cos_sim_op.h 5.8 KB
Newer Older
X
Xinghai Sun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
Q
qijun 已提交
26 27 28
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
X
Xinghai Sun 已提交
29 30 31 32 33

template <typename Place, typename T>
class CosSimKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
34 35 36 37 38 39 40 41 42
    // get Tensor
    auto* in_x = context.Input<Tensor>("X");
    auto* in_y = context.Input<Tensor>("Y");
    auto* out_z = context.Output<Tensor>("Out");
    auto* out_x_norm = context.Output<Tensor>("XNorm");
    auto* out_y_norm = context.Output<Tensor>("YNorm");
    out_z->mutable_data<T>(context.GetPlace());
    out_x_norm->mutable_data<T>(context.GetPlace());
    out_y_norm->mutable_data<T>(context.GetPlace());
X
Xinghai Sun 已提交
43

44 45 46
    // convert Tensor to Eigen Tensor
    int rows_x = in_x->dims()[0];
    int rows_y = in_y->dims()[0];
47 48
    auto x = EigenMatrix<T>::Reshape(*in_x, 1);
    auto y = EigenMatrix<T>::Reshape(*in_y, 1);
49 50 51
    auto z = EigenVector<T>::Flatten(*out_z);
    auto x_norm = EigenVector<T>::Flatten(*out_x_norm);
    auto y_norm = EigenVector<T>::Flatten(*out_y_norm);
X
Xinghai Sun 已提交
52

53
    // compute
X
Xinghai Sun 已提交
54
    auto place = context.GetEigenDevice<Place>();
55 56 57
    auto row_along = Eigen::array<int, 1>({{1}});
    x_norm.device(place) = x.square().sum(row_along).sqrt();
    y_norm.device(place) = y.square().sum(row_along).sqrt();
58 59 60 61 62
    if (rows_x == rows_y) {
      auto xy = (x * y).sum(Eigen::array<int, 1>({1}));
      z.device(place) = xy / x_norm / y_norm;
    } else {
      Eigen::DSizes<int, 2> bcast(rows_x, 1);
63
      auto xy = (x * y.broadcast(bcast)).sum(row_along);
64 65
      z.device(place) = xy / x_norm / y_norm.broadcast(bcast);
    }
X
Xinghai Sun 已提交
66 67 68 69 70 71 72
  }
};

template <typename Place, typename T>
class CosSimGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
73 74 75 76 77 78 79 80 81
    // get Tensor
    auto* in_x = context.Input<Tensor>("X");
    auto* in_y = context.Input<Tensor>("Y");
    auto* in_z = context.Input<Tensor>("Out");
    auto* in_x_norm = context.Input<Tensor>("XNorm");
    auto* in_y_norm = context.Input<Tensor>("YNorm");
    auto* out_grad_x = context.Output<Tensor>(framework::GradVarName("X"));
    auto* out_grad_y = context.Output<Tensor>(framework::GradVarName("Y"));
    auto* in_grad_z = context.Input<Tensor>(framework::GradVarName("Out"));
X
Xinghai Sun 已提交
82

83
    // convert Tensor to Eigen Tensor
84 85
    auto x = EigenMatrix<T>::Reshape(*in_x, 1);
    auto y = EigenMatrix<T>::Reshape(*in_y, 1);
86 87 88 89
    auto z = EigenMatrix<T>::Reshape(*in_z, 1);
    auto x_norm = EigenMatrix<T>::Reshape(*in_x_norm, 1);
    auto y_norm = EigenMatrix<T>::Reshape(*in_y_norm, 1);
    auto dz = EigenMatrix<T>::Reshape(*in_grad_z, 1);
X
Xinghai Sun 已提交
90

91
    // compute gradident
92 93 94 95 96 97 98
    int rows_x = in_x->dims()[0];
    int rows_y = in_y->dims()[0];
    int cols = framework::product(in_x->dims()) / rows_x;
    Eigen::DSizes<int, 2> bcast_cols(1, cols);
    auto z_bcast = z.broadcast(bcast_cols);
    auto dz_bcast = dz.broadcast(bcast_cols);
    auto x_snorm_bcast = x_norm.square().eval().broadcast(bcast_cols);
99 100
    auto place = context.GetEigenDevice<Place>();
    if (rows_x == rows_y) {
101 102
      auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast_cols);
      auto norm_prod_bcast = (x_norm * y_norm).eval().broadcast(bcast_cols);
103 104 105
      // compute dx
      if (out_grad_x) {
        out_grad_x->mutable_data<T>(context.GetPlace());
106
        auto dx = EigenMatrix<T>::Reshape(*out_grad_x, 1);
107 108 109 110 111 112
        auto grad = y / norm_prod_bcast - z_bcast * x / x_snorm_bcast;
        dx.device(place) = dz_bcast * grad;
      }
      // compute dy
      if (out_grad_y) {
        out_grad_y->mutable_data<T>(context.GetPlace());
113 114
        auto dy = EigenMatrix<T>::Reshape(*out_grad_y, 1);
        auto grad = x / norm_prod_bcast - z_bcast * y / y_snorm_bcast;
115 116 117
        dy.device(place) = dz_bcast * grad;
      }
    } else {
118
      Eigen::DSizes<int, 2> bcast_rows(rows_x, 1);
119
      Eigen::DSizes<int, 2> bcast_rows_cols(rows_x, cols);
120 121
      auto y_bcast = y.broadcast(bcast_rows);
      auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast_rows_cols);
122 123 124
      auto norm_prod_bcast = (x_norm * y_norm.eval().broadcast(bcast_rows))
                                 .eval()
                                 .broadcast(bcast_cols);
125 126 127
      // compute dx
      if (out_grad_x) {
        out_grad_x->mutable_data<T>(context.GetPlace());
128
        auto dx = EigenMatrix<T>::Reshape(*out_grad_x, 1);
129 130 131 132 133 134
        auto grad = y_bcast / norm_prod_bcast - z_bcast * x / x_snorm_bcast;
        dx.device(place) = dz_bcast * grad;
      }
      // compute dy
      if (out_grad_y) {
        out_grad_y->mutable_data<T>(context.GetPlace());
135
        auto dy = EigenMatrix<T>::Reshape(*out_grad_y, 1);
136 137 138
        auto grad = x / norm_prod_bcast - z_bcast * y_bcast / y_snorm_bcast;
        dy.device(place) = (dz_bcast * grad).sum(Eigen::array<int, 1>({0}));
      }
139
    }
X
Xinghai Sun 已提交
140 141 142 143 144
  }
};

}  // namespace operators
}  // namespace paddle