post_training_quantization.py 67.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
15 16
import os
import re
17 18
import logging
import numpy as np
19
import shutil
20
from inspect import isgeneratorfunction
21 22 23
from .... import io
from .... import core
from .... import framework
24
from .... import unique_name
25
from ....executor import global_scope, Executor
26 27
from ....framework import IrGraph
from ....log_helper import get_logger
28
from .quantization_pass import QuantizationTransformPass, QuantizationTransformPassV2, QuantizationFreezePass, QuantWeightPass, AddQuantDequantPass, AddQuantDequantPassV2
29
from .cal_kl_threshold import cal_kl_threshold
30
from .adaround import run_adaround
31
from . import utils
32

33
__all__ = ['PostTrainingQuantization', 'WeightQuantization']
34

35 36 37
_logger = get_logger(__name__,
                     logging.INFO,
                     fmt='%(asctime)s-%(levelname)s: %(message)s')
38 39


40 41 42 43 44 45 46 47
def _all_persistable_var_names(program):
    persistable_var_names = []
    for var in program.list_vars():
        if var.persistable:
            persistable_var_names.append(var.name)
    return persistable_var_names


48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
def _remove_unused_var_nodes(graph):
    all_used_vars = set()
    ops = graph.all_op_nodes()
    for op_node in ops:
        for input_node in op_node.inputs:
            all_used_vars.add(input_node)
        for output_node in op_node.outputs:
            all_used_vars.add(output_node)

    all_used_vars = {n.node for n in all_used_vars}
    all_unused_vars = {
        n
        for n in filter(lambda node: node.node not in all_used_vars,
                        graph.all_var_nodes())
    }
    graph.safe_remove_nodes(all_unused_vars)
    return graph


def _remove_ctrl_vars(graph):
    remove_ctr_vars = set()
    for node in graph.all_var_nodes():
        if node.is_ctrl_var():
            remove_ctr_vars.add(node)
    graph.safe_remove_nodes(remove_ctr_vars)
    return graph


def _apply_pass(scope,
                graph,
                pass_name,
                attrs=None,
                attr_values=None,
                debug=False):
    ir_pass = core.get_pass(pass_name)
    cpp_graph = graph.graph
    if not cpp_graph.has('__param_scope__'):
        cpp_graph.set_not_owned('__param_scope__', scope)
    if attrs:
        assert attr_values and len(attrs) == len(
88 89
            attr_values
        ), "Different number of pass attributes and their values."
90 91 92 93 94 95 96 97 98
        for attr, value in zip(attrs, attr_values):
            ir_pass.set(attr, value)
    ir_pass.apply(cpp_graph)
    if debug:
        graph.draw('.', 'qat_fp32_{}'.format(pass_name), graph.all_op_nodes())
    _remove_unused_var_nodes(graph)
    return graph


99
class PostTrainingQuantization(object):
100 101 102 103 104 105
    """
    Utilizing post training quantization methon to quantize the FP32 model,
    and it uses calibrate data to get the quantization information for all 
    quantized variables.
    """

106
    def __init__(self,
107 108 109
                 executor=None,
                 scope=None,
                 model_dir=None,
110 111
                 model_filename=None,
                 params_filename=None,
112
                 batch_generator=None,
113
                 sample_generator=None,
114
                 data_loader=None,
115 116 117
                 batch_size=10,
                 batch_nums=None,
                 algo="KL",
X
XGZhang 已提交
118
                 hist_percent=0.99999,
119
                 quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
120 121
                 round_type='round',
                 learning_rate=0.001,
122
                 is_full_quantize=False,
X
XGZhang 已提交
123
                 bias_correction=False,
124
                 activation_bits=8,
125 126 127
                 weight_bits=8,
                 activation_quantize_type='range_abs_max',
                 weight_quantize_type='channel_wise_abs_max',
128
                 onnx_format=False,
129
                 optimize_model=False,
130
                 is_use_cache_file=False,
131
                 skip_tensor_list=None,
132
                 cache_dir=None):
133
        '''
134
        Constructor.
135 136

        Args:
137
            executor(fluid.Executor): The executor to load, run and save the
138
                quantized model.
139 140
            scope(fluid.Scope, optional): The scope of the program, use it to load 
                and save variables. If scope=None, get scope by global_scope(). 
141 142 143 144 145 146 147 148 149
            model_dir(str): The path of the fp32 model that will be quantized, 
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference 
                program. If it is None, the default filename '__model__' will 
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it 
                as the real filename. If parameters were saved in separate files, 
                set it as 'None'. Default is 'None'.
150 151 152 153 154 155 156 157
            batch_generator(Python Generator): The batch generator provides 
                calibrate data for DataLoader, and it returns a batch every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, batch_generator supports lod tensor.
            sample_generator(Python Generator): The sample generator provides
                calibrate data for DataLoader, and it only returns a sample every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, sample_generator dose not support lod tensor.
158 159 160
            data_loader(Python Generator, Paddle.io.DataLoader, optional): The
                Generator or Dataloader provides calibrate data, and it could
                return a batch every time.
161 162 163 164
            batch_size(int, optional): The batch size of DataLoader. Default is 10.
            batch_nums(int, optional): If batch_nums is not None, the number of 
                calibrate data is batch_size*batch_nums. If batch_nums is None, use 
                all data provided by sample_generator as calibrate data.
165 166 167 168
            algo(str, optional): If algo='KL', use KL-divergenc method to
                get the KL threshold for quantized activations and get the abs_max
                value for quantized weights. If algo='abs_max', get the abs max 
                value for activations and weights. If algo= 'min_max', get the min 
X
XGZhang 已提交
169 170 171 172 173 174 175
                and max value for quantized activations and weights. If algo='avg',
                get the average value among the max values for activations. If 
                algo= 'hist', get the value of 'hist_percent' quantile as the threshold.
                If algo='mse', get the value which makes the quantization mse loss 
                minimal. Default is KL.
            hist_percent(float, optional): The threshold of algo 'hist' for activations.
                Default is 0.99999.
176 177
            quantizable_op_type(list[str], optional): List the type of ops 
                that will be quantized. Default is ["conv2d", "depthwise_conv2d", 
178
                "mul"].
179 180 181 182
            round_type(str, optional): The method of converting the quantized weights
                value float->int. Currently supports ['round', 'adaround'] methods.
                Default is `round`, which is rounding nearest to the nearest whole number.
            learning_rate(float, optional): The learning rate of adaround method.
183
            is_full_quantized(bool, optional): If set is_full_quantized as True, 
184
                apply quantization to all supported quantizable op type. If set
185 186
                is_full_quantized as False, only apply quantization to the op type 
                according to the input quantizable_op_type.
X
XGZhang 已提交
187 188
            bias_correction(bool, optional): If set as True, use the bias correction
                method of https://arxiv.org/abs/1810.05723. Default is False.
189
            activation_bits(int): quantization bit number for activation.
190 191 192 193 194 195 196 197 198 199 200 201
            weight_bits(int, optional): quantization bit number for weights.
            activation_quantize_type(str): quantization type for activation,
                now support 'range_abs_max', 'moving_average_abs_max' and 'abs_max'.
                This param only specifies the fake ops in saving quantized model.
                If it is 'range_abs_max' or 'moving_average_abs_max', we save the scale
                obtained by post training quantization in fake ops. Note that, if it
                is 'abs_max', the scale will not be saved in fake ops.
            weight_quantize_type(str): quantization type for weights,
                support 'abs_max' and 'channel_wise_abs_max'. This param only specifies
                the fake ops in saving quantized model, and we save the scale obtained
                by post training quantization in fake ops. Compared to 'abs_max',
                the model accuracy is usually higher when it is 'channel_wise_abs_max'.
202 203
            onnx_format(bool): Whether to export the quantized model with format of ONNX.
                Default is False.
204
            skip_tensor_list(list): List of skip quant tensor name.
205 206 207 208 209 210 211 212
            optimize_model(bool, optional): If set optimize_model as True, it applies
                some passes to the model before quantization, and it supports
                `conv2d/depthwise_conv2d + bn` pass so far. Some targets require the
                weights are quantized by tensor-wise method, which means the weights
                scale for all channel are the same. However, if fuse
                `conv2d/depthwise_conv2d + bn`, the weights scale for all channel will
                be different. In address this problem, fuse the pattern before
                quantization. Default False.
213 214
            is_use_cache_file(bool, optional): This param is deprecated.
            cache_dir(str, optional): This param is deprecated.
215 216 217
        Returns:
            None

218 219 220 221 222 223
        Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
            
            exe = fluid.Executor(fluid.CPUPlace())
224 225 226 227 228 229 230 231 232
            model_dir = path/to/fp32_model_params
            # set model_filename as None when the filename is __model__, 
            # otherwise set it as the real filename
            model_filename = None 
            # set params_filename as None when all parameters were saved in 
            # separate files, otherwise set it as the real filename
            params_filename = None
            save_model_path = path/to/save_model_path
            # prepare the sample generator according to the model, and the 
233
            # sample generator must return a sample every time. The reference
234 235 236
            # document: https://www.paddlepaddle.org.cn/documentation/docs/zh
            # /user_guides/howto/prepare_data/use_py_reader.html
            sample_generator = your_sample_generator
237 238 239
            batch_size = 10
            batch_nums = 10
            algo = "KL"
240
            quantizable_op_type = ["conv2d", "depthwise_conv2d", "mul"]
241 242
            ptq = PostTrainingQuantization(
                        executor=exe,
243 244 245 246
                        sample_generator=sample_generator,
                        model_dir=model_dir,
                        model_filename=model_filename,
                        params_filename=params_filename,
247 248 249 250 251 252 253
                        batch_size=batch_size,
                        batch_nums=batch_nums,
                        algo=algo,
                        quantizable_op_type=quantizable_op_type)
            ptq.quantize()
            ptq.save_quantized_model(save_model_path)
        '''
254

255 256 257 258
        self._support_activation_quantize_type = [
            'range_abs_max', 'moving_average_abs_max', 'abs_max'
        ]
        self._support_weight_quantize_type = ['abs_max', 'channel_wise_abs_max']
X
XGZhang 已提交
259
        self._support_algo_type = [
260
            'KL', 'hist', 'avg', 'mse', 'emd', 'abs_max', 'min_max'
X
XGZhang 已提交
261
        ]
262 263 264
        assert round_type in ['adaround', 'round']
        self._round_type = round_type
        self._learning_rate = learning_rate
265
        self._dynamic_quantize_op_type = ['lstm']
266
        self._support_quantize_op_type = \
267 268
            list(set(utils._weight_supported_quantizable_op_type +
                utils._act_supported_quantizable_op_type +
269
                self._dynamic_quantize_op_type))
270 271

        # Check inputs
272 273
        assert executor is not None, "The executor cannot be None."
        assert model_dir is not None, "The model_dir cannot be None."
274
        assert any([gen is not None] for gen in [sample_generator,
275 276 277 278 279
            batch_generator, data_loader]), "The sample_generator, batch_generator " \
            "and data_loader cannot be None in the same time."
        if data_loader is not None:
            assert isinstance(data_loader, (io.DataLoader, type(isgeneratorfunction))), \
                "data_loader only accepts `paddle.io.DataLoader` or Generator instance."
280 281
        assert batch_size > 0, "The batch_size should be greater than 0."
        assert algo in self._support_algo_type, \
X
XGZhang 已提交
282
            "The algo should be KL, hist, mse, avg, abs_max or min_max."
283 284 285 286 287 288 289 290
        assert activation_quantize_type in self._support_activation_quantize_type, \
            "The activation_quantize_type ({}) should in ({}).".format(
            activation_quantize_type, self._support_activation_quantize_type)
        assert weight_quantize_type in self._support_weight_quantize_type, \
            "The weight_quantize_type ({}) shoud in ({}).".format(
            weight_quantize_type, self._support_weight_quantize_type)

        # Save input params
X
XGZhang 已提交
291
        self._bias_correction = bias_correction
292
        self._executor = executor
293
        self._scope = global_scope() if scope == None else scope
294 295 296
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename
297
        self._sample_generator = sample_generator
298
        self._batch_generator = batch_generator
299 300 301
        self._batch_size = batch_size
        self._batch_nums = batch_nums
        self._algo = algo
X
XGZhang 已提交
302
        self._hist_percent = hist_percent
303 304 305 306
        self._activation_bits = activation_bits
        self._weight_bits = weight_bits
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
307
        self._onnx_format = onnx_format
308
        self._skip_tensor_list = skip_tensor_list
309
        self._is_full_quantize = is_full_quantize
310
        if is_full_quantize:
311
            self._quantizable_op_type = self._support_quantize_op_type
312 313 314
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in self._quantizable_op_type:
315
                assert op_type in self._support_quantize_op_type, \
316
                    op_type + " is not supported for quantization."
317
        self._optimize_model = optimize_model
318

319
        # Define variables
320 321 322 323
        self._place = self._executor.place
        self._program = None
        self._feed_list = None
        self._fetch_list = None
324
        self._data_loader = data_loader
325

326
        self._out_scale_op_list = utils._out_scale_op_list
327 328
        self._quantized_weight_var_name = set()
        self._quantized_act_var_name = set()
329
        self._weight_op_pairs = {}
X
XGZhang 已提交
330
        # The vars for alog = KL or hist
331 332
        self._sampling_act_abs_min_max = {}
        self._sampling_act_histogram = {}
333
        self._sampling_data = {}
X
XGZhang 已提交
334
        self._quantized_var_threshold = {}
335 336
        self._histogram_bins = 2048
        # The vars for algo = min_max
337 338
        self._quantized_var_min = {}
        self._quantized_var_max = {}
X
XGZhang 已提交
339 340 341
        # The vars for algo = avg
        self._quantized_var_avg = {}
        # The best loss of algo = mse
342
        self._best_calibration_loss = {}
X
XGZhang 已提交
343 344
        # The threshold for algo = abs_max, mse or avg
        self._quantized_threshold = {}
345 346 347

    def quantize(self):
        '''
348 349 350
        Load the FP32 model, and use the calibrate data to calculate the forward-stage.
        Based on the sample data, we can get the quantization information, and obtain
        the final quantized model.
351 352 353 354

        Args:
            None
        Returns:
355 356
            the program of quantized model.
        '''
357
        self._load_model_data()
358
        self._collect_target_varnames()
359
        self._set_activation_persistable()
360

X
XGZhang 已提交
361
        if self._algo in ["KL", "hist"]:
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
            _logger.info("Preparation stage ...")
            batch_id = 0
            for data in self._data_loader():
                self._executor.run(program=self._program,
                                   feed=data,
                                   fetch_list=self._fetch_list,
                                   return_numpy=False,
                                   scope=self._scope)
                self._collect_activation_abs_min_max()
                if batch_id % 5 == 0:
                    _logger.info("Run batch: " + str(batch_id))
                batch_id += 1
                if self._batch_nums and batch_id >= self._batch_nums:
                    break
            _logger.info("Finish preparation stage, all batch:" + str(batch_id))
            self._init_sampling_act_histogram()

        _logger.info("Sampling stage ...")
380 381 382 383
        batch_id = 0
        for data in self._data_loader():
            self._executor.run(program=self._program,
                               feed=data,
384
                               fetch_list=self._fetch_list,
385 386
                               return_numpy=False,
                               scope=self._scope)
387
            self._sampling()
388
            if batch_id % 5 == 0:
389
                _logger.info("Run batch: " + str(batch_id))
390 391 392
            batch_id += 1
            if self._batch_nums and batch_id >= self._batch_nums:
                break
393
        _logger.info("Finish sampling stage, all batch: " + str(batch_id))
394

X
XGZhang 已提交
395 396 397 398 399 400
        if self._algo == 'avg':
            for var_name in self._quantized_act_var_name:
                self._quantized_threshold[var_name] = \
                np.array(self._quantized_var_avg[var_name]).mean()
        if self._algo in ["KL", "hist"]:
            self._calculate_kl_hist_threshold()
401 402 403 404 405 406 407

        if self._round_type == 'adaround':
            self._adaround_apply()

        self._reset_activation_persistable()

        if self._algo is 'min_max':
408
            self._save_input_threhold()
409 410 411 412 413 414
        else:
            self._update_program()

        # save out_threshold for quantized ops.
        if not self._onnx_format:
            self._save_output_threshold()
415

416 417 418 419
        if any(op_type in self._quantizable_op_type
               for op_type in self._dynamic_quantize_op_type):
            self._collect_dynamic_quantize_op_threshold(
                self._dynamic_quantize_op_type)
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

        # Move sub blocks persistable var to global block
        global_block = self._program.global_block()
        for _op in global_block.ops:
            if _op.type == "while":
                _block_id = _op.attr("sub_block").id
                _block = self._program.block(_block_id)
                persistables = []
                for _name, _var in _block.vars.items():
                    if _var.persistable:
                        global_block._clone_variable(_var)
                        persistables.append(_name)
                for _name in persistables:
                    _block._remove_var(_name)
                persistables.extend(_op.input('X'))
                _op.desc.set_input("X", persistables)

437 438
        return self._program

439
    def _adaround_apply(self):
440
        assert self._algo != "min_max", "The algo should not be min_max."
441 442 443 444
        if self._algo in ["KL", "hist"]:
            scale_dict = self._quantized_var_threshold
        else:
            scale_dict = self._quantized_threshold
445 446 447 448 449 450 451 452 453 454 455
        run_adaround(self._data_loader,
                     self._program,
                     self._fetch_list,
                     self._executor,
                     self._scope,
                     self._place,
                     self._quantized_op_pairs,
                     self._weight_op_pairs,
                     scale_dict,
                     num_iterations=self._batch_nums,
                     lr=self._learning_rate)
456

457 458 459 460
    def save_quantized_model(self,
                             save_model_path,
                             model_filename=None,
                             params_filename=None):
461 462 463 464
        '''
        Save the quantized model to the disk.

        Args:
465 466 467 468 469 470 471
            save_model_path(str): The path to save the quantized model.
            model_filename(str, optional): If the model_filename is None,
                save the model to '__model__'. Otherwise, save the model
                to the specified filename. Default: None.
            params_filename(str, optional): If the params_filename is None,
                save params to separted files. Otherwise, save all params
                to the specified filename.
472
        Returns:
473 474
            None
        '''
475
        clip_extra = True if self._onnx_format else False
476 477 478 479 480 481 482 483
        io.save_inference_model(dirname=save_model_path,
                                model_filename=model_filename,
                                params_filename=params_filename,
                                feeded_var_names=self._feed_list,
                                target_vars=self._fetch_list,
                                executor=self._executor,
                                main_program=self._program,
                                clip_extra=clip_extra)
484
        _logger.info("The quantized model is saved in " + save_model_path)
485

486
    def _load_model_data(self):
487
        '''
488
        Load model and set data loader.
489
        '''
490
        _logger.info("Load model and set data loader ...")
491
        [self._program, self._feed_list, self._fetch_list] = \
492 493 494 495
            io.load_inference_model(dirname=self._model_dir,
                                    executor=self._executor,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)
496 497 498 499

        if self._optimize_model:
            self._optimize_fp32_model()

500 501
        feed_vars = [framework._get_var(str(var_name), self._program) \
            for var_name in self._feed_list]
502 503 504

        if self._data_loader is not None:
            return
505 506 507 508
        self._data_loader = io.DataLoader.from_generator(feed_list=feed_vars,
                                                         capacity=3 *
                                                         self._batch_size,
                                                         iterable=True)
509
        if self._sample_generator is not None:
510 511 512 513
            self._data_loader.set_sample_generator(self._sample_generator,
                                                   batch_size=self._batch_size,
                                                   drop_last=True,
                                                   places=self._place)
514
        elif self._batch_generator is not None:
515 516
            self._data_loader.set_batch_generator(self._batch_generator,
                                                  places=self._place)
517

518 519 520 521 522 523 524 525
    def _optimize_fp32_model(self):
        '''
        Fuse the `conv2d/depthwise_conv2d + bn` in FP32 model.
        '''
        _logger.info("Optimize FP32 model ...")
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)
        graph = _remove_ctrl_vars(graph)
        graph = _apply_pass(self._scope, graph, 'conv_bn_fuse_pass')
526 527
        graph = _apply_pass(self._scope, graph, 'depthwise_conv_bn_fuse_pass')
        graph = _apply_pass(self._scope, graph, 'conv_transpose_bn_fuse_pass')
528 529 530 531
        graph = _apply_pass(self._scope, graph, 'conv_eltwiseadd_bn_fuse_pass')
        graph = _apply_pass(self._scope, graph,
                            'depthwise_conv_eltwiseadd_bn_fuse_pass')

532 533
        self._program = graph.to_program()

534
    def _collect_target_varnames(self):
535 536 537 538
        '''
        Collect the variable names for sampling, and set activation
        variables to be persistable.
        '''
539
        # TODO(juncaipeng), consider the name_scope of skip_quant
540
        _logger.info("Collect quantized variable names ...")
541
        self._quantized_op_pairs = {}
542

543
        def collect_var_name(var_name_list, persistable_var_names, op_type):
544 545 546
            for var_name in var_name_list:
                if var_name in persistable_var_names:
                    self._quantized_weight_var_name.add(var_name)
547
                    self._weight_op_pairs[var_name] = op_type
548 549 550
                else:
                    self._quantized_act_var_name.add(var_name)

551
        persistable_var_names = _all_persistable_var_names(self._program)
552 553
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
554 555 556 557 558 559
                # skip quant form self._skip_tensor_list
                if self._skip_tensor_list is not None:
                    for inp_name in utils._get_op_input_var_names(op):
                        if inp_name in self._skip_tensor_list:
                            op._set_attr("op_namescope", "skip_quant")

560 561 562 563 564 565 566
                op_type = op.type
                if self._is_full_quantize and \
                    op_type not in self._quantizable_op_type:
                    _logger.warning(op_type +
                                    " is not supported for quantization.")
                # For quantized ops, sample inputs and outputs
                if op_type in self._quantizable_op_type:
567 568 569 570
                    collect_var_name(utils._get_op_input_var_names(op),
                                     persistable_var_names, op_type)
                    collect_var_name(utils._get_op_output_var_names(op),
                                     persistable_var_names, op_type)
571
                    # collect quanted op output var name
572 573
                    for out_var_name in utils._get_op_output_var_names(op):
                        for in_var_name in utils._get_op_input_var_names(op):
574 575 576
                            if in_var_name in persistable_var_names:
                                self._quantized_op_pairs[
                                    in_var_name] = out_var_name
577 578
                # For other op, only sample output scale
                elif op_type in self._out_scale_op_list:
579 580
                    collect_var_name(utils._get_op_output_var_names(op),
                                     persistable_var_names, op_type)
581 582 583 584 585 586

    def _set_activation_persistable(self):
        '''
        Set activation variables to be persistable, so can obtain 
        the tensor data in sample_data
        '''
587 588 589 590
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = True

591 592 593 594
    def _reset_activation_persistable(self):
        '''
        Reset activations to be not persistable.
        '''
595
        to_erase = []
596 597 598
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = False
599 600
                to_erase.append(var.name)
        self._scope.erase(to_erase)
601

602
    def _sampling(self):
603
        '''
604
        Sample the min/max, abs_max or histogram in every iterations.
605 606
        '''
        if self._algo == "abs_max":
607
            self._sample_abs_max()
X
XGZhang 已提交
608 609
        elif self._algo == "avg":
            self._sample_avg()
610
        elif self._algo == "min_max":
611
            self._sample_min_max()
X
XGZhang 已提交
612 613
        elif self._algo == "mse":
            self._sample_mse()
614 615
        elif self._algo == "emd":
            self._sample_emd()
X
XGZhang 已提交
616
        elif self._algo in ["KL", "hist"]:
617
            self._sample_histogram()
618

X
XGZhang 已提交
619 620 621
    def _sample_mse(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
622
                var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
623 624 625 626 627
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
628
                            var_name] in utils._channelwise_quant_axis1_ops:
X
XGZhang 已提交
629 630 631 632 633 634 635 636 637 638
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value
        _logger.info("MSE searching stage ...")
        for var_name in self._quantized_act_var_name:
639
            var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
640 641
            var_tensor = var_tensor.flatten()
            abs_max_value = float(np.max(np.abs(var_tensor)))
X
XGZhang 已提交
642
            abs_max_value = 1e-8 if abs_max_value == 0.0 else abs_max_value
X
XGZhang 已提交
643
            s = 0.3
644 645
            if var_name not in self._best_calibration_loss:
                self._best_calibration_loss[var_name] = float('inf')
X
XGZhang 已提交
646 647 648 649 650 651 652 653
            while s <= 1.0:
                scale = s * abs_max_value
                s += 0.02
                bins = 2**(self._activation_bits - 1) - 1
                quant_dequant_var = np.round(
                    np.clip(var_tensor, 0.0, scale) / scale *
                    bins) / bins * scale
                mse_loss = ((var_tensor - quant_dequant_var)**2).mean()
654 655 656 657 658 659 660
                if mse_loss <= self._best_calibration_loss[var_name]:
                    self._best_calibration_loss[var_name] = mse_loss
                    self._quantized_threshold[var_name] = scale

    def _sample_emd(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
661
                var_tensor = utils.load_variable_data(self._scope, var_name)
662 663 664 665 666
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
667
                            var_name] in utils._channelwise_quant_axis1_ops:
668 669 670 671 672 673 674 675 676 677
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value
        _logger.info("EMD searching stage ...")
        for var_name in self._quantized_act_var_name:
678
            var_tensor = utils.load_variable_data(self._scope, var_name)
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
            var_tensor = var_tensor.flatten()
            abs_max_value = float(np.max(np.abs(var_tensor)))
            abs_max_value = 1e-8 if abs_max_value == 0.0 else abs_max_value
            s = 0.3
            if var_name not in self._best_calibration_loss:
                self._best_calibration_loss[var_name] = float('inf')
            while s <= 1.0:
                scale = s * abs_max_value
                s += 0.02
                bins = 2**(self._activation_bits - 1) - 1
                quant_dequant_var = np.round(
                    np.clip(var_tensor, 0.0, scale) / scale *
                    bins) / bins * scale
                emd_loss = np.abs(
                    np.mean(var_tensor) - np.mean(quant_dequant_var)) + np.abs(
                        np.std(var_tensor) - np.std(quant_dequant_var))
                if emd_loss <= self._best_calibration_loss[var_name]:
                    self._best_calibration_loss[var_name] = emd_loss
X
XGZhang 已提交
697 698 699 700 701
                    self._quantized_threshold[var_name] = scale

    def _sample_avg(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
702
                var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
703 704 705 706 707
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
708
                            var_name] in utils._channelwise_quant_axis1_ops:
X
XGZhang 已提交
709 710 711 712 713 714 715 716 717 718
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value

        for var_name in self._quantized_act_var_name:
719
            var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
720 721 722 723 724 725 726 727
            abs_max_value = float(np.max(np.abs(var_tensor)))
            if (var_name not in self._quantized_var_avg):
                self._quantized_var_avg[var_name] = []
            abs_avg_value = float(np.mean(np.max(  \
            np.abs(var_tensor.reshape(var_tensor.shape[0], -1)), axis=(1))))
            self._quantized_var_avg[var_name].append(abs_avg_value)
            continue

728
    def _sample_abs_max(self):
X
XGZhang 已提交
729
        if self._quantized_threshold == {}:
730
            for var_name in self._quantized_weight_var_name:
731
                var_tensor = utils.load_variable_data(self._scope, var_name)
732 733 734 735
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
736
                    if self._weight_op_pairs[
737
                            var_name] in utils._channelwise_quant_axis1_ops:
738 739 740 741 742 743 744
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
X
XGZhang 已提交
745
                self._quantized_threshold[var_name] = abs_max_value
746 747

        for var_name in self._quantized_act_var_name:
748
            var_tensor = utils.load_variable_data(self._scope, var_name)
749
            abs_max_value = float(np.max(np.abs(var_tensor)))
X
XGZhang 已提交
750 751 752
            if (var_name not in self._quantized_threshold) or \
                (abs_max_value > self._quantized_threshold[var_name]):
                self._quantized_threshold[var_name] = abs_max_value
753

754
    def _sample_min_max(self):
755 756
        if self._quantized_var_min == {} and self._quantized_var_max == {}:
            for var_name in self._quantized_weight_var_name:
757
                var_tensor = utils.load_variable_data(self._scope, var_name)
758 759 760 761 762 763
                if self._weight_quantize_type == "abs_max":
                    min_value = float(np.min(var_tensor))
                    max_value = float(np.max(var_tensor))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    min_value = []
                    max_value = []
764
                    if self._weight_op_pairs[
765
                            var_name] in utils._channelwise_quant_axis1_ops:
766 767 768 769 770 771 772 773 774 775 776
                        for i in range(var_tensor.shape[1]):
                            min_value.append(float(np.min(var_tensor[:, i])))
                            max_value.append(float(np.max(var_tensor[:, i])))
                    else:
                        for i in range(var_tensor.shape[0]):
                            min_value.append(float(np.min(var_tensor[i])))
                            max_value.append(float(np.max(var_tensor[i])))
                self._quantized_var_min[var_name] = min_value
                self._quantized_var_max[var_name] = max_value

        for var_name in self._quantized_act_var_name:
777
            var_tensor = utils.load_variable_data(self._scope, var_name)
778 779 780 781 782 783 784 785
            min_value = float(np.min(var_tensor))
            max_value = float(np.max(var_tensor))
            if (var_name not in self._quantized_var_min) or \
                (min_value < self._quantized_var_min[var_name]):
                self._quantized_var_min[var_name] = min_value
            if (var_name not in self._quantized_var_max) or \
                (max_value > self._quantized_var_max[var_name]):
                self._quantized_var_max[var_name] = max_value
786

787 788
    def _sample_histogram(self):
        for var_name in self._quantized_act_var_name:
789
            var_tensor = utils.load_variable_data(self._scope, var_name)
790 791 792 793 794
            var_tensor_abs = np.abs(var_tensor)
            bins = self._sampling_act_histogram[var_name][1]
            hist, _ = np.histogram(var_tensor_abs, bins=bins)
            self._sampling_act_histogram[var_name][0] += hist

795 796 797 798 799 800
    def _save_input_threhold(self):
        '''
        Save input threshold to the quantized op.
        '''
        assert self._algo == "min_max", \
            "The algo should be min_max to save input threshold."
801 802 803
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
                if op.type in self._quantizable_op_type:
804
                    for var_name in utils._get_op_input_var_names(op):
805 806 807 808 809 810 811
                        assert var_name in self._quantized_var_min
                        assert var_name in self._quantized_var_max
                        op._set_attr(var_name + ".min",
                                     self._quantized_var_min[var_name])
                        op._set_attr(var_name + ".max",
                                     self._quantized_var_max[var_name])
                        op._set_attr("with_quant_attr", True)
812

813
    def _collect_activation_abs_min_max(self):
814
        '''
815 816
        Collect the abs_min and abs_max for all activation. When algo = KL,
        get the min and max value, and then calculate the threshold.
817
        '''
818
        for var_name in self._quantized_act_var_name:
819
            var_tensor = utils.load_variable_data(self._scope, var_name)
820 821 822 823
            var_tensor = np.abs(var_tensor)
            min_value = float(np.min(var_tensor))
            max_value = float(np.max(var_tensor))
            if var_name not in self._sampling_act_abs_min_max:
824 825 826
                self._sampling_act_abs_min_max[var_name] = [
                    min_value, max_value
                ]
827 828 829 830 831 832 833 834 835 836 837 838 839 840
            else:
                if min_value < self._sampling_act_abs_min_max[var_name][0]:
                    self._sampling_act_abs_min_max[var_name][0] = min_value
                if max_value > self._sampling_act_abs_min_max[var_name][1]:
                    self._sampling_act_abs_min_max[var_name][1] = max_value

    def _init_sampling_act_histogram(self):
        '''
        Based on the min/max value, init the sampling_act_histogram.
        '''
        for var_name in self._quantized_act_var_name:
            if var_name not in self._sampling_act_histogram:
                min_val = self._sampling_act_abs_min_max[var_name][0]
                max_val = self._sampling_act_abs_min_max[var_name][1]
841 842 843
                hist, hist_edeges = np.histogram([],
                                                 bins=self._histogram_bins,
                                                 range=(min_val, max_val))
844
                self._sampling_act_histogram[var_name] = [hist, hist_edeges]
845

X
XGZhang 已提交
846
    def _calculate_kl_hist_threshold(self):
847
        '''
X
XGZhang 已提交
848
        Calculate the KL or hist threshold of quantized variables.
849
        '''
X
XGZhang 已提交
850 851
        _logger.info("Calculate {} threshold ...".format(self._algo))
        assert self._algo in ["KL", "hist"], "The algo should be KL or hist."
852 853

        # Abs_max threshold for weights
854
        for var_name in self._quantized_weight_var_name:
855
            weight_data = utils.load_variable_data(self._scope, var_name)
856
            if self._weight_quantize_type == "abs_max":
857
                weight_threshold = float(np.max(np.abs(weight_data)))
858 859
            elif self._weight_quantize_type == "channel_wise_abs_max":
                weight_threshold = []
860
                if self._weight_op_pairs[
861
                        var_name] in utils._channelwise_quant_axis1_ops:
862 863 864 865 866 867 868
                    for i in range(weight_data.shape[1]):
                        weight_threshold.append(
                            float(np.max(np.abs(weight_data[:, i]))))
                else:
                    for i in range(weight_data.shape[0]):
                        weight_threshold.append(
                            float(np.max(np.abs(weight_data[i]))))
X
XGZhang 已提交
869
            self._quantized_var_threshold[var_name] = weight_threshold
870

871 872
        for var_name in self._quantized_act_var_name:
            hist, hist_edeges = self._sampling_act_histogram[var_name]
X
XGZhang 已提交
873
            if self._algo == "KL":
874
                bin_width = hist_edeges[1] - hist_edeges[0]
X
XGZhang 已提交
875
                self._quantized_var_threshold[var_name] = \
876
                    cal_kl_threshold(hist, bin_width, self._activation_bits)
X
XGZhang 已提交
877 878 879
            elif self._algo == "hist":
                self._quantized_var_threshold[var_name] = \
                    self._get_hist_scaling_factor(hist, hist_edeges)
880 881 882

    def _update_program(self):
        '''
883 884
        Use QuantizationTransformPass and AddQuantDequantPass to insert 
        fake_quantize, fake_dequantize and fake_quant_dequant op. 
X
XGZhang 已提交
885
        Besides, save all threshold to the scale var node.
886
        '''
887
        _logger.info("Update the program ...")
888 889
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)

890
        # use QuantizationTransformPass to insert fake_quant/fake_dequantize op
891
        major_quantizable_op_types = []
892
        for op_type in utils._weight_supported_quantizable_op_type:
893
            if op_type in self._quantizable_op_type:
894
                major_quantizable_op_types.append(op_type)
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
        if not self._onnx_format:
            transform_pass = QuantizationTransformPass(
                scope=self._scope,
                place=self._place,
                weight_bits=self._weight_bits,
                activation_bits=self._activation_bits,
                activation_quantize_type=self._activation_quantize_type,
                weight_quantize_type=self._weight_quantize_type,
                quantizable_op_type=major_quantizable_op_types)
        else:
            transform_pass = QuantizationTransformPassV2(
                scope=self._scope,
                place=self._place,
                weight_bits=self._weight_bits,
                activation_bits=self._activation_bits,
                activation_quantize_type=self._activation_quantize_type,
                weight_quantize_type=self._weight_quantize_type,
                quantizable_op_type=major_quantizable_op_types)
913 914 915 916 917 918

        for sub_graph in graph.all_sub_graphs():
            # Insert fake_quant/fake_dequantize op must in test graph, so
            # set per graph's _for_test is True.
            sub_graph._for_test = True
            transform_pass.apply(sub_graph)
919 920

        # use AddQuantDequantPass to insert fake_quant_dequant op
921
        minor_quantizable_op_types = []
922
        for op_type in utils._act_supported_quantizable_op_type:
923
            if op_type in self._quantizable_op_type:
924
                minor_quantizable_op_types.append(op_type)
925 926 927 928 929 930 931 932 933 934 935
        if not self._onnx_format:
            add_quant_dequant_pass = AddQuantDequantPass(
                scope=self._scope,
                place=self._place,
                quantizable_op_type=minor_quantizable_op_types)
        else:
            add_quant_dequant_pass = AddQuantDequantPassV2(
                scope=self._scope,
                place=self._place,
                quantizable_op_type=minor_quantizable_op_types,
                is_full_quantized=self._is_full_quantize)
936 937 938 939

        for sub_graph in graph.all_sub_graphs():
            sub_graph._for_test = True
            add_quant_dequant_pass.apply(sub_graph)
940

X
XGZhang 已提交
941 942 943
        # save threshold to scale var node
        if self._algo in ["KL", "hist"]:
            scale_dict = self._quantized_var_threshold
944
        else:
X
XGZhang 已提交
945
            scale_dict = self._quantized_threshold
946
        for key, val in scale_dict.items():
947 948 949 950 951
            utils.set_variable_data(self._scope, self._place, key + ".scale",
                                    np.array([val], dtype=np.float32))
            utils.set_variable_data(self._scope, self._place,
                                    key + ".quant_dequant.scale",
                                    np.array([val], dtype=np.float32))
952

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
        if not self._onnx_format:
            # apply QuantizationFreezePass, and obtain the final quant model
            freeze_pass = QuantizationFreezePass(
                scope=self._scope,
                place=self._place,
                bias_correction=self._bias_correction,
                weight_bits=self._weight_bits,
                round_type=self._round_type,
                activation_bits=self._activation_bits,
                weight_quantize_type=self._weight_quantize_type,
                quantizable_op_type=major_quantizable_op_types)

            for sub_graph in graph.all_sub_graphs():
                sub_graph._for_test = True
                freeze_pass.apply(sub_graph)
        else:
            quant_weight_pass = QuantWeightPass(self._scope, self._place)
            for sub_graph in graph.all_sub_graphs():
                sub_graph._for_test = True
                quant_weight_pass.apply(sub_graph)
973

974 975
        self._program = graph.to_program()

976
    def _save_output_threshold(self):
977
        '''
978
        Save output threshold to the quantized op.
979
        '''
980 981 982 983 984 985 986

        def save_info(op_node, out_var_name, threshold_map, out_info_name,
                      quantized_type):
            assert out_var_name in threshold_map, \
                "The output ({}) of {} node does not have threshold.".format(
                out_var_name, op_node.type)
            op_node._set_attr(out_info_name, threshold_map[var_name])
987
            op_node._set_attr("with_quant_attr", True)
988 989 990 991
            if op_node.type in self._quantizable_op_type:
                op._set_attr("quantization_type", quantized_type)

        def analysis_and_save_info(op_node, out_var_name):
992
            argname_index = utils._get_output_name_index(op_node, out_var_name)
993 994
            assert argname_index is not None, \
                out_var_name + " is not the output of the op"
995
            if self._algo == "KL":
996
                # For compatibility, we save output threshold by two methods.
X
XGZhang 已提交
997 998
                save_info(op_node, out_var_name, self._quantized_var_threshold,
                          "out_threshold", "post_kl")
999
                save_info(
X
XGZhang 已提交
1000
                    op_node, out_var_name, self._quantized_var_threshold,
1001 1002
                    argname_index[0] + str(argname_index[1]) + "_threshold",
                    "post_kl")
X
XGZhang 已提交
1003 1004 1005 1006
            elif self._algo == "hist":
                # For compatibility, we save output threshold by two methods.
                save_info(op_node, out_var_name, self._quantized_var_threshold,
                          "out_threshold", "post_hist")
1007
                save_info(
X
XGZhang 已提交
1008
                    op_node, out_var_name, self._quantized_var_threshold,
1009
                    argname_index[0] + str(argname_index[1]) + "_threshold",
X
XGZhang 已提交
1010 1011
                    "post_hist")

1012
            elif self._algo in ["avg", "abs_max", "mse", "emd"]:
X
XGZhang 已提交
1013 1014 1015 1016 1017 1018
                save_info(op_node, out_var_name, self._quantized_threshold,
                          "out_threshold", "post_" + str(self._algo))
                save_info(
                    op_node, out_var_name, self._quantized_threshold,
                    argname_index[0] + str(argname_index[1]) + "_threshold",
                    "post_" + str(self._algo))
1019 1020 1021 1022 1023 1024
            elif self._algo == "min_max":
                save_info(op_node, out_var_name, self._quantized_var_min,
                          "out_min", "post_min_max")
                save_info(op_node, out_var_name, self._quantized_var_max,
                          "out_max", "post_min_max")

1025 1026
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
1027 1028
                if op.type in (self._quantizable_op_type +
                               self._out_scale_op_list):
1029
                    out_var_names = utils._get_op_output_var_names(op)
1030 1031
                    for var_name in out_var_names:
                        analysis_and_save_info(op, var_name)
1032

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
    def _collect_dynamic_quantize_op_threshold(self, target_ops_type):
        """
        Collect and save the weight threshold for dynamic quantize ops,
        such as lstm and gru.
        Args:
            target_ops_type(list): the op type of target ops
        Returns:
            None
        """

        target_ops = []
        for index in range(self._program.num_blocks):
            for op in self._program.block(index).ops:
                if op.type in target_ops_type:
                    target_ops.append(op)

        quantization_type = str("post_" + self._algo).lower()
        persistable_var_names = _all_persistable_var_names(self._program)
        for op in target_ops:
1052
            for var_name in utils._get_op_input_var_names(op):
1053
                if var_name in persistable_var_names:
1054
                    var_data = utils.load_variable_data(self._scope, var_name)
1055
                    threshold = float(np.max(np.abs(var_data)))
1056
                    argname, index = utils._get_input_name_index(op, var_name)
1057 1058 1059
                    op._set_attr(argname + str(index) + "_threshold", threshold)
                    op._set_attr("quantization_type", quantization_type)
                    op._set_attr("bit_length", self._weight_bits)
1060
                    op._set_attr("with_quant_attr", True)
1061

X
XGZhang 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
    def _get_hist_scaling_factor(self, hist, hist_edges):
        '''
        Using the hist method to get the scaling factor.
        '''
        threshold_rate = self._hist_percent
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edges[1] - hist_edges[0]
        return (hist_index - 0.5) * bin_width

1078 1079 1080

class WeightQuantization(object):
    _supported_quantizable_op_type = ['conv2d', 'depthwise_conv2d', 'mul']
1081
    _supported_weight_quantize_type = ['channel_wise_abs_max', 'abs_max']
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

    def __init__(self, model_dir, model_filename=None, params_filename=None):
        '''
        This class quantizes the weight of some ops to reduce the size of model
        or improve the perforemace.

        Args:
            model_dir(str): The path of the fp32 model that will be quantized,
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference
                program. If it is None, the default filename '__model__' will
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it
                as the real filename. If parameters were saved in separate files,
                set it as 'None'. Default is 'None'.
        '''
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename

    def quantize_weight_to_int(self,
                               save_model_dir,
                               save_model_filename=None,
                               save_params_filename=None,
                               quantizable_op_type=["conv2d", "mul"],
1108
                               weight_bits=8,
1109 1110
                               weight_quantize_type="channel_wise_abs_max",
                               generate_test_model=False,
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
                               threshold_rate=0.0):
        '''
        In order to reduce the size of model, this api quantizes the weight
        of some ops from float32 to int8/16. In the inference stage, the 
        quantized weight will be dequantized to float32 again.
        
        Args:
            save_model_dir(str): The path to save the quantized model.
            save_model_filename(str, optional): The name of file to 
                save the inference program. If it is None, the default 
                filename '__model__' will be used. Default is 'None'.
            save_params_filename(str, optional): The name of file to 
                save all parameters. If it is None, parameters were 
                saved in separate files. If it is not None, all 
                parameters were saved in a single binary file.
            quantizable_op_type(list[str], optional): The list of ops 
                that will be quantized, and the quantized ops should be
                contained in ["conv2d", "depthwise_conv2d", "mul"]. 
                Default is ["conv2d","mul"].
1130 1131
            weight_bits(int, optional): The bits for the quantized weight, 
                and it should be 8 or 16. Default is 8.
1132 1133 1134 1135 1136 1137 1138
            weight_quantize_type(str, optional): quantization type for weights,
                support 'channel_wise_abs_max' and 'abs_max'. Set it as
                'channel_wise_abs_max', the accuracy performs better.
            generate_test_model(bool, optional): If set generate_test_model 
                as True, it saves a fake quantized model, in which the weights 
                are quantized and dequantized. We can use PaddlePaddle to load 
                the fake quantized model and test the accuracy on GPU or CPU.
1139 1140 1141 1142 1143 1144 1145 1146 1147
            threshold_rate(float, optional): This api uses abs_max methd to 
                quantize the weight from float32 to int8/16, and the abs max 
                value is important for quantization diff. When the abs_max 
                value is far away from the center of the numerical distribution, 
                we can set threshold_rate between 1e-6 and 1e-8, so the abs max 
                value will be optimized. Default is 0.0.
        '''
        for op_type in quantizable_op_type:
            assert op_type in self._supported_quantizable_op_type, \
1148
                "Input error:" + op_type + \
1149
                " is not supported for weight quantization."
1150
        assert weight_bits in [8, 16], \
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
            "Input error: weight_bits should be 8 or 16."
        assert weight_quantize_type in self._supported_weight_quantize_type, \
            "Input error: weight_quantize_type should in {}".format(
                self._supported_weight_quantize_type)

        quantized_model_dir = os.path.join(save_model_dir, "quantized_model")
        self._quantize_weight_to_int(quantized_model_dir, save_model_filename,
                                     save_params_filename, quantizable_op_type,
                                     weight_bits, weight_quantize_type, False,
                                     threshold_rate)

        if generate_test_model:
            test_model_dir = os.path.join(save_model_dir, "test_model")
1164 1165 1166 1167 1168
            self._quantize_weight_to_int(test_model_dir, save_model_filename,
                                         save_params_filename,
                                         quantizable_op_type, weight_bits,
                                         weight_quantize_type, True,
                                         threshold_rate)
1169

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
    def convert_weight_to_fp16(self, save_model_dir):
        """
        Convert all presistable vars from fp32 to fp16.
        Note that, this api only changes the data type of variables in
        __params__ file, and the __model__ file remains unchanged. 

        Args:
            save_model_dir(str): The path to save the fp16 model.
        """

        # Load model
        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [infer_program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

        # Clone and save fp16 weights
        save_program = framework.Program()
        save_block = save_program.global_block()
        save_var_map = {}

        for var in infer_program.list_vars():
            if (var.type == core.VarDesc.VarType.RAW) or \
                (not var.persistable) or (var.name in ['feed', 'fetch']) \
                or (var.dtype != core.VarDesc.VarType.FP32):
                continue

            #new_var = _clone_var_to_block_(var, save_block)
            new_var = save_block._clone_variable(var)
            if self._params_filename is not None:
                save_var_map[new_var.name] = new_var
            else:
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
                save_file_path = os.path.join(os.path.normpath(save_model_dir),
                                              new_var.name)
                save_block.append_op(type='save',
                                     inputs={'X': [new_var]},
                                     outputs={},
                                     attrs={
                                         'file_path':
                                         os.path.normpath(save_file_path),
                                         'save_as_fp16':
                                         True
                                     })
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

        if self._params_filename is not None:
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

            saved_params_var = save_block.create_var(
                type=core.VarDesc.VarType.RAW,
                name=unique_name.generate("saved_params"))
            saved_params_var.desc.set_persistable(True)

1228 1229 1230 1231 1232 1233 1234 1235 1236
            save_path = os.path.join(os.path.normpath(save_model_dir),
                                     self._params_filename)
            save_block.append_op(type='save_combine',
                                 inputs={'X': save_var_list},
                                 outputs={'Y': saved_params_var},
                                 attrs={
                                     'file_path': save_path,
                                     'save_as_fp16': True
                                 })
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

        save_program._sync_with_cpp()
        exe.run(save_program)

        # Copy model
        model_filename = "__model__" if self._model_filename is None \
                    else self._model_filename
        src_model = os.path.join(self._model_dir, model_filename)
        dest_model = os.path.join(save_model_dir, model_filename)
        shutil.copyfile(src_model, dest_model)

1248 1249 1250 1251 1252 1253 1254 1255
    def _quantize_weight_to_int(self, save_model_dir, save_model_filename,
                                save_params_filename, quantizable_op_type,
                                weight_bits, weight_quantize_type, for_test,
                                threshold_rate):
        """
        Generate quantized model or fake quantized model.
        """
        # Load model
1256 1257 1258 1259 1260 1261 1262 1263 1264
        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
        quantized_ops = []
        for index in range(program.num_blocks):
            block = program.block(index)
            for op in block.ops:
                if op.type in quantizable_op_type:
                    quantized_ops.append(op)

        # Quantize weights
        persistable_var_names = _all_persistable_var_names(program)
        for op in quantized_ops:
            for var_name in op.input_arg_names:
                if var_name in persistable_var_names:
                    if weight_quantize_type == "abs_max":
                        self._weight_abs_max_quantization(
                            scope, place, weight_bits, threshold_rate, op,
                            var_name, for_test)
                    elif weight_quantize_type == "channel_wise_abs_max":
                        self._weight_channel_wise_abs_max_quantization(
                            scope, place, weight_bits, op, var_name, for_test)
1284

1285 1286 1287 1288 1289 1290 1291
        io.save_inference_model(dirname=save_model_dir,
                                feeded_var_names=feed_list,
                                target_vars=fetch_list,
                                executor=exe,
                                main_program=program,
                                model_filename=save_model_filename,
                                params_filename=save_params_filename)
1292

1293 1294 1295 1296 1297 1298 1299 1300 1301
    def _weight_abs_max_quantization(self, scope, place, weight_bits,
                                     threshold_rate, op, var_name, for_test):
        '''
        Use abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
1302
        weight_data = utils.load_variable_data(scope, var_name)
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
        if abs(threshold_rate) < 1e-10:
            threshold_value = np.max(np.abs(weight_data))
        else:
            threshold_value = self._calculate_threshold(\
                weight_data, threshold_rate)
            weight_data[weight_data > threshold_value] = threshold_value
            weight_data[weight_data < -threshold_value] = -threshold_value
        scale = threshold_value / quantize_range
        quantized_weight_data = \
            np.around(weight_data / scale).astype(save_weight_dtype)

        # Set weight data
        if not for_test:
1316 1317
            utils.set_variable_data(scope, place, var_name,
                                    quantized_weight_data)
1318 1319 1320
        else:
            dequantized_weight_data = \
                (quantized_weight_data * scale).astype(np.float32)
1321 1322
            utils.set_variable_data(scope, place, var_name,
                                    dequantized_weight_data)
1323 1324 1325 1326 1327

        # Save info
        op._set_attr('quantization_type', 'post_weight_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", [scale])  # Save as list
1328
        op._set_attr("with_quant_attr", True)
1329

1330 1331 1332
    def _weight_channel_wise_abs_max_quantization(self, scope, place,
                                                  weight_bits, op, var_name,
                                                  for_test):
1333 1334 1335 1336 1337 1338 1339
        ''' 
        Use channel_wise_abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
1340
        weight_data = utils.load_variable_data(scope, var_name)
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
        if op.type == "mul":
            scales, quantized_weight_data = \
                self._mul_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        elif op.type in ["conv2d", "depthwise_conv2d"]:
            scales, quantized_weight_data = \
                self._conv_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        else:
            _logger.error(op.type + " is not supported by weight quantization")

        # Set weight data
        if not for_test:
1354 1355
            utils.set_variable_data(scope, place, var_name,
                                    quantized_weight_data)
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
        else:
            if op.type == "mul":
                dequantized_weight_data = \
                    self._mul_channel_wise_dequantization(quantized_weight_data, scales)
            elif op.type in ["conv2d", "depthwise_conv2d"]:
                dequantized_weight_data = \
                    self._conv_channel_wise_dequantization(quantized_weight_data, scales)
            else:
                _logger.error(op.type +
                              " is not supported by weight quantization")
1366 1367
            utils.set_variable_data(scope, place, var_name,
                                    dequantized_weight_data)
1368 1369 1370 1371 1372

        # Save info
        op._set_attr('quantization_type', 'post_weight_channel_wise_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", scales)
1373
        op._set_attr("with_quant_attr", True)
1374 1375 1376 1377 1378 1379 1380 1381

    def _conv_channel_wise_quantization(self, weight_data, quantize_range,
                                        save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
1382 1383
        quantized_weight_data = np.zeros_like(weight_data,
                                              dtype=save_weight_dtype)
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
        channel_num = weight_data.shape[0]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[i] = \
                np.around(weight_data[i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _conv_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For conv2d and depthwise_conv2d, dequantize the weights to fp32.
        '''
1396 1397
        dequantized_weight_data = np.zeros_like(quantized_weight_data,
                                                dtype=np.float32)
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
        for i in range(len(scales)):
            dequantized_weight_data[i] = \
                (quantized_weight_data[i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

    def _mul_channel_wise_quantization(self, weight_data, quantize_range,
                                       save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
1410 1411
        quantized_weight_data = np.zeros_like(weight_data,
                                              dtype=save_weight_dtype)
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
        channel_num = weight_data.shape[-1]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[:, i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[:, i] = \
                np.around(weight_data[:, i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _mul_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For mul, dequantize the weights to fp32.
        '''
1424 1425
        dequantized_weight_data = np.zeros_like(quantized_weight_data,
                                                dtype=np.float32)
1426 1427 1428 1429 1430
        for i in range(len(scales)):
            dequantized_weight_data[:, i] = \
                (quantized_weight_data[:, i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

1431 1432
    def _calculate_threshold(self, input, threshold_rate, histogram_bins=5000):
        input_abs = np.abs(input)
1433 1434 1435
        hist, hist_edeges = np.histogram(input_abs,
                                         bins=histogram_bins,
                                         range=(0, np.max(input_abs)))
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= 1.0 - threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edeges[1] - hist_edeges[0]
        return hist_index * bin_width