cos_sim_op.h 5.5 KB
Newer Older
X
Xinghai Sun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename Place, typename T>
class CosSimKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
31 32 33 34 35 36 37 38 39
    // get Tensor
    auto* in_x = context.Input<Tensor>("X");
    auto* in_y = context.Input<Tensor>("Y");
    auto* out_z = context.Output<Tensor>("Out");
    auto* out_x_norm = context.Output<Tensor>("XNorm");
    auto* out_y_norm = context.Output<Tensor>("YNorm");
    out_z->mutable_data<T>(context.GetPlace());
    out_x_norm->mutable_data<T>(context.GetPlace());
    out_y_norm->mutable_data<T>(context.GetPlace());
X
Xinghai Sun 已提交
40

41 42 43 44
    // convert Tensor to Eigen Tensor
    int rows_x = in_x->dims()[0];
    int rows_y = in_y->dims()[0];
    int cols = framework::product(in_x->dims()) / rows_x;
45 46
    auto x = EigenMatrix<T>::Reshape(*in_x, 1);
    auto y = EigenMatrix<T>::Reshape(*in_y, 1);
47 48 49
    auto z = EigenMatrix<T>::From(*out_z);
    auto x_norm = EigenMatrix<T>::From(*out_x_norm);
    auto y_norm = EigenMatrix<T>::From(*out_y_norm);
X
Xinghai Sun 已提交
50

51
    // compute
X
Xinghai Sun 已提交
52
    auto place = context.GetEigenDevice<Place>();
53 54 55
    auto row_along = Eigen::array<int, 1>({{1}});
    x_norm.device(place) = x.square().sum(row_along).sqrt();
    y_norm.device(place) = y.square().sum(row_along).sqrt();
56 57 58 59 60
    if (rows_x == rows_y) {
      auto xy = (x * y).sum(Eigen::array<int, 1>({1}));
      z.device(place) = xy / x_norm / y_norm;
    } else {
      Eigen::DSizes<int, 2> bcast(rows_x, 1);
61
      auto xy = (x * y.broadcast(bcast)).sum(row_along);
62 63
      z.device(place) = xy / x_norm / y_norm.broadcast(bcast);
    }
X
Xinghai Sun 已提交
64 65 66 67 68 69 70
  }
};

template <typename Place, typename T>
class CosSimGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
71 72 73 74 75 76 77 78 79
    // get Tensor
    auto* in_x = context.Input<Tensor>("X");
    auto* in_y = context.Input<Tensor>("Y");
    auto* in_z = context.Input<Tensor>("Out");
    auto* in_x_norm = context.Input<Tensor>("XNorm");
    auto* in_y_norm = context.Input<Tensor>("YNorm");
    auto* out_grad_x = context.Output<Tensor>(framework::GradVarName("X"));
    auto* out_grad_y = context.Output<Tensor>(framework::GradVarName("Y"));
    auto* in_grad_z = context.Input<Tensor>(framework::GradVarName("Out"));
X
Xinghai Sun 已提交
80

81
    // convert Tensor to Eigen Tensor
82 83
    auto x = EigenMatrix<T>::Reshape(*in_x, 1);
    auto y = EigenMatrix<T>::Reshape(*in_y, 1);
84 85 86 87
    auto z = EigenMatrix<T>::From(*in_z);
    auto x_norm = EigenMatrix<T>::From(*in_x_norm);
    auto y_norm = EigenMatrix<T>::From(*in_y_norm);
    auto dz = EigenMatrix<T>::From(*in_grad_z);
X
Xinghai Sun 已提交
88

89
    // compute gradident
90 91 92 93 94 95 96
    int rows_x = in_x->dims()[0];
    int rows_y = in_y->dims()[0];
    int cols = framework::product(in_x->dims()) / rows_x;
    Eigen::DSizes<int, 2> bcast_cols(1, cols);
    auto z_bcast = z.broadcast(bcast_cols);
    auto dz_bcast = dz.broadcast(bcast_cols);
    auto x_snorm_bcast = x_norm.square().eval().broadcast(bcast_cols);
97 98
    auto place = context.GetEigenDevice<Place>();
    if (rows_x == rows_y) {
99 100
      auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast_cols);
      auto norm_prod_bcast = (x_norm * y_norm).eval().broadcast(bcast_cols);
101 102 103
      // compute dx
      if (out_grad_x) {
        out_grad_x->mutable_data<T>(context.GetPlace());
104
        auto dx = EigenMatrix<T>::Reshape(*out_grad_x, 1);
105 106 107 108 109 110
        auto grad = y / norm_prod_bcast - z_bcast * x / x_snorm_bcast;
        dx.device(place) = dz_bcast * grad;
      }
      // compute dy
      if (out_grad_y) {
        out_grad_y->mutable_data<T>(context.GetPlace());
111 112
        auto dy = EigenMatrix<T>::Reshape(*out_grad_y, 1) auto grad =
            x / norm_prod_bcast - z_bcast * y / y_snorm_bcast;
113 114 115
        dy.device(place) = dz_bcast * grad;
      }
    } else {
116 117 118 119 120
      Eigen::DSizes<int, 2> bcast_rows(rows_x, 1);
      Eigen::DSizes<int, 2> bcast_rows_cols(rows_x, 1);
      auto y_bcast = y.broadcast(bcast_rows);
      auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast_rows_cols);
      auto norm_prod_bcast = x_norm * y_norm.broadcast(bcast_rows_cols);
121 122 123
      // compute dx
      if (out_grad_x) {
        out_grad_x->mutable_data<T>(context.GetPlace());
124
        auto dx = EigenMatrix<T>::Reshape(*out_grad_x, 1);
125 126 127 128 129 130
        auto grad = y_bcast / norm_prod_bcast - z_bcast * x / x_snorm_bcast;
        dx.device(place) = dz_bcast * grad;
      }
      // compute dy
      if (out_grad_y) {
        out_grad_y->mutable_data<T>(context.GetPlace());
131
        auto dy = EigenMatrix<T>::Reshape(*out_grad_y, 1);
132 133 134
        auto grad = x / norm_prod_bcast - z_bcast * y_bcast / y_snorm_bcast;
        dy.device(place) = (dz_bcast * grad).sum(Eigen::array<int, 1>({0}));
      }
135
    }
X
Xinghai Sun 已提交
136 137 138 139 140
  }
};

}  // namespace operators
}  // namespace paddle