 982 983

    def _update_program(self):
        '''
984 985
        Use QuantizationTransformPass and AddQuantDequantPass to insert 
        fake_quantize, fake_dequantize and fake_quant_dequant op. 
X
XGZhang 已提交
986
        Besides, save all threshold to the scale var node.
987
        '''
988
        _logger.info("Update the program ...")
989 990
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)

991
        # use QuantizationTransformPass to insert fake_quant/fake_dequantize op
992
        major_quantizable_op_types = []
993
        for op_type in utils._weight_supported_quantizable_op_type:
994
            if op_type in self._quantizable_op_type:
995
                major_quantizable_op_types.append(op_type)
996 997 998 999 1000 1001 1002 1003
        if not self._onnx_format:
            transform_pass = QuantizationTransformPass(
                scope=self._scope,
                place=self._place,
                weight_bits=self._weight_bits,
                activation_bits=self._activation_bits,
                activation_quantize_type=self._activation_quantize_type,
                weight_quantize_type=self._weight_quantize_type,
1004 1005
                quantizable_op_type=major_quantizable_op_types,
                is_test=not self._scale_trainable)
1006 1007 1008 1009 1010 1011 1012 1013
        else:
            transform_pass = QuantizationTransformPassV2(
                scope=self._scope,
                place=self._place,
                weight_bits=self._weight_bits,
                activation_bits=self._activation_bits,
                activation_quantize_type=self._activation_quantize_type,
                weight_quantize_type=self._weight_quantize_type,
1014 1015
                quantizable_op_type=major_quantizable_op_types,
                is_test=not self._scale_trainable)
1016 1017 1018 1019 1020 1021

        for sub_graph in graph.all_sub_graphs():
            # Insert fake_quant/fake_dequantize op must in test graph, so
            # set per graph's _for_test is True.
            sub_graph._for_test = True
            transform_pass.apply(sub_graph)
1022 1023

        # use AddQuantDequantPass to insert fake_quant_dequant op
1024
        minor_quantizable_op_types = []
1025
        for op_type in utils._act_supported_quantizable_op_type:
1026
            if op_type in self._quantizable_op_type:
1027
                minor_quantizable_op_types.append(op_type)
1028 1029 1030 1031
        if not self._onnx_format:
            add_quant_dequant_pass = AddQuantDequantPass(
                scope=self._scope,
                place=self._place,
1032 1033
                quantizable_op_type=minor_quantizable_op_types,
                is_test=not self._scale_trainable)
1034 1035 1036 1037 1038
        else:
            add_quant_dequant_pass = AddQuantDequantPassV2(
                scope=self._scope,
                place=self._place,
                quantizable_op_type=minor_quantizable_op_types,
1039 1040
                is_full_quantized=self._is_full_quantize,
                is_test=not self._scale_trainable)
1041 1042 1043 1044

        for sub_graph in graph.all_sub_graphs():
            sub_graph._for_test = True
            add_quant_dequant_pass.apply(sub_graph)
1045

X
XGZhang 已提交
1046
        # save threshold to scale var node
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
        if self._scale_dict is None:
            if self._algo in ["KL", "hist"]:
                scale_dict = self._quantized_var_threshold
            else:
                scale_dict = self._quantized_threshold

            if self._same_scale_tensor_list is not None:
                for tensor_list in self._same_scale_tensor_list:
                    max_scale = None
                    tmp_tensor_list = []
                    for tensor_name in tensor_list:
                        if '#' in tensor_name:
                            real_tensor_name, opera, scalar = tensor_name.split(
                                '#')
                            if opera == '*':
                                scale_dict[real_tensor_name] = float(
                                    scale_dict[real_tensor_name]) * float(
                                        scalar)
                            elif opera == '/':
                                scale_dict[real_tensor_name] = float(
                                    scale_dict[real_tensor_name]) / float(
                                        scalar)
                            max_scale = scale_dict[
                                real_tensor_name] if max_scale is None else max(
                                    max_scale, scale_dict[real_tensor_name])
                        else:
                            max_scale = scale_dict[
                                tensor_name] if max_scale is None else max(
                                    max_scale, scale_dict[tensor_name])

                    for tensor_name in tensor_list:
                        if '#' in tensor_name:
                            real_tensor_name, opera, scalar = tensor_name.split(
                                '#')
                            if opera == '*':
                                scale_dict[
                                    real_tensor_name] = max_scale / float(
                                        scalar)
                            elif opera == '/':
                                scale_dict[
                                    real_tensor_name] = max_scale * float(
                                        scalar)
                        else:
                            scale_dict[tensor_name] = max_scale
            self._scale_dict = scale_dict

        for key, val in self._scale_dict.items():
H
handiz 已提交
1094
            utils.set_variable_data(self._scope, self._place, key + "@scale",
1095 1096
                                    np.array([val], dtype=np.float32))
            utils.set_variable_data(self._scope, self._place,
H
handiz 已提交
1097
                                    key + ".quant_dequant@scale",
1098
                                    np.array([val], dtype=np.float32))
1099

1100 1101
        if not self._onnx_format:
            # apply QuantizationFreezePass, and obtain the final quant model
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
            if self._freeze_model:
                freeze_pass = QuantizationFreezePass(
                    scope=self._scope,
                    place=self._place,
                    bias_correction=self._bias_correction,
                    weight_bits=self._weight_bits,
                    round_type=self._round_type,
                    activation_bits=self._activation_bits,
                    weight_quantize_type=self._weight_quantize_type,
                    quantizable_op_type=major_quantizable_op_types)

                for sub_graph in graph.all_sub_graphs():
                    sub_graph._for_test = True
                    freeze_pass.apply(sub_graph)
1116 1117 1118 1119 1120
        else:
            quant_weight_pass = QuantWeightPass(self._scope, self._place)
            for sub_graph in graph.all_sub_graphs():
                sub_graph._for_test = True
                quant_weight_pass.apply(sub_graph)
1121

1122 1123
        self._program = graph.to_program()

1124
    def _save_output_threshold(self):
1125
        '''
1126
        Save output threshold to the quantized op.
1127
        '''
1128
        self._calibration_scales = {}
1129 1130 1131 1132 1133 1134

        def save_info(op_node, out_var_name, threshold_map, out_info_name,
                      quantized_type):
            assert out_var_name in threshold_map, \
                "The output ({}) of {} node does not have threshold.".format(
                out_var_name, op_node.type)
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
            if self._onnx_format:
                # For easy extension, every var_node set a dict to save parameters of quant.
                self._calibration_scales[var_name] = {}
                self._calibration_scales[var_name]['scale'] = threshold_map[
                    var_name]
            else:
                op_node._set_attr(out_info_name, threshold_map[var_name])
                op_node._set_attr("with_quant_attr", True)
                if op_node.type in self._quantizable_op_type:
                    op._set_attr("quantization_type", quantized_type)
1145 1146

        def analysis_and_save_info(op_node, out_var_name):
1147
            argname_index = utils._get_output_name_index(op_node, out_var_name)
1148 1149
            assert argname_index is not None, \
                out_var_name + " is not the output of the op"
1150
            if self._algo == "KL":
1151
                # For compatibility, we save output threshold by two methods.
X
XGZhang 已提交
1152 1153
                save_info(op_node, out_var_name, self._quantized_var_threshold,
                          "out_threshold", "post_kl")
1154
                save_info(
X
XGZhang 已提交
1155
                    op_node, out_var_name, self._quantized_var_threshold,
1156 1157
                    argname_index[0] + str(argname_index[1]) + "_threshold",
                    "post_kl")
X
XGZhang 已提交
1158 1159 1160 1161
            elif self._algo == "hist":
                # For compatibility, we save output threshold by two methods.
                save_info(op_node, out_var_name, self._quantized_var_threshold,
                          "out_threshold", "post_hist")
1162
                save_info(
X
XGZhang 已提交
1163
                    op_node, out_var_name, self._quantized_var_threshold,
1164
                    argname_index[0] + str(argname_index[1]) + "_threshold",
X
XGZhang 已提交
1165 1166
                    "post_hist")

H
handiz 已提交
1167
            elif self._algo in ["avg", "abs_max", "mse", "emd", "ptf"]:
X
XGZhang 已提交
1168 1169 1170 1171 1172 1173
                save_info(op_node, out_var_name, self._quantized_threshold,
                          "out_threshold", "post_" + str(self._algo))
                save_info(
                    op_node, out_var_name, self._quantized_threshold,
                    argname_index[0] + str(argname_index[1]) + "_threshold",
                    "post_" + str(self._algo))
1174 1175 1176 1177 1178 1179
            elif self._algo == "min_max":
                save_info(op_node, out_var_name, self._quantized_var_min,
                          "out_min", "post_min_max")
                save_info(op_node, out_var_name, self._quantized_var_max,
                          "out_max", "post_min_max")

1180 1181
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
1182 1183
                if op.type in (self._quantizable_op_type +
                               self._out_scale_op_list):
1184
                    out_var_names = utils._get_op_output_var_names(op)
1185 1186
                    for var_name in out_var_names:
                        analysis_and_save_info(op, var_name)
1187

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
    def _collect_dynamic_quantize_op_threshold(self, target_ops_type):
        """
        Collect and save the weight threshold for dynamic quantize ops,
        such as lstm and gru.
        Args:
            target_ops_type(list): the op type of target ops
        Returns:
            None
        """

        target_ops = []
        for index in range(self._program.num_blocks):
            for op in self._program.block(index).ops:
                if op.type in target_ops_type:
                    target_ops.append(op)

        quantization_type = str("post_" + self._algo).lower()
        persistable_var_names = _all_persistable_var_names(self._program)
        for op in target_ops:
1207
            for var_name in utils._get_op_input_var_names(op):
1208
                if var_name in persistable_var_names:
1209
                    var_data = utils.load_variable_data(self._scope, var_name)
1210
                    threshold = float(np.max(np.abs(var_data)))
1211
                    argname, index = utils._get_input_name_index(op, var_name)
1212 1213 1214
                    op._set_attr(argname + str(index) + "_threshold", threshold)
                    op._set_attr("quantization_type", quantization_type)
                    op._set_attr("bit_length", self._weight_bits)
1215
                    op._set_attr("with_quant_attr", True)
1216

X
XGZhang 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
    def _get_hist_scaling_factor(self, hist, hist_edges):
        '''
        Using the hist method to get the scaling factor.
        '''
        threshold_rate = self._hist_percent
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edges[1] - hist_edges[0]
        return (hist_index - 0.5) * bin_width

1233

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
class PostTrainingQuantizationProgram(PostTrainingQuantization):

    def __init__(self,
                 executor,
                 program,
                 feed_list=None,
                 fetch_list=None,
                 scope=None,
                 batch_generator=None,
                 sample_generator=None,
                 data_loader=None,
                 batch_size=10,
                 batch_nums=None,
                 algo="KL",
                 hist_percent=0.99999,
                 quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
                 round_type='round',
                 learning_rate=0.001,
                 is_full_quantize=False,
                 bias_correction=False,
                 activation_bits=8,
                 weight_bits=8,
                 activation_quantize_type='range_abs_max',
                 weight_quantize_type='channel_wise_abs_max',
                 onnx_format=False,
                 freeze_model=True,
                 optimize_model=False,
                 is_use_cache_file=False,
                 skip_tensor_list=None,
                 same_scale_tensor_list=None,
                 scale_trainable=False,
                 cache_dir=None,
                 scale_dict=None,
                 return_graph=True):
        super().__init__(executor, scope, None, None, None, batch_generator,
                         sample_generator, data_loader, batch_size, batch_nums,
                         algo, hist_percent, quantizable_op_type, round_type,
                         learning_rate, is_full_quantize, bias_correction,
                         activation_bits, weight_bits, activation_quantize_type,
                         weight_quantize_type, onnx_format, freeze_model,
                         optimize_model, is_use_cache_file, skip_tensor_list,
                         same_scale_tensor_list, scale_trainable, cache_dir,
                         scale_dict, return_graph)
        self._program = program
        assert feed_list is not None, \
            "Feed list should not be None."
        assert fetch_list is not None, \
            "Fetch list should not be None."
        self._feed_list = feed_list
        self._fetch_list = fetch_list


1286 1287
class WeightQuantization(object):
    _supported_quantizable_op_type = ['conv2d', 'depthwise_conv2d', 'mul']
1288
    _supported_weight_quantize_type = ['channel_wise_abs_max', 'abs_max']
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314

    def __init__(self, model_dir, model_filename=None, params_filename=None):
        '''
        This class quantizes the weight of some ops to reduce the size of model
        or improve the perforemace.

        Args:
            model_dir(str): The path of the fp32 model that will be quantized,
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference
                program. If it is None, the default filename '__model__' will
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it
                as the real filename. If parameters were saved in separate files,
                set it as 'None'. Default is 'None'.
        '''
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename

    def quantize_weight_to_int(self,
                               save_model_dir,
                               save_model_filename=None,
                               save_params_filename=None,
                               quantizable_op_type=["conv2d", "mul"],
1315
                               weight_bits=8,
1316 1317
                               weight_quantize_type="channel_wise_abs_max",
                               generate_test_model=False,
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
                               threshold_rate=0.0):
        '''
        In order to reduce the size of model, this api quantizes the weight
        of some ops from float32 to int8/16. In the inference stage, the 
        quantized weight will be dequantized to float32 again.
        
        Args:
            save_model_dir(str): The path to save the quantized model.
            save_model_filename(str, optional): The name of file to 
                save the inference program. If it is None, the default 
                filename '__model__' will be used. Default is 'None'.
            save_params_filename(str, optional): The name of file to 
                save all parameters. If it is None, parameters were 
                saved in separate files. If it is not None, all 
                parameters were saved in a single binary file.
            quantizable_op_type(list[str], optional): The list of ops 
                that will be quantized, and the quantized ops should be
                contained in ["conv2d", "depthwise_conv2d", "mul"]. 
                Default is ["conv2d","mul"].
1337 1338
            weight_bits(int, optional): The bits for the quantized weight, 
                and it should be 8 or 16. Default is 8.
1339 1340 1341 1342 1343 1344 1345
            weight_quantize_type(str, optional): quantization type for weights,
                support 'channel_wise_abs_max' and 'abs_max'. Set it as
                'channel_wise_abs_max', the accuracy performs better.
            generate_test_model(bool, optional): If set generate_test_model 
                as True, it saves a fake quantized model, in which the weights 
                are quantized and dequantized. We can use PaddlePaddle to load 
                the fake quantized model and test the accuracy on GPU or CPU.
1346 1347 1348 1349 1350 1351 1352 1353 1354
            threshold_rate(float, optional): This api uses abs_max methd to 
                quantize the weight from float32 to int8/16, and the abs max 
                value is important for quantization diff. When the abs_max 
                value is far away from the center of the numerical distribution, 
                we can set threshold_rate between 1e-6 and 1e-8, so the abs max 
                value will be optimized. Default is 0.0.
        '''
        for op_type in quantizable_op_type:
            assert op_type in self._supported_quantizable_op_type, \
1355
                "Input error:" + op_type + \
1356
                " is not supported for weight quantization."
1357
        assert weight_bits in [8, 16], \
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
            "Input error: weight_bits should be 8 or 16."
        assert weight_quantize_type in self._supported_weight_quantize_type, \
            "Input error: weight_quantize_type should in {}".format(
                self._supported_weight_quantize_type)

        quantized_model_dir = os.path.join(save_model_dir, "quantized_model")
        self._quantize_weight_to_int(quantized_model_dir, save_model_filename,
                                     save_params_filename, quantizable_op_type,
                                     weight_bits, weight_quantize_type, False,
                                     threshold_rate)

        if generate_test_model:
            test_model_dir = os.path.join(save_model_dir, "test_model")
1371 1372 1373 1374 1375
            self._quantize_weight_to_int(test_model_dir, save_model_filename,
                                         save_params_filename,
                                         quantizable_op_type, weight_bits,
                                         weight_quantize_type, True,
                                         threshold_rate)
1376

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
    def convert_weight_to_fp16(self, save_model_dir):
        """
        Convert all presistable vars from fp32 to fp16.
        Note that, this api only changes the data type of variables in
        __params__ file, and the __model__ file remains unchanged. 

        Args:
            save_model_dir(str): The path to save the fp16 model.
        """

        # Load model
        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [infer_program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

        # Clone and save fp16 weights
        save_program = framework.Program()
        save_block = save_program.global_block()
        save_var_map = {}

        for var in infer_program.list_vars():
            if (var.type == core.VarDesc.VarType.RAW) or \
                (not var.persistable) or (var.name in ['feed', 'fetch']) \
                or (var.dtype != core.VarDesc.VarType.FP32):
                continue

            #new_var = _clone_var_to_block_(var, save_block)
            new_var = save_block._clone_variable(var)
            if self._params_filename is not None:
                save_var_map[new_var.name] = new_var
            else:
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
                save_file_path = os.path.join(os.path.normpath(save_model_dir),
                                              new_var.name)
                save_block.append_op(type='save',
                                     inputs={'X': [new_var]},
                                     outputs={},
                                     attrs={
                                         'file_path':
                                         os.path.normpath(save_file_path),
                                         'save_as_fp16':
                                         True
                                     })
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434

        if self._params_filename is not None:
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

            saved_params_var = save_block.create_var(
                type=core.VarDesc.VarType.RAW,
                name=unique_name.generate("saved_params"))
            saved_params_var.desc.set_persistable(True)

1435 1436 1437 1438 1439 1440 1441 1442 1443
            save_path = os.path.join(os.path.normpath(save_model_dir),
                                     self._params_filename)
            save_block.append_op(type='save_combine',
                                 inputs={'X': save_var_list},
                                 outputs={'Y': saved_params_var},
                                 attrs={
                                     'file_path': save_path,
                                     'save_as_fp16': True
                                 })
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454

        save_program._sync_with_cpp()
        exe.run(save_program)

        # Copy model
        model_filename = "__model__" if self._model_filename is None \
                    else self._model_filename
        src_model = os.path.join(self._model_dir, model_filename)
        dest_model = os.path.join(save_model_dir, model_filename)
        shutil.copyfile(src_model, dest_model)

1455 1456 1457 1458 1459 1460 1461 1462
    def _quantize_weight_to_int(self, save_model_dir, save_model_filename,
                                save_params_filename, quantizable_op_type,
                                weight_bits, weight_quantize_type, for_test,
                                threshold_rate):
        """
        Generate quantized model or fake quantized model.
        """
        # Load model
1463 1464 1465 1466 1467 1468 1469 1470 1471
        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
        quantized_ops = []
        for index in range(program.num_blocks):
            block = program.block(index)
            for op in block.ops:
                if op.type in quantizable_op_type:
                    quantized_ops.append(op)

        # Quantize weights
        persistable_var_names = _all_persistable_var_names(program)
        for op in quantized_ops:
            for var_name in op.input_arg_names:
                if var_name in persistable_var_names:
                    if weight_quantize_type == "abs_max":
                        self._weight_abs_max_quantization(
                            scope, place, weight_bits, threshold_rate, op,
                            var_name, for_test)
                    elif weight_quantize_type == "channel_wise_abs_max":
                        self._weight_channel_wise_abs_max_quantization(
                            scope, place, weight_bits, op, var_name, for_test)
1491

1492 1493 1494 1495 1496 1497 1498
        io.save_inference_model(dirname=save_model_dir,
                                feeded_var_names=feed_list,
                                target_vars=fetch_list,
                                executor=exe,
                                main_program=program,
                                model_filename=save_model_filename,
                                params_filename=save_params_filename)
1499

1500 1501 1502 1503 1504 1505 1506 1507 1508
    def _weight_abs_max_quantization(self, scope, place, weight_bits,
                                     threshold_rate, op, var_name, for_test):
        '''
        Use abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
1509
        weight_data = utils.load_variable_data(scope, var_name)
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
        if abs(threshold_rate) < 1e-10:
            threshold_value = np.max(np.abs(weight_data))
        else:
            threshold_value = self._calculate_threshold(\
                weight_data, threshold_rate)
            weight_data[weight_data > threshold_value] = threshold_value
            weight_data[weight_data < -threshold_value] = -threshold_value
        scale = threshold_value / quantize_range
        quantized_weight_data = \
            np.around(weight_data / scale).astype(save_weight_dtype)

        # Set weight data
        if not for_test:
1523 1524
            utils.set_variable_data(scope, place, var_name,
                                    quantized_weight_data)
1525 1526 1527
        else:
            dequantized_weight_data = \
                (quantized_weight_data * scale).astype(np.float32)
1528 1529
            utils.set_variable_data(scope, place, var_name,
                                    dequantized_weight_data)
1530 1531 1532 1533 1534

        # Save info
        op._set_attr('quantization_type', 'post_weight_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", [scale])  # Save as list
1535
        op._set_attr("with_quant_attr", True)
1536

1537 1538 1539
    def _weight_channel_wise_abs_max_quantization(self, scope, place,
                                                  weight_bits, op, var_name,
                                                  for_test):
1540 1541 1542 1543 1544 1545 1546
        ''' 
        Use channel_wise_abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
1547
        weight_data = utils.load_variable_data(scope, var_name)
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
        if op.type == "mul":
            scales, quantized_weight_data = \
                self._mul_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        elif op.type in ["conv2d", "depthwise_conv2d"]:
            scales, quantized_weight_data = \
                self._conv_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        else:
            _logger.error(op.type + " is not supported by weight quantization")

        # Set weight data
        if not for_test:
1561 1562
            utils.set_variable_data(scope, place, var_name,
                                    quantized_weight_data)
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
        else:
            if op.type == "mul":
                dequantized_weight_data = \
                    self._mul_channel_wise_dequantization(quantized_weight_data, scales)
            elif op.type in ["conv2d", "depthwise_conv2d"]:
                dequantized_weight_data = \
                    self._conv_channel_wise_dequantization(quantized_weight_data, scales)
            else:
                _logger.error(op.type +
                              " is not supported by weight quantization")
1573 1574
            utils.set_variable_data(scope, place, var_name,
                                    dequantized_weight_data)
1575 1576 1577 1578 1579

        # Save info
        op._set_attr('quantization_type', 'post_weight_channel_wise_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", scales)
1580
        op._set_attr("with_quant_attr", True)
1581 1582 1583 1584 1585 1586 1587 1588

    def _conv_channel_wise_quantization(self, weight_data, quantize_range,
                                        save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
1589 1590
        quantized_weight_data = np.zeros_like(weight_data,
                                              dtype=save_weight_dtype)
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
        channel_num = weight_data.shape[0]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[i] = \
                np.around(weight_data[i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _conv_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For conv2d and depthwise_conv2d, dequantize the weights to fp32.
        '''
1603 1604
        dequantized_weight_data = np.zeros_like(quantized_weight_data,
                                                dtype=np.float32)
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
        for i in range(len(scales)):
            dequantized_weight_data[i] = \
                (quantized_weight_data[i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

    def _mul_channel_wise_quantization(self, weight_data, quantize_range,
                                       save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
1617 1618
        quantized_weight_data = np.zeros_like(weight_data,
                                              dtype=save_weight_dtype)
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
        channel_num = weight_data.shape[-1]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[:, i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[:, i] = \
                np.around(weight_data[:, i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _mul_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For mul, dequantize the weights to fp32.
        '''
1631 1632
        dequantized_weight_data = np.zeros_like(quantized_weight_data,
                                                dtype=np.float32)
1633 1634 1635 1636 1637
        for i in range(len(scales)):
            dequantized_weight_data[:, i] = \
                (quantized_weight_data[:, i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

1638 1639
    def _calculate_threshold(self, input, threshold_rate, histogram_bins=5000):
        input_abs = np.abs(input)
1640 1641 1642
        hist, hist_edeges = np.histogram(input_abs,
                                         bins=histogram_bins,
                                         range=(0, np.max(input_abs)))
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= 1.0 - threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edeges[1] - hist_edeges[0]
        return hist_index * bin_width