cos_sim_op.h 5.9 KB
Newer Older
X
Xinghai Sun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename Place, typename T>
class CosSimKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
31 32 33 34 35 36 37 38 39
    // get Tensor
    auto* in_x = context.Input<Tensor>("X");
    auto* in_y = context.Input<Tensor>("Y");
    auto* out_z = context.Output<Tensor>("Out");
    auto* out_x_norm = context.Output<Tensor>("XNorm");
    auto* out_y_norm = context.Output<Tensor>("YNorm");
    out_z->mutable_data<T>(context.GetPlace());
    out_x_norm->mutable_data<T>(context.GetPlace());
    out_y_norm->mutable_data<T>(context.GetPlace());
X
Xinghai Sun 已提交
40

41 42 43 44 45 46 47 48 49
    // convert Tensor to Eigen Tensor
    int rows_x = in_x->dims()[0];
    int rows_y = in_y->dims()[0];
    int cols = framework::product(in_x->dims()) / rows_x;
    auto x = EigenMatrix<T>::From(*in_x, framework::make_ddim({rows_x, cols}));
    auto y = EigenMatrix<T>::From(*in_y, framework::make_ddim({rows_y, cols}));
    auto z = EigenMatrix<T>::From(*out_z);
    auto x_norm = EigenMatrix<T>::From(*out_x_norm);
    auto y_norm = EigenMatrix<T>::From(*out_y_norm);
X
Xinghai Sun 已提交
50

51
    // compute
X
Xinghai Sun 已提交
52
    auto place = context.GetEigenDevice<Place>();
53 54
    x_norm.device(place) = x.square().sum(Eigen::array<int, 1>({1})).sqrt();
    y_norm.device(place) = y.square().sum(Eigen::array<int, 1>({1})).sqrt();
55 56 57 58 59 60 61 62
    if (rows_x == rows_y) {
      auto xy = (x * y).sum(Eigen::array<int, 1>({1}));
      z.device(place) = xy / x_norm / y_norm;
    } else {
      Eigen::DSizes<int, 2> bcast(rows_x, 1);
      auto xy = (x * y.broadcast(bcast)).sum(Eigen::array<int, 1>({1}));
      z.device(place) = xy / x_norm / y_norm.broadcast(bcast);
    }
X
Xinghai Sun 已提交
63 64 65 66 67 68 69
  }
};

template <typename Place, typename T>
class CosSimGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
70 71 72 73 74 75 76 77 78
    // get Tensor
    auto* in_x = context.Input<Tensor>("X");
    auto* in_y = context.Input<Tensor>("Y");
    auto* in_z = context.Input<Tensor>("Out");
    auto* in_x_norm = context.Input<Tensor>("XNorm");
    auto* in_y_norm = context.Input<Tensor>("YNorm");
    auto* out_grad_x = context.Output<Tensor>(framework::GradVarName("X"));
    auto* out_grad_y = context.Output<Tensor>(framework::GradVarName("Y"));
    auto* in_grad_z = context.Input<Tensor>(framework::GradVarName("Out"));
X
Xinghai Sun 已提交
79

80 81 82 83 84 85 86 87 88 89
    // convert Tensor to Eigen Tensor
    int rows_x = in_x->dims()[0];
    int rows_y = in_y->dims()[0];
    int cols = framework::product(in_x->dims()) / rows_x;
    auto x = EigenMatrix<T>::From(*in_x, framework::make_ddim({rows_x, cols}));
    auto y = EigenMatrix<T>::From(*in_y, framework::make_ddim({rows_y, cols}));
    auto z = EigenMatrix<T>::From(*in_z);
    auto x_norm = EigenMatrix<T>::From(*in_x_norm);
    auto y_norm = EigenMatrix<T>::From(*in_y_norm);
    auto dz = EigenMatrix<T>::From(*in_grad_z);
X
Xinghai Sun 已提交
90

91 92
    // compute gradident
    Eigen::DSizes<int, 2> bcast(1, cols);
93 94 95
    auto z_bcast = z.broadcast(bcast);
    auto dz_bcast = dz.broadcast(bcast);
    auto x_snorm_bcast = x_norm.square().eval().broadcast(bcast);
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    auto place = context.GetEigenDevice<Place>();
    if (rows_x == rows_y) {
      auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast);
      auto norm_prod_bcast = (x_norm * y_norm).eval().broadcast(bcast);
      // compute dx
      if (out_grad_x) {
        out_grad_x->mutable_data<T>(context.GetPlace());
        auto dx = EigenMatrix<T>::From(*out_grad_x,
                                       framework::make_ddim({rows_x, cols}));
        auto grad = y / norm_prod_bcast - z_bcast * x / x_snorm_bcast;
        dx.device(place) = dz_bcast * grad;
      }
      // compute dy
      if (out_grad_y) {
        out_grad_y->mutable_data<T>(context.GetPlace());
        auto dy = EigenMatrix<T>::From(*out_grad_y,
                                       framework::make_ddim({rows_y, cols}));
        auto grad = x / norm_prod_bcast - z_bcast * y / y_snorm_bcast;
        dy.device(place) = dz_bcast * grad;
      }
    } else {
      Eigen::DSizes<int, 2> bcast_row(rows_x, 1);
      auto y_bcast =  y.broadcast(bcast_row);
      auto y_snorm_bcast =
          y_norm.square().eval().broadcast(bcast_row).eval().broadcast(bcast);
      auto norm_prod_bcast =
          (x_norm * y_norm.broadcast(bcast_row)).eval().broadcast(bcast);
      // compute dx
      if (out_grad_x) {
        out_grad_x->mutable_data<T>(context.GetPlace());
        auto dx = EigenMatrix<T>::From(
          *out_grad_x, framework::make_ddim({rows_x, cols}));
        auto grad = y_bcast / norm_prod_bcast - z_bcast * x / x_snorm_bcast;
        dx.device(place) = dz_bcast * grad;
      }
      // compute dy
      if (out_grad_y) {
        out_grad_y->mutable_data<T>(context.GetPlace());
        auto dy = EigenMatrix<T>::From(
          *out_grad_y, framework::make_ddim({rows_y, cols}));
        auto grad = x / norm_prod_bcast - z_bcast * y_bcast / y_snorm_bcast;
        dy.device(place) = (dz_bcast * grad).sum(Eigen::array<int, 1>({0}));
      }
139
    }
X
Xinghai Sun 已提交
140 141 142 143 144
  }
};

}  // namespace operators
}  // namespace paddle