qat.py 26.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
guofei 已提交
15
import collections
16 17 18
import logging
import numpy as np
import sys
19
import os
20 21
import warnings

22
import paddle
23
import paddle.nn as nn
24
import paddle.nn.quant.quant_layers as quant_layers
25
from paddle.fluid import dygraph, core, framework, unique_name
26
from paddle.fluid.framework import IrGraph
27
from paddle.fluid.executor import Executor, global_scope
28 29
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Constant
30 31
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX
from paddle.fluid.io import load_inference_model, save_inference_model
32
from ..quantization_pass import ReplaceFakeQuantDequantPass, QuantWeightPass
33
from paddle.fluid.log_helper import get_logger
34
from .. import quantization_pass
C
cc 已提交
35
from . import utils
36
from . import fuse_utils
37

C
cc 已提交
38
__all__ = ['ImperativeQuantAware']
39 40 41 42 43 44 45

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


class ImperativeQuantAware(object):
    """
46
    Applying quantization aware training (QAT) to the dgraph model.
47 48
    """

49 50 51 52 53 54 55 56
    def __init__(
            self,
            quantizable_layer_type=['Conv2D', 'Linear', 'Conv2DTranspose'],
            weight_quantize_type='abs_max',
            activation_quantize_type='moving_average_abs_max',
            weight_bits=8,
            activation_bits=8,
            moving_rate=0.9,
57
            fuse_conv_bn=False,
58 59 60 61
            weight_preprocess_layer=None,
            act_preprocess_layer=None,
            weight_quantize_layer=None,
            act_quantize_layer=None):
C
cc 已提交
62
        """
63 64 65
        The constructor for ImperativeQuantAware.

        Args:
66 67
            quantizable_layer_type(list[str | layer]): List the type of
                layers that will be quantized. Default is ['Conv2D', 'Linear'].
68
            weight_quantize_type(str): quantization type for weights,
69
                which supports 'abs_max' and 'channel_wise_abs_max'.
70 71
            activation_quantize_type(str): quantization type for activations,
                which supports 'abs_max' and 'moving_average_abs_max' now.
C
cc 已提交
72 73 74 75 76
                If using 'abs_max' mode, the quantization scale will be
                calculated dynamically each step in both training and testing
                period. If using 'moving_average_abs_max', the static
                quantization scale will be calculated during training and
                used in inference.
77 78
            weight_bits(int): quantization bit number for weights, whereas
                the bias is not quantized.
C
cc 已提交
79 80 81
            activation_bits(int): quantization bit number for activations.
            moving_rate(float): the parameter for 'moving_average_abs_max'
                quantization.
82
            fuse_conv_bn(bool): Whether to fuse conv and bn, default is False.
C
cc 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
            weight_preprocess_layer(paddle.nn.Layer, optional): A paddle
                Layer that defines how to preprocess weight before quantization.
                Using this can quickly test if user's preprocess method works
                or not. The input is non-quantized weight and function returns
                processed weight to be quantized.
                If None, the weight will be quantized directly.
                Default is None.
            act_preprocess_layer(paddle.nn.Layer, optional): A paddle Layer
                that defines how to preprocess activation before quantization.
                Using this can quickly test if user's preprocess method works
                or not. The input is non-quantized activation and function returns
                processed activation to be quantized.
                If None, the activation will be quantized directly.
                Default is None.
            weight_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that
                defines how to quantize weight.
99 100 101
                Using this can quickly test if user's quantization method works or not.
                In this layer, user should both define quantization method and
                dequantization method, that is, the function's input is non-quantized
C
cc 已提交
102 103 104 105 106
                weight and returns dequantized weight.
                If None, will use uantization op defined by 'weight_quantize_type'.
                Default is None.
            act_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that defines
                how to quantize activation.
107 108 109
                Using this can quickly test if user's quantization method works or not.
                In this layer, user should both define quantization method and
                dequantization method, that is, the function's input is non-quantized
C
cc 已提交
110 111 112
                activation and returns dequantized activation. 
                If None, will use quantization op defined by 'activation_quantize_type'.
                Default is None.
113

114
        Note:
C
cc 已提交
115 116 117 118
            If user sets attribute 'skip_quant' to a Layer that support dynamic
            quantization and sets it to true, the layer would not be quantized
            during training. If this attribute is not sets or the attribute is
            false, the Layer would be qunatized in training.
119 120

        Examples 1:
121 122
        .. code-block:: python

123
            import paddle
124 125
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware
126
            from paddle.vision.models \
127 128 129 130 131 132 133 134 135 136
                import resnet
            
            model = resnet.resnet50(pretrained=True)

            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')
            
            # Add the fake quant logical.
            # The original model will be rewrite.
137
            # The outscale of outputs in supportted layers would be calculated.
138 139 140 141 142 143
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...
            
            # Save quant model for the inference.
144
            imperative_qat.save_quantized_model(
145 146 147 148 149
                layer=model,
                model_path="./resnet50_qat",
                input_spec=[
                    paddle.static.InputSpec(
                    shape=[None, 3, 224, 224], dtype='float32')])
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

        Examples 2:
        .. code-block:: python

            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware

            class ImperativeModel(paddle.nn.Layer):
                def __init__(self):
                    super(ImperativeModel, self).__init__()
                    # self.linear_0 would skip the quantization.
                    self.linear_0 = paddle.nn.Linear(784, 400)
                    self.linear_0.skip_quant = True

                    # self.linear_1 would not skip the quantization.
                    self.linear_1 = paddle.nn.Linear(400, 10)
                    self.linear_1.skip_quant = False

                def forward(self, inputs):
                    x = self.linear_0(inputs)
                    x = self.linear_1(inputs)
                    return x

            model = ImperativeModel()
            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')

            # Add the fake quant logical.
            # The original model will be rewrite.
            #
            # There is only one Layer(self.linear1) would be added the
            # fake quant logical.
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...

            # Save quant model for the inference.
            imperative_qat.save_quantized_model(
                layer=model,
                model_path="./imperative_model_qat")
193 194
        """
        super(ImperativeQuantAware, self).__init__()
195
        self.fuse_conv_bn = fuse_conv_bn
H
huangxu96 已提交
196

C
cc 已提交
197 198 199 200 201 202 203 204 205 206 207
        kwargs = {
            "quantizable_layer_type": quantizable_layer_type,
            "weight_quantize_type": weight_quantize_type,
            "activation_quantize_type": activation_quantize_type,
            "weight_bits": weight_bits,
            "activation_bits": activation_bits,
            "moving_rate": moving_rate,
            "weight_preprocess_layer": weight_preprocess_layer,
            "act_preprocess_layer": act_preprocess_layer,
            "weight_quantize_layer": weight_quantize_layer,
            "act_quantize_layer": act_quantize_layer
208
        }
C
cc 已提交
209 210 211

        self._quantize_inputs = ImperativeQuantizeInputs(**kwargs)

X
XGZhang 已提交
212
        self._quantize_outputs = ImperativeQuantizeOutputs(moving_rate)
213 214 215

    def quantize(self, model):
        """
C
cc 已提交
216 217 218 219 220
        According to weights' and activations' quantization types,
        the model will be added some fake quant ops, such as
        fake_quantize_dequantize_moving_average_abs_max,
        fake_quantize_dequantize_abs_max and so on. At the same time,
        the out_scale value of outputs would be calculated.
221 222

        Args:
223
            model(paddle.nn.Layer): the model to be quantized.
224 225
        Returns:
            None
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

        Examples:
        .. code-block:: python

            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware

            class ImperativeModel(paddle.nn.Layer):
                def __init__(self):
                    super(ImperativeModel, self).__init__()
                    # self.linear_0 would skip the quantization.
                    self.linear_0 = paddle.nn.Linear(784, 400)
                    self.linear_0.skip_quant = True

                    # self.linear_1 would not skip the quantization.
                    self.linear_1 = paddle.nn.Linear(400, 10)
                    self.linear_1.skip_quant = False

                def forward(self, inputs):
                    x = self.linear_0(inputs)
                    x = self.linear_1(inputs)
                    return x

            model = ImperativeModel()
            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')

            # Add the fake quant logical.
            # The original model will be rewrite.
            #
            # There is only one Layer(self.linear1) would be added the
            # fake quant logical.
            imperative_qat.quantize(model)
261
        """
C
cc 已提交
262 263
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."
264 265 266 267

        if self.fuse_conv_bn:
            fuse_utils.fuse_conv_bn(model)

C
cc 已提交
268
        self._quantize_inputs.apply(model)
269
        self._quantize_outputs.apply(model)
270
        return model
C
cc 已提交
271 272

    def save_quantized_model(self, layer, path, input_spec=None, **config):
273 274
        self._quantize_outputs.save_quantized_model(layer, path, input_spec,
                                                    **config)
C
cc 已提交
275 276 277 278 279 280 281 282


class ImperativeQuantizeInputs(object):
    """
    Based on the input params, add the quant_dequant computational
    logic both for activation inputs and weight inputs.
    """

283 284 285 286 287 288 289 290 291 292 293 294
    def __init__(
            self,
            quantizable_layer_type=['Conv2D', 'Linear', 'Conv2DTranspose'],
            weight_quantize_type='abs_max',
            activation_quantize_type='moving_average_abs_max',
            weight_bits=8,
            activation_bits=8,
            moving_rate=0.9,
            weight_preprocess_layer=None,
            act_preprocess_layer=None,
            weight_quantize_layer=None,
            act_quantize_layer=None):
C
cc 已提交
295 296 297 298 299 300 301 302
        """
        The constructor for ImperativeQuantizeInputs. 

        Please refer to the args of ImperativeQuantAware.
        """
        super(ImperativeQuantizeInputs, self).__init__()

        self._quantizable_layer_type = tuple(
303 304
            utils.layer_name_map[layer]
            if layer in utils.layer_name_map else layer
C
cc 已提交
305 306
            for layer in quantizable_layer_type)
        for layer in self._quantizable_layer_type:
307 308
            assert not isinstance(layer, str) \
                and layer in utils.fake_quant_input_layers, \
C
cc 已提交
309 310 311 312 313
                "%s is unspported to be quantized." % layer

        quantize_type = {
            'abs_max', 'moving_average_abs_max', 'channel_wise_abs_max'
        }
314 315
        assert weight_quantize_type != 'moving_average_abs_max' \
            and weight_quantize_type in quantize_type, \
C
cc 已提交
316
            "Unsupported weight_quantize_type: %s. It can only " \
317 318 319
            "be abs_max or channel_wise_abs_max." % weight_quantize_type
        # TODO (jc): activation_quantize_type supports range_abs_max
        assert activation_quantize_type == 'moving_average_abs_max', \
C
cc 已提交
320
            "Unsupported activation_quantize_type: %s. It can " \
321
            "only be moving_average_abs_max now." \
C
cc 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
            % activation_quantize_type

        bits_check = lambda bits: isinstance(bits, int) \
            and bits >= 0 and bits <= 16
        assert bits_check(weight_bits), \
            "weight_bits should be 1, 2,... or 16."
        assert bits_check(activation_bits), \
            "activation_bits should be 1, 2,... or 16."

        layer_check = lambda method: method is None or \
            issubclass(method, dygraph.layers.Layer)
        assert layer_check(weight_preprocess_layer), \
            "weight_preprocess should be nn.Layer."
        assert layer_check(act_preprocess_layer), \
            "act_preprocess should be nn.Layer."
        assert layer_check(weight_quantize_layer), \
            "weight_quantize should be nn.Layer."
        assert layer_check(act_quantize_layer), \
            "act_quantize should be nn.Layer."

        self._kwargs = {
            "weight_quantize_type": weight_quantize_type,
            "activation_quantize_type": activation_quantize_type,
            "weight_bits": weight_bits,
            "activation_bits": activation_bits,
            "moving_rate": moving_rate,
            "weight_pre_layer": weight_preprocess_layer,
            "act_pre_layer": act_preprocess_layer,
            "weight_quant_layer": weight_quantize_layer,
            "act_quant_layer": act_quantize_layer
        }

    def apply(self, model):
355 356 357 358 359 360 361 362 363 364 365 366
        """
        Quantize the weights and activations to calculate for specific 
        layers.

        Args:
            model(paddle.nn.Layer): The target model which would
                calculate the input quantization scale.

        Returns:
            None
        """

C
cc 已提交
367 368 369
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."

370 371 372 373
        for name, cur_layer in model.named_sublayers():
            if not isinstance(cur_layer, self._quantizable_layer_type) \
                or (hasattr(cur_layer, "skip_quant") \
                    and cur_layer.skip_quant == True):
374 375
                continue

376 377 378 379 380
            parent_layer, sub_name = \
                utils.find_parent_layer_and_sub_name(model, name)

            cur_quant_layer = self._get_input_quantized_layer(cur_layer)
            setattr(parent_layer, sub_name, cur_quant_layer)
381

382
    def _get_input_quantized_layer(self, layer):
C
cc 已提交
383
        quant_layer_name = None
384 385

        for key, value in utils.layer_name_map.items():
C
cc 已提交
386 387 388 389 390 391
            if isinstance(layer, value):
                quant_layer_name = 'Quantized' + key
                break
        assert quant_layer_name is not None, \
            "The layer %s is unsupported to be quantized." \
            % layer.full_name()
392

393
        return quant_layers.__dict__[quant_layer_name](layer, **self._kwargs)
394

395

396 397
class ImperativeQuantizeOutputs(object):
    """
398
    Calculate the output scales for target layers.
399 400
    """

401
    def __init__(self, moving_rate=0.9):
402
        """
403
        The constructor for ImperativeQuantizeOutputs.
404 405

        Args:
C
cc 已提交
406 407
            moving_rate(float): The decay coefficient of moving average.
                                The default value is 0.9.
408
        """
409
        super(ImperativeQuantizeOutputs, self).__init__()
410 411
        self._moving_rate = moving_rate

C
cc 已提交
412
    def apply(self, model):
413
        """
414 415
        Insert the `moving_average_abs_max_scale` layers to calculate the
        output scales for specific layers in the dygraph model.
416 417

        Args:
418
            model(paddle.nn.Layer): The target model which would be
419
                calculate the output quantization scale.
420 421 422 423

        Returns:
            None
        """
C
cc 已提交
424 425
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."
426

427
        for cur_name, cur_layer in model.named_sublayers():
X
XGZhang 已提交
428 429
            if '_act_preprocess' in cur_name:
                continue
430
            if not self._is_target_layer(cur_layer):
431 432
                continue

433 434 435 436
            parent_layer, sub_name = \
                utils.find_parent_layer_and_sub_name(model, cur_name)

            if isinstance(cur_layer, tuple(utils.fake_quant_output_layers)):
437
                cur_quant_layer = quant_layers.FakeQuantMAOutputScaleLayer(
438 439
                    cur_layer, self._moving_rate)
            else:
440 441
                cur_quant_layer = quant_layers.MAOutputScaleLayer(
                    cur_layer, self._moving_rate)
442 443

            setattr(parent_layer, sub_name, cur_quant_layer)
444

445 446 447 448 449 450
    def save_quantized_model(self,
                             model,
                             path,
                             input_spec=None,
                             onnx_format=False,
                             **config):
451 452 453 454
        """
        Save the quantized model for the inference.

        Args:
455
            model (Layer): The model to be saved.
456 457 458 459 460 461 462
            path (str): The path prefix to save model. The format is 
                ``dirname/file_prefix`` or ``file_prefix``.
            input_spec (list[InputSpec|Tensor], optional): Describes the input
                of the saved model's forward method, which can be described by
                InputSpec or example Tensor. If None, all input variables of 
                the original Layer's forward method would be the inputs of
                the saved model. Default None.
463 464
            onnx_format (bool, optional): Whether to export the quantized model 
                with format of ONNX. Default is False.
465 466 467 468
            **configs (dict, optional): Other save configuration options for
                compatibility. We do not recommend using these configurations,
                they may be removed in the future. If not necessary, DO NOT use
                them. Default None.
469
                The following options are currently supported:
470 471 472 473 474 475
                (1) output_spec (list[Tensor]): Selects the output targets of
                the saved model. By default, all return variables of original
                Layer's forward method are kept as the output of the saved model.
                If the provided ``output_spec`` list is not all output variables, 
                the saved model will be pruned according to the given
                ``output_spec`` list. 
476 477 478 479

        Returns:
            None
        """
480
        assert isinstance(model, dygraph.Layer), \
481 482
            "The model must be the instance of dygraph.Layer."

483
        paddle.jit.save(layer=model, path=path, input_spec=input_spec, **config)
484 485

        is_dynamic_mode = False
486 487 488 489
        if paddle.in_dynamic_mode():
            is_dynamic_mode = True
            paddle.enable_static()

490 491
        place = core.CPUPlace()
        scope = global_scope()
492 493 494
        exe = Executor(place)

        dirname = os.path.dirname(path)
495 496 497
        basename = os.path.basename(path)
        model_filename = basename + INFER_MODEL_SUFFIX
        params_filename = basename + INFER_PARAMS_SUFFIX
498 499

        [infer_program, feed_target_names, fetch_targets] = (
500 501 502 503 504 505
            load_inference_model(
                dirname=dirname,
                executor=exe,
                model_filename=model_filename,
                params_filename=params_filename))

506
        self._gather_scales(infer_program, scope, fetch_targets)
507

508 509 510 511 512 513 514 515 516
        # Remove `moving_average_abs_max_scale` node in sub graphs.
        graph = IrGraph(core.Graph(infer_program.desc), for_test=False)
        for sub_graph in graph.all_sub_graphs():
            for _op in sub_graph.all_op_nodes():
                if _op.name() == "moving_average_abs_max_scale":
                    sub_graph.safe_remove_nodes(_op)
            sub_graph.resolve_hazard()
        infer_program = graph.to_program()

517
        self._set_skip_quant_attr(infer_program)
G
guofei 已提交
518

519 520 521 522 523 524 525 526 527 528 529 530
        clip_extra = False
        if onnx_format:
            graph = IrGraph(core.Graph(infer_program.desc), for_test=False)
            transform_pass = ReplaceFakeQuantDequantPass(scope, place)
            transform_pass.apply(graph)

            quant_weight_pass = QuantWeightPass(scope, place)
            quant_weight_pass.apply(graph)
            infer_program = graph.to_program()

            clip_extra = True

531 532 533 534 535
        save_inference_model(
            dirname=dirname,
            feeded_var_names=feed_target_names,
            target_vars=fetch_targets,
            executor=exe,
536
            main_program=infer_program.clone(),
537
            model_filename=model_filename,
538
            params_filename=params_filename,
539
            clip_extra=clip_extra)
540

541 542 543
        if is_dynamic_mode:
            paddle.disable_static()

544
    def _is_target_layer(self, layer):
545
        """
546
        Whether the layer needs to calculate output scales.
547
        """
548 549
        flag = False
        if isinstance(layer, dygraph.Layer):
550
            # exclude fake_quant ops in quant_layers file
551 552 553
            if utils.is_leaf_layer(layer) and \
                not isinstance(layer, tuple(utils.fake_quant_leaf_layers)):
                flag = True
554

555 556
            if isinstance(layer, tuple(utils.fake_quant_wrap_layers)):
                flag = True
557 558 559 560

            if isinstance(layer, paddle.nn.quant.FloatFunctionalLayer):
                flag = True

561
        return flag
C
cc 已提交
562

563
    def _gather_scales(self, program, scope, fetch_targets):
564
        """
565
        Get all scales from fake ops, save them into the corresponding ops
566
        and delete all moving_average_abs_max_scale ops.
567
        """
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591

        def _gather_input_scale():
            target_ops = []
            skip_ops = utils.fake_quantize_dequantize_op_types + \
                ["moving_average_abs_max_scale"]
            for block in program.blocks:
                for op in block.ops:
                    if op.type not in skip_ops:
                        target_ops.append(op)

            for op in target_ops:
                for in_var_name in utils._get_op_input_var_names(op):
                    previous_op = utils.find_previous_op(op.block, in_var_name)

                    if previous_op is not None and \
                        ("quantize_dequantize" in previous_op.type or \
                        previous_op.type == "moving_average_abs_max_scale"):
                        scale_name = previous_op.output('OutScale')[0]
                        in_scale = utils.load_variable_data(scope, scale_name)
                        in_scale = utils.fp_numpy_to_naive(in_scale)
                        argname, index = utils._get_input_name_index(
                            op, in_var_name)
                        op._set_attr(argname + str(index) + "_threshold",
                                     in_scale)
592
                        op._set_attr("with_quant_attr", True)
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612

        def _gather_output_scale():
            target_ops = []
            for block in program.blocks:
                for op in block.ops:
                    if op.type == "moving_average_abs_max_scale":
                        target_ops.append(op)

            for op in target_ops:
                in_var_name = op.input('X')[0]
                out_var_name = op.output('Out')[0]
                block = op.block
                previous_op = utils.find_previous_op(block, in_var_name)
                next_ops = utils.find_next_ops(block, out_var_name)

                out_scale_name = op.output('OutScale')[0]
                out_scale = utils.load_variable_data(scope, out_scale_name)
                out_scale = utils.fp_numpy_to_naive(out_scale)

                if previous_op.type != "feed":
X
XGZhang 已提交
613 614 615 616 617 618
                    res = utils._get_output_name_index(previous_op, in_var_name)
                    if res is not None:
                        argname, index = res
                        previous_op._set_attr(
                            argname + str(index) + "_threshold", out_scale)
                        previous_op._set_attr("out_threshold", out_scale)
619
                        previous_op._set_attr("with_quant_attr", True)
620 621 622

                for next_op in next_ops:
                    next_op._rename_input(out_var_name, in_var_name)
623 624 625 626 627
                    # If next_op is `fetch` and out_var_name in fetch_targets,
                    # fetch_targets must update to in_var_name when rename input.
                    for i in range(len(fetch_targets)):
                        if fetch_targets[i].name == out_var_name:
                            fetch_targets[i] = block.var(in_var_name)
628 629 630

        _gather_input_scale()
        _gather_output_scale()
C
cc 已提交
631

632
    def _set_skip_quant_attr(self, program):
633
        """
634
        Label the skip quantized ops.
635
        """
636 637 638 639
        for block in program.blocks:
            for op in block.ops:
                if self._is_skip_quant_op(block, op):
                    op._set_attr("skip_quant", True)
640
                    op._set_attr("with_quant_attr", True)
G
guofei 已提交
641 642 643 644 645 646 647

    def _is_skip_quant_op(self, block, in_op):
        """
        The input op should be skipped quantization.
        1. the type of input op should be conv2d, depthwise_conv2d or matmul
        2. the previous ops of the input op are not fake_quantize_dequantize ops
        """
648 649 650
        target_op_types = [
            "conv2d", "depthwise_conv2d", "matmul", "conv2d_transpose"
        ]
G
guofei 已提交
651 652 653
        if in_op.type not in target_op_types:
            return False

654
        previous_ops = [utils.find_previous_op(block, arg_name) \
G
guofei 已提交
655
            for arg_name in in_op.input_arg_names]
656
        return any(op is not None and op.type not in \
657
            utils.fake_quantize_dequantize_op_types for op in previous_ops)