build_cinn_pass.cc 19.1 KB
Newer Older
J
jiangcheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/paddle2cinn/build_cinn_pass.h"

17 18
#include <algorithm>
#include <iterator>
J
jiangcheng 已提交
19
#include <memory>
20
#include <regex>
J
jiangcheng 已提交
21 22 23
#include <string>
#include <unordered_map>
#include <unordered_set>
24
#include <utility>
J
jiangcheng 已提交
25 26
#include <vector>

27 28
#include "cinn/frontend/op_mapper_registry.h"
#include "cinn/frontend/op_mappers/use_op_mappers.h"
29 30
#include "gflags/gflags.h"
#include "glog/logging.h"
J
jiangcheng 已提交
31
#include "paddle/fluid/framework/ir/graph.h"
32
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
J
jiangcheng 已提交
33 34
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/ir/subgraph_detector.h"
35
#include "paddle/fluid/framework/op_proto_maker.h"
36
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
37
#include "paddle/fluid/operators/cinn_launch_op.h"
38 39
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"
J
jiangcheng 已提交
40

41 42 43
DECLARE_string(allow_cinn_ops);
DECLARE_string(deny_cinn_ops);

J
jiangcheng 已提交
44 45 46 47 48 49 50 51 52
namespace paddle {
namespace framework {
namespace paddle2cinn {

using framework::ir::Graph;
using framework::ir::Node;

using GraphNodeVec = std::vector<Node*>;
using GraphNodeSet = std::unordered_set<Node*>;
53
using GraphNodeMap = std::unordered_map<Node*, Node*>;
J
jiangcheng 已提交
54

55
namespace {
56 57 58 59
// The delim(`;`) that is used to split the FLAGS_allow_cinn_ops
// & FLAGS_deny_cinn_ops.
constexpr char kDelim[] = ";";

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
const std::unordered_map<std::string, std::unordered_set<std::string>>
    kDenyParamMap = {{"batch_norm", {"ReserveSpace"}},
                     {"batch_norm_grad", {"ReserveSpace"}}};

std::unordered_set<std::string> GetDenyVarNames(const GraphNodeSet& cluster) {
  std::unordered_set<std::string> deny_var_set;

  auto get_debug_info = [](const std::unordered_set<std::string>& var_names) {
    std::string debug_info = "[";
    for (auto& var : var_names) {
      debug_info.append(var);
      debug_info.append(", ");
    }
    debug_info.append("]");
    return debug_info;
  };

  for (auto* op : cluster) {
    if (kDenyParamMap.count(op->Name())) {
      const auto* desc = op->Op();
      PADDLE_ENFORCE_NE(desc, nullptr,
                        platform::errors::PreconditionNotMet(
                            "The Op %s's OpDesc should not be NULL, which has "
                            "a parameter in kDenyParamMap.",
                            op->Name().c_str()));

      auto deny_param_names = kDenyParamMap.at(op->Name());
      VLOG(4) << "We found deny param " << get_debug_info(deny_param_names)
              << " in op [" << op->Name() << "].";

      for (const auto& param_name : deny_param_names) {
        if (desc->Inputs().count(param_name)) {
          const auto& arg_names = desc->Input(param_name);
          for (const auto& arg_name : arg_names) {
            deny_var_set.insert(arg_name);
            VLOG(4) << "deny param [" << param_name << "]'s argument name"
                    << " is [" << arg_name << "].";
          }
        }

        if (desc->HasOutput(param_name)) {
          const auto& arg_names = desc->Output(param_name);
          for (const auto& arg_name : arg_names) {
            deny_var_set.insert(arg_name);
            VLOG(4) << "deny param [" << param_name << "]'s argument name"
                    << " is [" << arg_name << "].";
          }
        }
      }
    }
  }

  VLOG(4) << "All deny var names are " << get_debug_info(deny_var_set);

  return deny_var_set;
}

117 118 119 120 121 122 123 124 125 126
std::unordered_set<std::string> StringSplit(const std::string& str,
                                            const std::string& delim) {
  std::regex reg(delim);
  std::unordered_set<std::string> elems{
      std::sregex_token_iterator(str.begin(), str.end(), reg, -1),
      std::sregex_token_iterator()};
  elems.erase("");
  return elems;
}

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
int ExtractOpRole(const GraphNodeSet& cluster) {
  std::unordered_set<int> op_roles;
  std::string attr_name = OpProtoAndCheckerMaker::OpRoleAttrName();
  for (auto* n : cluster) {
    if (n->Op() && n->Op()->HasAttr(attr_name)) {
      op_roles.insert(BOOST_GET_CONST(int, n->Op()->GetAttr(attr_name)));
    }
  }
  if (op_roles.size() == 1U) {
    return *(op_roles.begin());
  } else {
    return static_cast<int>(OpRole::kNotSpecified);
  }
}

142 143
// Deal with subgraph's feed input var node:
// create a new input var node and it's feed op node
144 145 146
void AddFeedOpAndVar(const GraphNodeSet& feed_vars, const GraphNodeSet& cluster,
                     const GraphNodeMap& old_op2new_op,
                     const GraphNodeMap& old_var2new_var, Graph* graph) {
147 148 149 150 151 152 153
  for (auto* old_var : feed_vars) {
    // create feed op
    OpDesc desc;
    desc.SetType("feed");
    desc.SetOutput("Out", {old_var->Name()});
    auto op = graph->CreateOpNode(&desc);

154 155
    // get new feed var node
    auto* var = old_var2new_var.at(old_var);
156
    VLOG(4) << "Add Feed Op before: " << var->Name();
157 158

    // link feed op and feed var
159
    IR_NODE_LINK_TO(op, var);
160 161 162 163

    // link feed var to cluster op
    for (auto* old_op : old_var->outputs) {
      if (cluster.count(old_op)) {
164
        IR_NODE_LINK_TO(var, old_op2new_op.at(old_op));
165 166
      }
      // Do not need relink old op or old var here, they will be
167
      // fixed in RemoveSubGraphFromGraph, here we just deal with
168 169 170 171 172 173 174 175
      // new subgraph's node.
    }
  }
}

// Deal with subgraph's parameter var node:
// create a new input var node, it's data will get by scope,
// so it don't need feed op
176 177 178
void AddParamVar(const GraphNodeSet& param_vars, const GraphNodeSet& cluster,
                 const GraphNodeMap& old_op2new_op,
                 const GraphNodeMap& old_var2new_var, Graph* graph) {
179
  for (auto* old_var : param_vars) {
180
    auto* var = old_var2new_var.at(old_var);
181
    VLOG(4) << "Add Param Var Node: " << var->Name();
182 183 184

    for (auto* old_op : old_var->outputs) {
      if (cluster.count(old_op)) {
185
        IR_NODE_LINK_TO(var, old_op2new_op.at(old_op));
186 187 188 189 190 191 192
      }
    }
  }
}

// Deal with subgraph's outputs var node:
// create a new output var node and it's fetch op
193 194 195
void AddOutputVar(const GraphNodeSet& output_vars, const GraphNodeSet& cluster,
                  const GraphNodeMap& old_op2new_op,
                  const GraphNodeMap& old_var2new_var, Graph* graph) {
196
  for (auto* old_var : output_vars) {
197 198 199 200 201 202
    // create fetch op
    OpDesc desc;
    desc.SetType("fetch");
    desc.SetInput("X", {old_var->Name()});
    auto op = graph->CreateOpNode(&desc);

203
    auto* var = old_var2new_var.at(old_var);
204
    VLOG(4) << "Add Output Var Node: " << var->Name();
205

206 207 208
    // link fetch op and fetch var
    IR_NODE_LINK_TO(var, op);

209 210
    for (auto* old_op : old_var->inputs) {
      if (cluster.count(old_op)) {
211
        IR_NODE_LINK_TO(old_op2new_op.at(old_op), var);
212 213 214 215 216
      }
    }
  }
}

J
jiangcheng 已提交
217 218
// Create new subgraph with and op nodes are cluster nodes, and all
// var node are from internal nodes
219 220
std::unique_ptr<Graph> CreateNewSubGraph(const GraphNodeSet& cluster,
                                         const GraphNodeSet& cluster_internals,
221 222
                                         const GraphNodeSet& cluster_inputs,
                                         const GraphNodeSet& cluster_outputs) {
J
jiangcheng 已提交
223 224
  // Graph's constructor must has one parameter, and in our code,
  // the ProgramDesc is useless, so here we pass a temporary object.
225
  auto subgraph = std::make_unique<Graph>(framework::ProgramDesc());
J
jiangcheng 已提交
226

227
  GraphNodeMap old_op2new_op;
J
jiangcheng 已提交
228
  for (auto* op : cluster) {
229
    auto sub_node = subgraph->CreateOpNode(op->Op());
J
jiangcheng 已提交
230 231 232
    old_op2new_op[op] = sub_node;
  }

233
  GraphNodeMap old_var2new_var;
J
jiangcheng 已提交
234
  for (auto* var : cluster_internals) {
235 236 237 238 239
    PADDLE_ENFORCE_NOT_NULL(var->Var(),
                            platform::errors::PreconditionNotMet(
                                "The var desc of the node in cluster_internals "
                                "shouldn't be null."));
    auto* sub_node = subgraph->CreateVarNode(var->Var());
J
jiangcheng 已提交
240 241
    old_var2new_var[var] = sub_node;
  }
242 243 244 245 246 247 248 249 250 251 252 253
  for (auto* var : cluster_inputs) {
    if (var->Var()) {
      auto* sub_node = subgraph->CreateVarNode(var->Var());
      old_var2new_var[var] = sub_node;
    }
  }
  for (auto* var : cluster_outputs) {
    if (var->Var()) {
      auto* sub_node = subgraph->CreateVarNode(var->Var());
      old_var2new_var[var] = sub_node;
    }
  }
J
jiangcheng 已提交
254

255
  GraphNodeSet need_feed_vars;
256
  std::unordered_set<Node *> param_vars, output_vars;
J
jiangcheng 已提交
257 258 259 260 261
  // the subgraph is independently, so here we only need link
  // to the node in new subgraph, and discard the link to
  // out-graph.
  for (auto* op : cluster) {
    for (auto* var : op->inputs) {
262 263 264 265
      // one output var maybe an input of the cluster
      if (cluster_internals.count(var) ||
          (cluster_outputs.count(var) && old_var2new_var.count(var))) {
        IR_NODE_LINK_TO(old_var2new_var.at(var), old_op2new_op.at(op));
266
      } else if (cluster_inputs.count(var) && var->Var() != nullptr) {
267 268 269 270 271 272 273 274 275 276 277
        if (var->Var()->IsParameter()) {
          // Parameters have been preserved in scope, compared to feed var,
          // param just need add new var and don't need add feed op.
          // The var is used for check whether we need preserve the tensor
          // when transform paddle scope to CINN scope.
          param_vars.insert(var);
        } else {
          // When the var is subgraph input and the var is not parameter,
          // we need add a new feed op to feed the var.
          need_feed_vars.insert(var);
        }
J
jiangcheng 已提交
278 279 280 281
      }
    }
    for (auto* var : op->outputs) {
      if (cluster_internals.count(var)) {
282
        IR_NODE_LINK_TO(old_op2new_op.at(op), old_var2new_var.at(var));
283
      } else if (cluster_outputs.count(var) && var->Var() != nullptr) {
284 285 286 287
        // Create new output var node to guarantee the independency of
        // subgraph. In other words, the subgraph has no connection with
        // other graph, even the input graph.
        output_vars.insert(var);
J
jiangcheng 已提交
288 289 290 291
      }
    }
  }

292 293 294 295 296 297
  AddFeedOpAndVar(need_feed_vars, cluster, old_op2new_op, old_var2new_var,
                  subgraph.get());
  AddParamVar(param_vars, cluster, old_op2new_op, old_var2new_var,
              subgraph.get());
  AddOutputVar(output_vars, cluster, old_op2new_op, old_var2new_var,
               subgraph.get());
J
jiangcheng 已提交
298

299
  return subgraph;
J
jiangcheng 已提交
300 301 302 303
}

// This interface is used to classify all variables involved in a cluster into
// three types: inputs, outputs, and internals.
304 305 306
// The input node is some subgraph op's input but not any subgraph op's output.
// The output node is some subgraph op's output and some out-graph op's input.
// Specially, the internal node is a node that only used by subgraph, and
J
jiangcheng 已提交
307
// out-graph should not using this node at all.
308 309
// cluster_inputs & cluster_outputs & cluster_internals == NULL
// cluster_outputs | cluster_internals == all graph op's outputs node
310 311 312 313 314
void AnalyseClusterVariables(
    const GraphNodeSet& cluster,
    const std::unordered_set<std::string>& deny_var_set,
    GraphNodeSet* cluster_inputs, GraphNodeSet* cluster_outputs,
    GraphNodeSet* cluster_internals) {
J
jiangcheng 已提交
315 316
  // collecting all input and output of op
  for (auto* op_node : cluster) {
317
    const auto& op_name = op_node->Name();
J
jiangcheng 已提交
318
    for (auto* input_var_node : op_node->inputs) {
319 320 321 322
      if (!deny_var_set.count(input_var_node->Name())) {
        // ignore deny var node
        cluster_inputs->insert(input_var_node);
      }
J
jiangcheng 已提交
323 324
    }
    for (auto* output_var_node : op_node->outputs) {
325 326 327
      if (!deny_var_set.count(output_var_node->Name())) {
        cluster_outputs->insert(output_var_node);
      }
J
jiangcheng 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
    }
  }
  // remove output node from cluster_inputs,
  // and add cluster_internals node
  for (auto* var_node : *cluster_outputs) {
    if (cluster_inputs->count(var_node) > 0) {
      // if a input node also exists in output list, remove
      cluster_inputs->erase(var_node);

      // the internal node is must an output node of sub-graph,
      // but not any input node of out-graph.
      bool is_only_used_internal = true;
      for (auto* next_op_node : var_node->outputs) {
        is_only_used_internal &= (cluster.count(next_op_node) > 0);
      }
      if (is_only_used_internal) {
        cluster_internals->insert(var_node);
      }
    }
  }

  // if a output node also exists in internal list, remove.
  for (auto* var_node : *cluster_internals) {
    cluster_outputs->erase(var_node);
  }
}

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
void AddLinkToCinnOp(const GraphNodeSet& cluster_inputs,
                     const GraphNodeSet& cluster_outputs, Node* cinn_op_node) {
  // add new link from cluster_inputs to cinn_op_node
  for (auto* var_node : cluster_inputs) {
    IR_NODE_LINK_TO(var_node, cinn_op_node);
  }

  // add new link from cinn_op_node to cluster_outputs
  for (auto* var_node : cluster_outputs) {
    IR_NODE_LINK_TO(cinn_op_node, var_node);
  }
}

void AddCinnOpToGraph(const GraphNodeSet& cluster,
                      const GraphNodeSet& cluster_inputs,
                      const GraphNodeSet& cluster_outputs,
371 372 373
                      const std::string& compilation_key,
                      const std::unordered_set<std::string>& deny_var_set,
                      Graph* graph) {
374 375 376
  // Add the cinn launch op
  framework::OpDesc cinn_op_desc;
  cinn_op_desc.SetType(kCinnLaunchOp);
377
  std::vector<std::string> input_names;
378

379
  std::for_each(cluster_inputs.begin(), cluster_inputs.end(),
380 381
                [&input_names, &deny_var_set](Node* n) {
                  if (n->Var() != nullptr && !deny_var_set.count(n->Name())) {
382 383 384
                    input_names.emplace_back(n->Name());
                  }
                });
385
  cinn_op_desc.SetInput(operators::kX, input_names);
386
  std::vector<std::string> output_names;
387
  std::for_each(cluster_outputs.begin(), cluster_outputs.end(),
388 389
                [&output_names, &deny_var_set](Node* n) {
                  if (n->Var() != nullptr && !deny_var_set.count(n->Name())) {
390 391 392
                    output_names.emplace_back(n->Name());
                  }
                });
393 394
  cinn_op_desc.SetOutput(operators::kOutputs, output_names);
  cinn_op_desc.SetAttr(operators::kCompilationKey, compilation_key);
395 396 397 398 399 400
  cinn_op_desc.SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                       ExtractOpRole(cluster));
  cinn_op_desc.Flush();
  auto* cinn_op_node = graph->CreateOpNode(&cinn_op_desc);
  // Add new links from or to the the cinn launch op node
  AddLinkToCinnOp(cluster_inputs, cluster_outputs, cinn_op_node);
401 402

  VLOG(4) << "Add op [" << kCinnLaunchOp << "] into graph.";
J
jiangcheng 已提交
403 404 405 406 407 408
}

// Removing cluster node and internals node from Graph
void RemoveSubGraphFromGraph(const GraphNodeSet& cluster,
                             const GraphNodeSet& cluster_internals,
                             Graph* graph) {
409 410 411 412 413 414
  const std::unordered_set<const Node*> const_cluster{cluster.cbegin(),
                                                      cluster.cend()};
  const std::unordered_set<const Node*> const_internals{
      cluster_internals.cbegin(), cluster_internals.cend()};
  ir::GraphSafeRemoveNodes(graph, const_cluster);
  ir::GraphSafeRemoveNodes(graph, const_internals);
J
jiangcheng 已提交
415 416
}

417
// Replacing Cinn subgraph to a cinn op node, whose op_type is
J
jiangcheng 已提交
418 419
// kCinnLaunchOp, and inputs ares cluster_inputs and outputs are
// cluster_outputs.
420
// Meanwhile, move all links of cluster to the cinn op.
421 422 423 424 425
void ReplaceSubGraphWithCinnOpNode(
    const GraphNodeSet& cluster, const GraphNodeSet& cluster_inputs,
    const GraphNodeSet& cluster_outputs, const GraphNodeSet& cluster_internals,
    const std::string& compilation_key,
    const std::unordered_set<std::string>& deny_var_set, Graph* graph) {
426 427
  // Add the cinn op node whose name is "kCinnLaunchOp" into graph
  AddCinnOpToGraph(cluster, cluster_inputs, cluster_outputs, compilation_key,
428
                   deny_var_set, graph);
429
  // Remove the cinn subgraph from graph
J
jiangcheng 已提交
430 431 432 433 434 435 436
  RemoveSubGraphFromGraph(cluster, cluster_internals, graph);
}

// Search all subgraphs which all op node supported by CINN,
// Here we using SubgraphDetector to detecte the subgraph that
// all of op node supported by CINN. We using OpMapperRegistry
// to check whether the op node supported by CINN.
437
void SearchAllSubgraphs(Graph* graph) {
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
  auto allow_ops = StringSplit(FLAGS_allow_cinn_ops, kDelim);
  auto deny_ops = StringSplit(FLAGS_deny_cinn_ops, kDelim);
  auto teller = [&allow_ops, &deny_ops](const Node* node) {
    bool registered = ::cinn::frontend::OpMapperRegistry::Global()->Find(
                          node->Name()) != nullptr;
    // if the op type is registered in CINN and allow_ops is not empty, return
    // true only when it is in allow_ops
    if (allow_ops.size()) {
      return registered && allow_ops.count(node->Name());
    }
    // if the op type is registered in CINN and deny_ops is not empty, return
    // true only when it is not in deny_ops
    if (deny_ops.size()) {
      return registered && !deny_ops.count(node->Name());
    }
    // if the user doesn't set FLAGS_allow_cinn_ops and FLAGS_deny_cinn_ops,
    // return true only when it is registered in CINN
    return registered;
J
jiangcheng 已提交
456
  };
457 458
  VLOG(4) << "The allowed Cinn Ops: " << FLAGS_allow_cinn_ops;
  VLOG(4) << "The denied Cinn Ops: " << FLAGS_deny_cinn_ops;
J
jiangcheng 已提交
459 460 461
  std::vector<GraphNodeVec> clusters =
      framework::ir::SubgraphDetector(graph, teller)();

462 463 464 465 466 467 468 469 470 471
  auto cluster_debug_info = [](const GraphNodeSet& cluster) {
    std::string res = "(";
    for (auto* node : cluster) {
      res.append(node->Name());
      res.append(", ");
    }
    res.append(")");
    return res;
  };

472
  auto* cinn_compiler = CinnCompiler::GetInstance();
J
jiangcheng 已提交
473
  for (const auto& node_vec : clusters) {
474
    // Classify var node to inputs, outputs, and internals.
J
jiangcheng 已提交
475 476
    GraphNodeSet cluster_set(node_vec.begin(), node_vec.end());

477 478
    auto deny_var_set = GetDenyVarNames(cluster_set);

J
jiangcheng 已提交
479
    GraphNodeSet cluster_inputs, cluster_outputs, cluster_internals;
480 481
    AnalyseClusterVariables(cluster_set, deny_var_set, &cluster_inputs,
                            &cluster_outputs, &cluster_internals);
482 483 484 485 486 487 488

    VLOG(4) << "Cluster Ops: " << cluster_debug_info(cluster_set);
    VLOG(4) << "Cluster input vars: " << cluster_debug_info(cluster_inputs);
    VLOG(4) << "Cluster output vars: " << cluster_debug_info(cluster_outputs);
    VLOG(4) << "Cluster internal vars: "
            << cluster_debug_info(cluster_internals);

489 490
    // Create a new subgraph according to the found cluster and
    // save it in CinnCompiler
491 492
    std::string compilation_key = cinn_compiler->AddGraph(CreateNewSubGraph(
        cluster_set, cluster_internals, cluster_inputs, cluster_outputs));
493 494
    VLOG(4) << "Compilation Key:\n"
            << cinn_compiler->ReadableKey(compilation_key);
495

496 497
    // Replace the found cluster to a new cinn op node
    ReplaceSubGraphWithCinnOpNode(cluster_set, cluster_inputs, cluster_outputs,
498 499
                                  cluster_internals, compilation_key,
                                  deny_var_set, graph);
J
jiangcheng 已提交
500 501
  }
}
502
}  // namespace
J
jiangcheng 已提交
503

504
void BuildCinnPass::ApplyImpl(Graph* graph) const { SearchAllSubgraphs(graph); }
J
jiangcheng 已提交
505 506 507 508 509 510

}  // namespace paddle2cinn
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(build_cinn_pass, paddle::framework::paddle2cinn::BuildCinnPass);