cos_sim_op.h 4.3 KB
Newer Older
X
Xinghai Sun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename Place, typename T>
class CosSimKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
31 32 33 34 35
    auto* input_x = context.Input<Tensor>("X");
    auto* input_y = context.Input<Tensor>("Y");
    auto* output_z = context.Output<Tensor>("Out");
    auto* output_x_norm = context.Output<Tensor>("XNorm");
    auto* output_y_norm = context.Output<Tensor>("YNorm");
X
Xinghai Sun 已提交
36

37 38 39
    output_z->mutable_data<T>(context.GetPlace());
    output_x_norm->mutable_data<T>(context.GetPlace());
    output_y_norm->mutable_data<T>(context.GetPlace());
X
Xinghai Sun 已提交
40

41
    auto dims = input_x->dims();
X
Xinghai Sun 已提交
42 43
    int size = static_cast<int>(framework::product(dims));
    auto new_dims = framework::make_ddim({dims[0], size / dims[0]});
44 45 46 47 48
    auto x = EigenMatrix<T>::From(*input_x, new_dims);
    auto y = EigenMatrix<T>::From(*input_y, new_dims);
    auto z = EigenMatrix<T>::From(*output_z);
    auto x_norm = EigenMatrix<T>::From(*output_x_norm);
    auto y_norm = EigenMatrix<T>::From(*output_y_norm);
X
Xinghai Sun 已提交
49 50

    auto place = context.GetEigenDevice<Place>();
51 52 53 54
    auto xy = (x * y).sum(Eigen::array<int, 1>({1}));
    x_norm.device(place) = x.square().sum(Eigen::array<int, 1>({1})).sqrt();
    y_norm.device(place) = y.square().sum(Eigen::array<int, 1>({1})).sqrt();
    z.device(place) = xy / x_norm / y_norm;
X
Xinghai Sun 已提交
55 56 57 58 59 60 61
  }
};

template <typename Place, typename T>
class CosSimGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
62 63 64 65 66 67 68 69
    auto* input_x = context.Input<Tensor>("X");
    auto* input_y = context.Input<Tensor>("Y");
    auto* input_z = context.Input<Tensor>("Out");
    auto* input_x_norm = context.Input<Tensor>("XNorm");
    auto* input_y_norm = context.Input<Tensor>("YNorm");
    auto* output_grad_x = context.Output<Tensor>(framework::GradVarName("X"));
    auto* output_grad_y = context.Output<Tensor>(framework::GradVarName("Y"));
    auto* input_grad_z = context.Input<Tensor>(framework::GradVarName("Out"));
X
Xinghai Sun 已提交
70

71
    auto dims = input_x->dims();
X
Xinghai Sun 已提交
72 73
    int size = static_cast<int>(framework::product(dims));
    auto new_dims = framework::make_ddim({dims[0], size / dims[0]});
74 75 76 77 78 79
    auto x = EigenMatrix<T>::From(*input_x, new_dims);
    auto y = EigenMatrix<T>::From(*input_y, new_dims);
    auto z = EigenMatrix<T>::From(*input_z);
    auto x_norm = EigenMatrix<T>::From(*input_x_norm);
    auto y_norm = EigenMatrix<T>::From(*input_y_norm);
    auto dz = EigenMatrix<T>::From(*input_grad_z);
X
Xinghai Sun 已提交
80

81
    Eigen::DSizes<int, 2> bcast(1, new_dims[1]);
82 83
    auto z_bcast = z.broadcast(bcast);
    auto dz_bcast = dz.broadcast(bcast);
X
Xinghai Sun 已提交
84
    auto place = context.GetEigenDevice<Place>();
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    auto x_snorm_bcast = x_norm.square().eval().broadcast(bcast);
    auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast);
    auto norm_prod_bcast = (x_norm * y_norm).eval().broadcast(bcast);
    if (output_grad_x) {
      output_grad_x->mutable_data<T>(context.GetPlace());
      auto dx = EigenMatrix<T>::From(*output_grad_x, new_dims);
      dx.device(place) =
          dz_bcast * (y / norm_prod_bcast - z_bcast * x / x_snorm_bcast);
    }
    if (output_grad_y) {
      output_grad_y->mutable_data<T>(context.GetPlace());
      auto dy = EigenMatrix<T>::From(*output_grad_y, new_dims);
      dy.device(place) =
          dz_bcast * (x / norm_prod_bcast - z_bcast * y / y_snorm_bcast);
    }
X
Xinghai Sun 已提交
100 101 102 103 104
  }
};

}  // namespace operators
}  // namespace paddle