build_cinn_pass.cc 26.5 KB
Newer Older
J
jiangcheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/paddle2cinn/build_cinn_pass.h"

17 18
#include <algorithm>
#include <iterator>
J
jiangcheng 已提交
19
#include <memory>
20
#include <regex>
J
jiangcheng 已提交
21 22 23
#include <string>
#include <unordered_map>
#include <unordered_set>
24
#include <utility>
J
jiangcheng 已提交
25 26
#include <vector>

27 28
#include "cinn/frontend/op_mapper_registry.h"
#include "cinn/frontend/op_mappers/use_op_mappers.h"
29 30
#include "gflags/gflags.h"
#include "glog/logging.h"
J
jiangcheng 已提交
31
#include "paddle/fluid/framework/ir/graph.h"
32
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
J
jiangcheng 已提交
33 34
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/ir/subgraph_detector.h"
35
#include "paddle/fluid/framework/op_info.h"
36
#include "paddle/fluid/framework/op_proto_maker.h"
37
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
38
#include "paddle/fluid/operators/cinn/cinn_launch_op.h"
39 40
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"
J
jiangcheng 已提交
41

42 43 44
DECLARE_string(allow_cinn_ops);
DECLARE_string(deny_cinn_ops);

J
jiangcheng 已提交
45 46 47 48 49 50 51 52
namespace paddle {
namespace framework {
namespace paddle2cinn {

using framework::ir::Graph;
using framework::ir::Node;

using GraphNodeVec = std::vector<Node*>;
53
using GraphNodeMap = std::unordered_map<Node*, Node*>;
J
jiangcheng 已提交
54

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
OpTransInfo::OpTransInfo() {
  // judgment condition for the dynamic slice
  dynamic_op_cond_.emplace("slice", [](const ir::Node& node) -> bool {
    if (!node.IsOp()) {
      return false;
    }
    auto* op_desc = node.Op();
    auto infer_flags =
        op_desc->GetAttrIfExists<std::vector<int>>("infer_flags");
    return std::find_if(infer_flags.begin(), infer_flags.end(), [](int v) {
             return v < 0;
           }) != infer_flags.end();
  });

  // judgment condition for the dynamic reshape
  dynamic_op_cond_.emplace("reshape", [](const ir::Node& node) -> bool {
    if (!node.IsOp()) {
      return false;
    }
    auto* op_desc = node.Op();
    bool has_shape_tensor = op_desc->Inputs().count("ShapeTensor") &&
                            op_desc->Inputs().at("ShapeTensor").size();
    bool has_shape = op_desc->Inputs().count("Shape") &&
                     op_desc->Inputs().at("Shape").size();
    return has_shape_tensor || has_shape;
  });

  // judgment condition for the dynamic reshape2
  dynamic_op_cond_.emplace("reshape2", dynamic_op_cond_.at("reshape"));
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

  // judgment condition for the dynamic expand
  dynamic_op_cond_.emplace("expand", [](const ir::Node& node) -> bool {
    if (!node.IsOp()) {
      return false;
    }
    auto* op_desc = node.Op();
    bool has_expand_times_tensor =
        op_desc->Inputs().count("expand_times_tensor") &&
        op_desc->Inputs().at("expand_times_tensor").size();
    bool has_expand_times = op_desc->Inputs().count("ExpandTimes") &&
                            op_desc->Inputs().at("ExpandTimes").size();
    return has_expand_times_tensor || has_expand_times;
  });

  // judgment condition for the dynamic expand_v2
  dynamic_op_cond_.emplace("expand_v2", [](const ir::Node& node) -> bool {
    if (!node.IsOp()) {
      return false;
    }
    auto* op_desc = node.Op();
    bool has_expand_shapes_tensor =
        op_desc->Inputs().count("expand_shapes_tensor") &&
        op_desc->Inputs().at("expand_shapes_tensor").size();
    bool has_shape = op_desc->Inputs().count("Shape") &&
                     op_desc->Inputs().at("Shape").size();
    return has_expand_shapes_tensor || has_shape;
  });
112 113
}

114 115
std::unordered_set<std::string> OpTransInfo::GetDenyVarNames(
    const GraphNodeSet& cluster) const {
116 117 118 119 120 121 122 123 124 125 126 127 128
  std::unordered_set<std::string> deny_var_set;

  auto get_debug_info = [](const std::unordered_set<std::string>& var_names) {
    std::string debug_info = "[";
    for (auto& var : var_names) {
      debug_info.append(var);
      debug_info.append(", ");
    }
    debug_info.append("]");
    return debug_info;
  };

  for (auto* op : cluster) {
129
    if (deny_param_cond_.count(op->Name())) {
130
      const auto* desc = op->Op();
131 132
      PADDLE_ENFORCE_NE(desc,
                        nullptr,
133 134
                        platform::errors::PreconditionNotMet(
                            "The Op %s's OpDesc should not be NULL, which has "
135
                            "a parameter in deny_param_cond_.",
136 137
                            op->Name().c_str()));

138
      auto deny_param_names = deny_param_cond_.at(op->Name());
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
      VLOG(4) << "We found deny param " << get_debug_info(deny_param_names)
              << " in op [" << op->Name() << "].";

      for (const auto& param_name : deny_param_names) {
        if (desc->Inputs().count(param_name)) {
          const auto& arg_names = desc->Input(param_name);
          for (const auto& arg_name : arg_names) {
            deny_var_set.insert(arg_name);
            VLOG(4) << "deny param [" << param_name << "]'s argument name"
                    << " is [" << arg_name << "].";
          }
        }

        if (desc->HasOutput(param_name)) {
          const auto& arg_names = desc->Output(param_name);
          for (const auto& arg_name : arg_names) {
            deny_var_set.insert(arg_name);
            VLOG(4) << "deny param [" << param_name << "]'s argument name"
                    << " is [" << arg_name << "].";
          }
        }
      }
    }
  }

  VLOG(4) << "All deny var names are " << get_debug_info(deny_var_set);

  return deny_var_set;
}

169 170 171 172 173 174 175 176 177
bool OpTransInfo::IsInplaceOp(const OpDesc& op_desc) {
  auto inputs = op_desc.InputArgumentNames();
  std::unordered_set<std::string> input_set(inputs.begin(), inputs.end());
  for (auto& name : op_desc.OutputArgumentNames()) {
    if (input_set.count(name) > 0) return true;
  }
  return false;
}

178 179 180 181 182
namespace {
// The delim(`;`) that is used to split the FLAGS_allow_cinn_ops
// & FLAGS_deny_cinn_ops.
constexpr char kDelim[] = ";";

183 184 185 186 187 188 189 190 191 192
std::unordered_set<std::string> StringSplit(const std::string& str,
                                            const std::string& delim) {
  std::regex reg(delim);
  std::unordered_set<std::string> elems{
      std::sregex_token_iterator(str.begin(), str.end(), reg, -1),
      std::sregex_token_iterator()};
  elems.erase("");
  return elems;
}

193 194 195 196 197
int ExtractOpRole(const GraphNodeSet& cluster) {
  std::unordered_set<int> op_roles;
  std::string attr_name = OpProtoAndCheckerMaker::OpRoleAttrName();
  for (auto* n : cluster) {
    if (n->Op() && n->Op()->HasAttr(attr_name)) {
R
Ruibiao Chen 已提交
198
      op_roles.insert(PADDLE_GET_CONST(int, n->Op()->GetAttr(attr_name)));
199 200 201 202 203 204 205 206 207
    }
  }
  if (op_roles.size() == 1U) {
    return *(op_roles.begin());
  } else {
    return static_cast<int>(OpRole::kNotSpecified);
  }
}

208
// Deal with input var nodes of the target subgraph:
209
// create a new input var node and it's feed op node
210
void AddFeedOpAndVar(const GraphNodeSet& input_vars,
211
                     const GraphNodeSet& cluster,
212
                     const GraphNodeMap& old_op2new_op,
213 214
                     const GraphNodeMap& old_var2new_var,
                     Graph* graph) {
215
  for (auto* old_var : input_vars) {
216 217 218 219 220 221
    // create feed op
    OpDesc desc;
    desc.SetType("feed");
    desc.SetOutput("Out", {old_var->Name()});
    auto op = graph->CreateOpNode(&desc);

222 223
    // get new feed var node
    auto* var = old_var2new_var.at(old_var);
224
    VLOG(4) << "Add Feed Op before the input var: " << var->Name();
225 226

    // link feed op and feed var
227
    IR_NODE_LINK_TO(op, var);
228 229 230 231

    // link feed var to cluster op
    for (auto* old_op : old_var->outputs) {
      if (cluster.count(old_op)) {
232
        IR_NODE_LINK_TO(var, old_op2new_op.at(old_op));
233 234
      }
      // Do not need relink old op or old var here, they will be
235
      // fixed in RemoveSubGraphFromGraph, here we just deal with
236 237 238 239 240 241 242
      // new subgraph's node.
    }
  }
}

// Deal with subgraph's outputs var node:
// create a new output var node and it's fetch op
243 244
void AddOutputVar(const GraphNodeSet& output_vars,
                  const GraphNodeSet& cluster,
245
                  const GraphNodeMap& old_op2new_op,
246 247
                  const GraphNodeMap& old_var2new_var,
                  Graph* graph) {
248
  for (auto* old_var : output_vars) {
249 250 251 252 253 254
    // create fetch op
    OpDesc desc;
    desc.SetType("fetch");
    desc.SetInput("X", {old_var->Name()});
    auto op = graph->CreateOpNode(&desc);

255
    auto* var = old_var2new_var.at(old_var);
256
    VLOG(4) << "Add Output Var Node: " << var->Name();
257

258 259 260
    // link fetch op and fetch var
    IR_NODE_LINK_TO(var, op);

261 262
    for (auto* old_op : old_var->inputs) {
      if (cluster.count(old_op)) {
263
        IR_NODE_LINK_TO(old_op2new_op.at(old_op), var);
264 265 266 267 268
      }
    }
  }
}

269 270 271 272 273
std::unordered_set<std::string> ExtractNoNeedBufferFeeds(
    const GraphNodeSet& cluster, const GraphNodeSet& cluster_inputs) {
  // 1. Find op with NoNeedBufferVarsInferer defined and collect its input nodes
  std::unordered_map<Node*, GraphNodeSet> op_node2no_need_buffer_nodes;
  for (auto* op_node : cluster) {
274 275 276 277 278 279
    const auto* op = OpInfoMap::Instance().GetNullable(op_node->Name());
    // If op not registered in Paddle, skip
    if (!op) {
      continue;
    }
    auto& inferer = op->NoNeedBufferVarsInferer();
280 281 282 283 284
    if (!inferer) {
      continue;
    }
    auto* op_desc = op_node->Op();
    PADDLE_ENFORCE_NOT_NULL(
285 286 287
        op_desc,
        platform::errors::PreconditionNotMet(
            "The op desc of node in cluster shouldn't be null."));
288 289 290
    auto inferred_params =
        inferer(op_desc->Inputs(), op_desc->Inputs(), op_desc->GetAttrMap());
    std::unordered_set<std::string> inferred_args;
291 292
    std::for_each(inferred_params.begin(),
                  inferred_params.end(),
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
                  [&op_desc, &inferred_args](const std::string& param) {
                    const auto& args = op_desc->Input(param);
                    inferred_args.insert(args.begin(), args.end());
                  });
    auto& no_need_buffer_nodes = op_node2no_need_buffer_nodes[op_node];
    for (auto* input_node : op_node->inputs) {
      if (input_node->Var() && inferred_args.count(input_node->Name())) {
        VLOG(4) << "Input node(" << input_node->Name() << ") of op("
                << op_node->Name() << ") is no_need_buffer";
        no_need_buffer_nodes.insert(input_node);
      }
    }
  }

  // 2. Extract no_need_buffer nodes from cluster_inputs by checking
  // all of their outputs are op nodes with NoNeedBufferVarsInferer
  // and they used as no_need_buffer inputs.
  auto check_all_used_as_no_need_buffer_fn =
      [&op_node2no_need_buffer_nodes](Node* var_node) -> bool {
    for (auto* output_node : var_node->outputs) {
      auto it = op_node2no_need_buffer_nodes.find(output_node);
      if (it == op_node2no_need_buffer_nodes.end()) {
        VLOG(4) << "Var node(" << var_node->Name() << ")'s output node("
                << output_node->Name()
                << ") doesn't have NoNeedBufferVarsInferer";
        return false;
      }
      if (it->second.count(var_node) == 0) {
        VLOG(4) << "Var node("
                << ") is not used as no_need_buffer inputs";
        return false;
      }
    }
    return true;
  };
  std::unordered_set<std::string> result;
  for (const auto& op2inputs_pair : op_node2no_need_buffer_nodes) {
    for (auto* input_node : op2inputs_pair.second) {
      if (cluster_inputs.count(input_node) &&
          check_all_used_as_no_need_buffer_fn(input_node)) {
        VLOG(4) << "Input node(" << input_node->Name()
                << ") is declared as no_need_buffer cluster_inputs";
        result.insert(input_node->Name());
      }
    }
  }
  return result;
}

J
jiangcheng 已提交
342 343
// Create new subgraph with and op nodes are cluster nodes, and all
// var node are from internal nodes
344 345
std::unique_ptr<Graph> CreateNewSubGraph(const GraphNodeSet& cluster,
                                         const GraphNodeSet& cluster_internals,
346 347
                                         const GraphNodeSet& cluster_inputs,
                                         const GraphNodeSet& cluster_outputs) {
J
jiangcheng 已提交
348 349
  // Graph's constructor must has one parameter, and in our code,
  // the ProgramDesc is useless, so here we pass a temporary object.
350
  auto subgraph = std::make_unique<Graph>(framework::ProgramDesc());
J
jiangcheng 已提交
351

352
  GraphNodeMap old_op2new_op;
J
jiangcheng 已提交
353
  for (auto* op : cluster) {
354
    auto sub_node = subgraph->CreateOpNode(op->Op());
J
jiangcheng 已提交
355 356 357
    old_op2new_op[op] = sub_node;
  }

358
  GraphNodeMap old_var2new_var;
J
jiangcheng 已提交
359
  for (auto* var : cluster_internals) {
360 361 362 363 364 365 366 367 368 369 370 371 372
    if (!var->Var()) {
      // skip control var

      // TODO(jiangcheng05): CINN not support control var now, so here we skip
      // it, but it may incur result incorrect problem. In detail, for two
      // unconnected ops, with control var, an op must run before another op.
      // If we remove the control var, the program wouldn't guarantee the run
      // ordering, in other words, the result may incorrect.
      VLOG(4)
          << "The internal var [" << var->Name() << "]'s vardesc empty,"
          << " it may be a control var, but CINN not support control var now.";
      continue;
    }
373
    auto* sub_node = subgraph->CreateVarNode(var->Var());
J
jiangcheng 已提交
374 375
    old_var2new_var[var] = sub_node;
  }
376 377 378 379 380 381 382 383 384 385 386 387
  for (auto* var : cluster_inputs) {
    if (var->Var()) {
      auto* sub_node = subgraph->CreateVarNode(var->Var());
      old_var2new_var[var] = sub_node;
    }
  }
  for (auto* var : cluster_outputs) {
    if (var->Var()) {
      auto* sub_node = subgraph->CreateVarNode(var->Var());
      old_var2new_var[var] = sub_node;
    }
  }
J
jiangcheng 已提交
388

389
  GraphNodeSet need_feed_vars;
390
  std::unordered_set<Node*> param_vars, output_vars;
J
jiangcheng 已提交
391 392 393 394 395
  // the subgraph is independently, so here we only need link
  // to the node in new subgraph, and discard the link to
  // out-graph.
  for (auto* op : cluster) {
    for (auto* var : op->inputs) {
396 397 398 399
      if (!var->Var()) {
        // skip control var
        continue;
      }
400 401 402 403
      // one output var maybe an input of the cluster
      if (cluster_internals.count(var) ||
          (cluster_outputs.count(var) && old_var2new_var.count(var))) {
        IR_NODE_LINK_TO(old_var2new_var.at(var), old_op2new_op.at(op));
404
      } else if (cluster_inputs.count(var) && var->Var() != nullptr) {
405 406 407 408 409 410 411 412 413 414 415
        if (var->Var()->IsParameter()) {
          // Parameters have been preserved in scope, compared to feed var,
          // param just need add new var and don't need add feed op.
          // The var is used for check whether we need preserve the tensor
          // when transform paddle scope to CINN scope.
          param_vars.insert(var);
        } else {
          // When the var is subgraph input and the var is not parameter,
          // we need add a new feed op to feed the var.
          need_feed_vars.insert(var);
        }
J
jiangcheng 已提交
416 417 418
      }
    }
    for (auto* var : op->outputs) {
419 420 421 422
      if (!var->Var()) {
        // skip control var
        continue;
      }
J
jiangcheng 已提交
423
      if (cluster_internals.count(var)) {
424
        IR_NODE_LINK_TO(old_op2new_op.at(op), old_var2new_var.at(var));
425
      } else if (cluster_outputs.count(var) && var->Var() != nullptr) {
426 427 428 429
        // Create new output var node to guarantee the independency of
        // subgraph. In other words, the subgraph has no connection with
        // other graph, even the input graph.
        output_vars.insert(var);
J
jiangcheng 已提交
430 431 432 433
      }
    }
  }

434 435
  AddFeedOpAndVar(
      need_feed_vars, cluster, old_op2new_op, old_var2new_var, subgraph.get());
436
  AddFeedOpAndVar(
437 438 439
      param_vars, cluster, old_op2new_op, old_var2new_var, subgraph.get());
  AddOutputVar(
      output_vars, cluster, old_op2new_op, old_var2new_var, subgraph.get());
440 441
  // Save lists of input variables, internal variables and output variables
  // of the cluster as attributes of the subgraph for convenience.
442 443 444 445 446 447 448 449 450 451 452 453
  auto collect_names_fn =
      [](const GraphNodeSet& nodes,
         const std::unordered_set<std::string>& ignore_names) {
        auto result = std::make_unique<std::vector<std::string>>();
        for (auto* node : nodes) {
          if (!node->Var() || ignore_names.count(node->Name())) {
            continue;
          }
          result->emplace_back(node->Name());
        }
        return result;
      };
454 455 456 457 458 459 460
  subgraph->Set<std::vector<std::string>>(
      kInternalVars, collect_names_fn(cluster_internals, {}).release());
  subgraph->Set<std::vector<std::string>>(
      kOutputVars, collect_names_fn(cluster_outputs, {}).release());
  // Divide input variables into two parts: one is common and will be used
  // in execution, the other may be empty and it is those variables whose
  // buffer are not needed and only be used in graph symbolization
461 462
  auto no_need_buffer_feeds = std::make_unique<std::unordered_set<std::string>>(
      ExtractNoNeedBufferFeeds(cluster, cluster_inputs));
463 464 465
  subgraph->Set<std::vector<std::string>>(
      kInputVars,
      collect_names_fn(cluster_inputs, *no_need_buffer_feeds).release());
466 467
  subgraph->Set<std::unordered_set<std::string>>(
      kNoNeedBufferFeeds, no_need_buffer_feeds.release());
468 469
  // initialize empty map for kMemOptVarInfoFromMainGraph attribute,
  // it will be filled on the share_mem_opt_info_to_subgraph pass
470
  subgraph->GetOrInit<Name2VarInfoMap>(kMemOptVarInfoFromMainGraph);
471
  return subgraph;
J
jiangcheng 已提交
472 473 474 475
}

// This interface is used to classify all variables involved in a cluster into
// three types: inputs, outputs, and internals.
476 477 478
// The input node is some subgraph op's input but not any subgraph op's output.
// The output node is some subgraph op's output and some out-graph op's input.
// Specially, the internal node is a node that only used by subgraph, and
J
jiangcheng 已提交
479
// out-graph should not using this node at all.
480 481
// cluster_inputs & cluster_outputs & cluster_internals == NULL
// cluster_outputs | cluster_internals == all graph op's outputs node
482 483 484
void AnalyseClusterVariables(
    const GraphNodeSet& cluster,
    const std::unordered_set<std::string>& deny_var_set,
485 486
    GraphNodeSet* cluster_inputs,
    GraphNodeSet* cluster_outputs,
487
    GraphNodeSet* cluster_internals) {
J
jiangcheng 已提交
488 489
  // collecting all input and output of op
  for (auto* op_node : cluster) {
490
    const auto& op_name = op_node->Name();
J
jiangcheng 已提交
491
    for (auto* input_var_node : op_node->inputs) {
492 493 494 495
      if (!deny_var_set.count(input_var_node->Name())) {
        // ignore deny var node
        cluster_inputs->insert(input_var_node);
      }
J
jiangcheng 已提交
496 497
    }
    for (auto* output_var_node : op_node->outputs) {
498 499 500
      if (!deny_var_set.count(output_var_node->Name())) {
        cluster_outputs->insert(output_var_node);
      }
J
jiangcheng 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
    }
  }
  // remove output node from cluster_inputs,
  // and add cluster_internals node
  for (auto* var_node : *cluster_outputs) {
    if (cluster_inputs->count(var_node) > 0) {
      // if a input node also exists in output list, remove
      cluster_inputs->erase(var_node);

      // the internal node is must an output node of sub-graph,
      // but not any input node of out-graph.
      bool is_only_used_internal = true;
      for (auto* next_op_node : var_node->outputs) {
        is_only_used_internal &= (cluster.count(next_op_node) > 0);
      }
      if (is_only_used_internal) {
        cluster_internals->insert(var_node);
      }
    }
  }

  // if a output node also exists in internal list, remove.
  for (auto* var_node : *cluster_internals) {
    cluster_outputs->erase(var_node);
  }
}

528
void AddLinkToCinnOp(const GraphNodeSet& cluster_inputs,
529 530
                     const GraphNodeSet& cluster_outputs,
                     Node* cinn_op_node) {
531 532 533 534 535 536 537 538 539 540 541 542 543 544
  // add new link from cluster_inputs to cinn_op_node
  for (auto* var_node : cluster_inputs) {
    IR_NODE_LINK_TO(var_node, cinn_op_node);
  }

  // add new link from cinn_op_node to cluster_outputs
  for (auto* var_node : cluster_outputs) {
    IR_NODE_LINK_TO(cinn_op_node, var_node);
  }
}

void AddCinnOpToGraph(const GraphNodeSet& cluster,
                      const GraphNodeSet& cluster_inputs,
                      const GraphNodeSet& cluster_outputs,
545
                      int64_t compilation_key,
546 547
                      const std::unordered_set<std::string>& deny_var_set,
                      Graph* graph) {
548 549 550
  // Add the cinn launch op
  framework::OpDesc cinn_op_desc;
  cinn_op_desc.SetType(kCinnLaunchOp);
551

552 553
  const auto& subgraph =
      CinnCompiler::GetInstance()->FindGraph(compilation_key);
554
  const auto& no_need_buffer_feeds =
555 556
      subgraph.Get<std::unordered_set<std::string>>(kNoNeedBufferFeeds);

557 558 559 560 561 562 563
  cinn_op_desc.SetInput(operators::kX,
                        subgraph.Get<std::vector<std::string>>(kInputVars));
  cinn_op_desc.SetInput(operators::kNoNeedBufferX,
                        std::vector<std::string>(no_need_buffer_feeds.begin(),
                                                 no_need_buffer_feeds.end()));
  cinn_op_desc.SetOutput(operators::kOutputs,
                         subgraph.Get<std::vector<std::string>>(kOutputVars));
564
  cinn_op_desc.SetAttr(operators::kCompilationKey, compilation_key);
565 566 567 568
  cinn_op_desc.SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                       ExtractOpRole(cluster));
  cinn_op_desc.Flush();
  auto* cinn_op_node = graph->CreateOpNode(&cinn_op_desc);
569
  // Add new links from or to the cinn launch op node
570
  AddLinkToCinnOp(cluster_inputs, cluster_outputs, cinn_op_node);
571 572

  VLOG(4) << "Add op [" << kCinnLaunchOp << "] into graph.";
J
jiangcheng 已提交
573 574 575 576 577 578
}

// Removing cluster node and internals node from Graph
void RemoveSubGraphFromGraph(const GraphNodeSet& cluster,
                             const GraphNodeSet& cluster_internals,
                             Graph* graph) {
579 580 581 582 583 584
  const std::unordered_set<const Node*> const_cluster{cluster.cbegin(),
                                                      cluster.cend()};
  const std::unordered_set<const Node*> const_internals{
      cluster_internals.cbegin(), cluster_internals.cend()};
  ir::GraphSafeRemoveNodes(graph, const_cluster);
  ir::GraphSafeRemoveNodes(graph, const_internals);
J
jiangcheng 已提交
585 586
}

587
// Replacing Cinn subgraph to a cinn op node, whose op_type is
J
jiangcheng 已提交
588 589
// kCinnLaunchOp, and inputs ares cluster_inputs and outputs are
// cluster_outputs.
590
// Meanwhile, move all links of cluster to the cinn op.
591
void ReplaceSubGraphWithCinnOpNode(
592 593 594 595
    const GraphNodeSet& cluster,
    const GraphNodeSet& cluster_inputs,
    const GraphNodeSet& cluster_outputs,
    const GraphNodeSet& cluster_internals,
596
    int64_t compilation_key,
597 598
    const std::unordered_set<std::string>& deny_var_set,
    Graph* graph) {
599
  // Add the cinn op node whose name is "kCinnLaunchOp" into graph
600 601 602 603 604 605
  AddCinnOpToGraph(cluster,
                   cluster_inputs,
                   cluster_outputs,
                   compilation_key,
                   deny_var_set,
                   graph);
606
  // Remove the cinn subgraph from graph
J
jiangcheng 已提交
607 608 609 610 611 612 613
  RemoveSubGraphFromGraph(cluster, cluster_internals, graph);
}

// Search all subgraphs which all op node supported by CINN,
// Here we using SubgraphDetector to detecte the subgraph that
// all of op node supported by CINN. We using OpMapperRegistry
// to check whether the op node supported by CINN.
614
void SearchAllSubgraphs(Graph* graph) {
615 616
  auto allow_ops = StringSplit(FLAGS_allow_cinn_ops, kDelim);
  auto deny_ops = StringSplit(FLAGS_deny_cinn_ops, kDelim);
617 618
  OpTransInfo trans_info;
  auto teller = [&allow_ops, &deny_ops, &trans_info](const Node* node) {
619
    const auto& node_name = node->Name();
620
    bool registered = ::cinn::frontend::OpMapperRegistry::Global()->Find(
621
                          node_name) != nullptr;
622 623
    // skip the dynamic ops
    bool is_dynamic = false;
624 625
    if (trans_info.dynamic_op_cond().count(node_name)) {
      is_dynamic = trans_info.dynamic_op_cond().at(node_name)(*node);
626
    }
627 628 629 630

    bool is_support =
        registered && !trans_info.default_deny_ops().count(node_name) &&
        !is_dynamic && (node->IsOp() && !trans_info.IsInplaceOp(*node->Op()));
631 632
    // if the op type is registered in CINN and allow_ops is not empty, return
    // true only when it is in allow_ops
633
    if (!allow_ops.empty()) {
634
      return is_support && allow_ops.count(node_name);
635 636 637
    }
    // if the op type is registered in CINN and deny_ops is not empty, return
    // true only when it is not in deny_ops
638
    if (!deny_ops.empty()) {
639
      return is_support && !deny_ops.count(node_name);
640
    }
S
sneaxiy 已提交
641

642 643
    // if the user doesn't set FLAGS_allow_cinn_ops and FLAGS_deny_cinn_ops,
    // return true only when it is registered in CINN
644
    return is_support;
J
jiangcheng 已提交
645
  };
646 647
  VLOG(4) << "The allowed Cinn Ops: " << FLAGS_allow_cinn_ops;
  VLOG(4) << "The denied Cinn Ops: " << FLAGS_deny_cinn_ops;
J
jiangcheng 已提交
648 649
  std::vector<GraphNodeVec> clusters =
      framework::ir::SubgraphDetector(graph, teller)();
650 651
  LOG(INFO) << "--- [build_cinn_pass] detected " << clusters.size()
            << " cinn supported subgraphs";
J
jiangcheng 已提交
652

653 654 655 656 657 658 659 660 661 662
  auto cluster_debug_info = [](const GraphNodeSet& cluster) {
    std::string res = "(";
    for (auto* node : cluster) {
      res.append(node->Name());
      res.append(", ");
    }
    res.append(")");
    return res;
  };

663
  auto* cinn_compiler = CinnCompiler::GetInstance();
J
jiangcheng 已提交
664
  for (const auto& node_vec : clusters) {
665
    // Classify var node to inputs, outputs, and internals.
J
jiangcheng 已提交
666 667
    GraphNodeSet cluster_set(node_vec.begin(), node_vec.end());

668
    auto deny_var_set = trans_info.GetDenyVarNames(cluster_set);
669

J
jiangcheng 已提交
670
    GraphNodeSet cluster_inputs, cluster_outputs, cluster_internals;
671 672 673 674 675
    AnalyseClusterVariables(cluster_set,
                            deny_var_set,
                            &cluster_inputs,
                            &cluster_outputs,
                            &cluster_internals);
676 677 678 679 680 681 682

    VLOG(4) << "Cluster Ops: " << cluster_debug_info(cluster_set);
    VLOG(4) << "Cluster input vars: " << cluster_debug_info(cluster_inputs);
    VLOG(4) << "Cluster output vars: " << cluster_debug_info(cluster_outputs);
    VLOG(4) << "Cluster internal vars: "
            << cluster_debug_info(cluster_internals);

683 684
    // Create a new subgraph according to the found cluster and
    // save it in CinnCompiler
685
    auto compilation_key = cinn_compiler->AddGraph(CreateNewSubGraph(
686
        cluster_set, cluster_internals, cluster_inputs, cluster_outputs));
687 688
    VLOG(4) << "Compilation Key:\n"
            << cinn_compiler->ReadableKey(compilation_key);
689

690
    // Replace the found cluster to a new cinn op node
691 692 693 694 695 696 697
    ReplaceSubGraphWithCinnOpNode(cluster_set,
                                  cluster_inputs,
                                  cluster_outputs,
                                  cluster_internals,
                                  compilation_key,
                                  deny_var_set,
                                  graph);
J
jiangcheng 已提交
698 699
  }
}
700
}  // namespace
J
jiangcheng 已提交
701

702
void BuildCinnPass::ApplyImpl(Graph* graph) const { SearchAllSubgraphs(graph); }
J
jiangcheng 已提交
703 704 705 706 707 708

}  // namespace paddle2cinn
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(build_cinn_pass, paddle::framework::paddle2cinn::BuildCinnPass);