Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
b621a4f1
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b621a4f1
编写于
5月 04, 2022
作者:
G
Guanghua Yu
提交者:
GitHub
5月 04, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
support skip_op_list in PostTrainingQuantization (#42378)
上级
87afccb2
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
51 addition
and
6 deletion
+51
-6
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
...d/contrib/slim/quantization/post_training_quantization.py
+9
-0
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mnist.py
...ntrib/slim/tests/test_post_training_quantization_mnist.py
+42
-6
未找到文件。
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
浏览文件 @
b621a4f1
...
...
@@ -126,6 +126,7 @@ class PostTrainingQuantization(object):
onnx_format
=
False
,
optimize_model
=
False
,
is_use_cache_file
=
False
,
skip_tensor_list
=
None
,
cache_dir
=
None
):
'''
Constructor.
...
...
@@ -198,6 +199,7 @@ class PostTrainingQuantization(object):
the model accuracy is usually higher when it is 'channel_wise_abs_max'.
onnx_format(bool): Whether to export the quantized model with format of ONNX.
Default is False.
skip_tensor_list(list): List of skip quant tensor name.
optimize_model(bool, optional): If set optimize_model as True, it applies
some passes to the model before quantization, and it supports
`conv2d/depthwise_conv2d + bn` pass so far. Some targets require the
...
...
@@ -301,6 +303,7 @@ class PostTrainingQuantization(object):
self
.
_activation_quantize_type
=
activation_quantize_type
self
.
_weight_quantize_type
=
weight_quantize_type
self
.
_onnx_format
=
onnx_format
self
.
_skip_tensor_list
=
skip_tensor_list
self
.
_is_full_quantize
=
is_full_quantize
if
is_full_quantize
:
self
.
_quantizable_op_type
=
self
.
_support_quantize_op_type
...
...
@@ -547,6 +550,12 @@ class PostTrainingQuantization(object):
persistable_var_names
=
_all_persistable_var_names
(
self
.
_program
)
for
block_id
in
range
(
len
(
self
.
_program
.
blocks
)):
for
op
in
self
.
_program
.
blocks
[
block_id
].
ops
:
# skip quant form self._skip_tensor_list
if
self
.
_skip_tensor_list
is
not
None
:
for
inp_name
in
utils
.
_get_op_input_var_names
(
op
):
if
inp_name
in
self
.
_skip_tensor_list
:
op
.
_set_attr
(
"op_namescope"
,
"skip_quant"
)
op_type
=
op
.
type
if
self
.
_is_full_quantize
and
\
op_type
not
in
self
.
_quantizable_op_type
:
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mnist.py
浏览文件 @
b621a4f1
...
...
@@ -117,7 +117,8 @@ class TestPostTrainingQuantization(unittest.TestCase):
is_optimize_model
=
False
,
batch_size
=
10
,
batch_nums
=
10
,
onnx_format
=
False
):
onnx_format
=
False
,
skip_tensor_list
=
None
):
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -136,6 +137,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
is_full_quantize
=
is_full_quantize
,
optimize_model
=
is_optimize_model
,
onnx_format
=
onnx_format
,
skip_tensor_list
=
skip_tensor_list
,
is_use_cache_file
=
is_use_cache_file
)
ptq
.
quantize
()
ptq
.
save_quantized_model
(
self
.
int8_model_path
)
...
...
@@ -154,7 +156,8 @@ class TestPostTrainingQuantization(unittest.TestCase):
batch_size
=
10
,
infer_iterations
=
10
,
quant_iterations
=
5
,
onnx_format
=
False
):
onnx_format
=
False
,
skip_tensor_list
=
None
):
origin_model_path
=
self
.
download_model
(
data_url
,
data_md5
,
model_name
)
origin_model_path
=
os
.
path
.
join
(
origin_model_path
,
model_name
)
...
...
@@ -166,10 +169,10 @@ class TestPostTrainingQuantization(unittest.TestCase):
print
(
"Start INT8 post training quantization for {0} on {1} images ..."
.
format
(
model_name
,
quant_iterations
*
batch_size
))
self
.
generate_quantized_model
(
origin_model_path
,
algo
,
round_type
,
quantizable_op_type
,
is_full_quantiz
e
,
is_use_cache_file
,
is_optimize_model
,
batch_size
,
quant_iterations
,
onnx_forma
t
)
self
.
generate_quantized_model
(
origin_model_path
,
algo
,
round_type
,
quantizable_op_typ
e
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
batch_size
,
quant_iterations
,
onnx_format
,
skip_tensor_lis
t
)
print
(
"Start INT8 inference for {0} on {1} images ..."
.
format
(
model_name
,
infer_iterations
*
batch_size
))
...
...
@@ -426,5 +429,38 @@ class TestPostTrainingmseForMnistONNXFormatFullQuant(
onnx_format
=
onnx_format
)
class
TestPostTrainingavgForMnistSkipOP
(
TestPostTrainingQuantization
):
def
test_post_training_avg_skip_op
(
self
):
model_name
=
"mnist_model"
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"avg"
round_type
=
"round"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.01
batch_size
=
10
infer_iterations
=
50
quant_iterations
=
5
skip_tensor_list
=
[
"fc_0.w_0"
]
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
round_type
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
,
skip_tensor_list
=
skip_tensor_list
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录