build_cinn_pass.cc 14.9 KB
Newer Older
J
jiangcheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/paddle2cinn/build_cinn_pass.h"

17 18
#include <algorithm>
#include <iterator>
J
jiangcheng 已提交
19 20 21 22
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
23
#include <utility>
J
jiangcheng 已提交
24 25
#include <vector>

26 27
#include "cinn/frontend/op_mapper_registry.h"
#include "cinn/frontend/op_mappers/use_op_mappers.h"
J
jiangcheng 已提交
28
#include "paddle/fluid/framework/ir/graph.h"
29
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
J
jiangcheng 已提交
30 31
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/ir/subgraph_detector.h"
32
#include "paddle/fluid/framework/op_proto_maker.h"
33
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
34 35
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"
J
jiangcheng 已提交
36 37 38 39 40 41 42 43 44 45

namespace paddle {
namespace framework {
namespace paddle2cinn {

using framework::ir::Graph;
using framework::ir::Node;

using GraphNodeVec = std::vector<Node*>;
using GraphNodeSet = std::unordered_set<Node*>;
46
using GraphNodeMap = std::unordered_map<Node*, Node*>;
J
jiangcheng 已提交
47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
namespace {
int ExtractOpRole(const GraphNodeSet& cluster) {
  std::unordered_set<int> op_roles;
  std::string attr_name = OpProtoAndCheckerMaker::OpRoleAttrName();
  for (auto* n : cluster) {
    if (n->Op() && n->Op()->HasAttr(attr_name)) {
      op_roles.insert(BOOST_GET_CONST(int, n->Op()->GetAttr(attr_name)));
    }
  }
  if (op_roles.size() == 1U) {
    return *(op_roles.begin());
  } else {
    return static_cast<int>(OpRole::kNotSpecified);
  }
}

64 65
// Deal with subgraph's feed input var node:
// create a new input var node and it's feed op node
66 67 68
void AddFeedOpAndVar(const GraphNodeSet& feed_vars, const GraphNodeSet& cluster,
                     const GraphNodeMap& old_op2new_op,
                     const GraphNodeMap& old_var2new_var, Graph* graph) {
69 70 71 72 73 74 75
  for (auto* old_var : feed_vars) {
    // create feed op
    OpDesc desc;
    desc.SetType("feed");
    desc.SetOutput("Out", {old_var->Name()});
    auto op = graph->CreateOpNode(&desc);

76 77
    // get new feed var node
    auto* var = old_var2new_var.at(old_var);
78
    VLOG(4) << "Add Feed Op before: " << var->Name();
79 80

    // link feed op and feed var
81
    IR_NODE_LINK_TO(op, var);
82 83 84 85

    // link feed var to cluster op
    for (auto* old_op : old_var->outputs) {
      if (cluster.count(old_op)) {
86
        IR_NODE_LINK_TO(var, old_op2new_op.at(old_op));
87 88
      }
      // Do not need relink old op or old var here, they will be
89
      // fixed in RemoveSubGraphFromGraph, here we just deal with
90 91 92 93 94 95 96 97
      // new subgraph's node.
    }
  }
}

// Deal with subgraph's parameter var node:
// create a new input var node, it's data will get by scope,
// so it don't need feed op
98 99 100
void AddParamVar(const GraphNodeSet& param_vars, const GraphNodeSet& cluster,
                 const GraphNodeMap& old_op2new_op,
                 const GraphNodeMap& old_var2new_var, Graph* graph) {
101
  for (auto* old_var : param_vars) {
102
    auto* var = old_var2new_var.at(old_var);
103
    VLOG(4) << "Add Param Var Node: " << var->Name();
104 105 106

    for (auto* old_op : old_var->outputs) {
      if (cluster.count(old_op)) {
107
        IR_NODE_LINK_TO(var, old_op2new_op.at(old_op));
108 109 110 111 112 113 114
      }
    }
  }
}

// Deal with subgraph's outputs var node:
// create a new output var node and it's fetch op
115 116 117
void AddOutputVar(const GraphNodeSet& output_vars, const GraphNodeSet& cluster,
                  const GraphNodeMap& old_op2new_op,
                  const GraphNodeMap& old_var2new_var, Graph* graph) {
118
  for (auto* old_var : output_vars) {
119
    auto* var = old_var2new_var.at(old_var);
120
    VLOG(4) << "Add Output Var Node: " << var->Name();
121 122 123

    for (auto* old_op : old_var->inputs) {
      if (cluster.count(old_op)) {
124
        IR_NODE_LINK_TO(old_op2new_op.at(old_op), var);
125 126 127 128 129
      }
    }
  }
}

J
jiangcheng 已提交
130 131
// Create new subgraph with and op nodes are cluster nodes, and all
// var node are from internal nodes
132 133
std::unique_ptr<Graph> CreateNewSubGraph(const GraphNodeSet& cluster,
                                         const GraphNodeSet& cluster_internals,
134 135
                                         const GraphNodeSet& cluster_inputs,
                                         const GraphNodeSet& cluster_outputs) {
J
jiangcheng 已提交
136 137
  // Graph's constructor must has one parameter, and in our code,
  // the ProgramDesc is useless, so here we pass a temporary object.
138
  auto subgraph = std::make_unique<Graph>(framework::ProgramDesc());
J
jiangcheng 已提交
139

140
  GraphNodeMap old_op2new_op;
J
jiangcheng 已提交
141
  for (auto* op : cluster) {
142
    auto sub_node = subgraph->CreateOpNode(op->Op());
J
jiangcheng 已提交
143 144 145
    old_op2new_op[op] = sub_node;
  }

146
  GraphNodeMap old_var2new_var;
J
jiangcheng 已提交
147
  for (auto* var : cluster_internals) {
148 149 150 151 152
    PADDLE_ENFORCE_NOT_NULL(var->Var(),
                            platform::errors::PreconditionNotMet(
                                "The var desc of the node in cluster_internals "
                                "shouldn't be null."));
    auto* sub_node = subgraph->CreateVarNode(var->Var());
J
jiangcheng 已提交
153 154
    old_var2new_var[var] = sub_node;
  }
155 156 157 158 159 160 161 162 163 164 165 166
  for (auto* var : cluster_inputs) {
    if (var->Var()) {
      auto* sub_node = subgraph->CreateVarNode(var->Var());
      old_var2new_var[var] = sub_node;
    }
  }
  for (auto* var : cluster_outputs) {
    if (var->Var()) {
      auto* sub_node = subgraph->CreateVarNode(var->Var());
      old_var2new_var[var] = sub_node;
    }
  }
J
jiangcheng 已提交
167

168
  GraphNodeSet need_feed_vars;
169
  std::unordered_set<Node *> param_vars, output_vars;
J
jiangcheng 已提交
170 171 172 173 174
  // the subgraph is independently, so here we only need link
  // to the node in new subgraph, and discard the link to
  // out-graph.
  for (auto* op : cluster) {
    for (auto* var : op->inputs) {
175 176 177 178
      // one output var maybe an input of the cluster
      if (cluster_internals.count(var) ||
          (cluster_outputs.count(var) && old_var2new_var.count(var))) {
        IR_NODE_LINK_TO(old_var2new_var.at(var), old_op2new_op.at(op));
179
      } else if (cluster_inputs.count(var) && var->Var() != nullptr) {
180 181 182 183 184 185 186 187 188 189 190
        if (var->Var()->IsParameter()) {
          // Parameters have been preserved in scope, compared to feed var,
          // param just need add new var and don't need add feed op.
          // The var is used for check whether we need preserve the tensor
          // when transform paddle scope to CINN scope.
          param_vars.insert(var);
        } else {
          // When the var is subgraph input and the var is not parameter,
          // we need add a new feed op to feed the var.
          need_feed_vars.insert(var);
        }
J
jiangcheng 已提交
191 192 193 194
      }
    }
    for (auto* var : op->outputs) {
      if (cluster_internals.count(var)) {
195
        IR_NODE_LINK_TO(old_op2new_op.at(op), old_var2new_var.at(var));
196
      } else if (cluster_outputs.count(var) && var->Var() != nullptr) {
197 198 199 200
        // Create new output var node to guarantee the independency of
        // subgraph. In other words, the subgraph has no connection with
        // other graph, even the input graph.
        output_vars.insert(var);
J
jiangcheng 已提交
201 202 203 204
      }
    }
  }

205 206 207 208 209 210
  AddFeedOpAndVar(need_feed_vars, cluster, old_op2new_op, old_var2new_var,
                  subgraph.get());
  AddParamVar(param_vars, cluster, old_op2new_op, old_var2new_var,
              subgraph.get());
  AddOutputVar(output_vars, cluster, old_op2new_op, old_var2new_var,
               subgraph.get());
J
jiangcheng 已提交
211

212
  return subgraph;
J
jiangcheng 已提交
213 214 215 216
}

// This interface is used to classify all variables involved in a cluster into
// three types: inputs, outputs, and internals.
217 218 219
// The input node is some subgraph op's input but not any subgraph op's output.
// The output node is some subgraph op's output and some out-graph op's input.
// Specially, the internal node is a node that only used by subgraph, and
J
jiangcheng 已提交
220
// out-graph should not using this node at all.
221 222
// cluster_inputs & cluster_outputs & cluster_internals == NULL
// cluster_outputs | cluster_internals == all graph op's outputs node
J
jiangcheng 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
void AnalyseClusterVariables(const GraphNodeSet& cluster,
                             GraphNodeSet* cluster_inputs,
                             GraphNodeSet* cluster_outputs,
                             GraphNodeSet* cluster_internals) {
  // collecting all input and output of op
  for (auto* op_node : cluster) {
    for (auto* input_var_node : op_node->inputs) {
      cluster_inputs->insert(input_var_node);
    }
    for (auto* output_var_node : op_node->outputs) {
      cluster_outputs->insert(output_var_node);
    }
  }
  // remove output node from cluster_inputs,
  // and add cluster_internals node
  for (auto* var_node : *cluster_outputs) {
    if (cluster_inputs->count(var_node) > 0) {
      // if a input node also exists in output list, remove
      cluster_inputs->erase(var_node);

      // the internal node is must an output node of sub-graph,
      // but not any input node of out-graph.
      bool is_only_used_internal = true;
      for (auto* next_op_node : var_node->outputs) {
        is_only_used_internal &= (cluster.count(next_op_node) > 0);
      }
      if (is_only_used_internal) {
        cluster_internals->insert(var_node);
      }
    }
  }

  // if a output node also exists in internal list, remove.
  for (auto* var_node : *cluster_internals) {
    cluster_outputs->erase(var_node);
  }
}

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
void AddLinkToCinnOp(const GraphNodeSet& cluster_inputs,
                     const GraphNodeSet& cluster_outputs, Node* cinn_op_node) {
  // add new link from cluster_inputs to cinn_op_node
  for (auto* var_node : cluster_inputs) {
    IR_NODE_LINK_TO(var_node, cinn_op_node);
  }

  // add new link from cinn_op_node to cluster_outputs
  for (auto* var_node : cluster_outputs) {
    IR_NODE_LINK_TO(cinn_op_node, var_node);
  }
}

void AddCinnOpToGraph(const GraphNodeSet& cluster,
                      const GraphNodeSet& cluster_inputs,
                      const GraphNodeSet& cluster_outputs,
                      const std::string& compilation_key, Graph* graph) {
  // Add the cinn launch op
  framework::OpDesc cinn_op_desc;
  cinn_op_desc.SetType(kCinnLaunchOp);
281
  std::vector<std::string> input_names;
282 283 284 285 286 287
  std::for_each(cluster_inputs.begin(), cluster_inputs.end(),
                [&input_names](Node* n) {
                  if (n->Var() != nullptr) {
                    input_names.emplace_back(n->Name());
                  }
                });
288
  cinn_op_desc.SetInput("X", input_names);
289
  std::vector<std::string> output_names;
290 291 292 293 294 295
  std::for_each(cluster_outputs.begin(), cluster_outputs.end(),
                [&output_names](Node* n) {
                  if (n->Var() != nullptr) {
                    output_names.emplace_back(n->Name());
                  }
                });
296 297 298 299 300 301 302 303
  cinn_op_desc.SetOutput("Out", output_names);
  cinn_op_desc.SetAttr(kCompilationKey, compilation_key);
  cinn_op_desc.SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                       ExtractOpRole(cluster));
  cinn_op_desc.Flush();
  auto* cinn_op_node = graph->CreateOpNode(&cinn_op_desc);
  // Add new links from or to the the cinn launch op node
  AddLinkToCinnOp(cluster_inputs, cluster_outputs, cinn_op_node);
304 305

  VLOG(4) << "Add op [" << kCinnLaunchOp << "] into graph.";
J
jiangcheng 已提交
306 307 308 309 310 311
}

// Removing cluster node and internals node from Graph
void RemoveSubGraphFromGraph(const GraphNodeSet& cluster,
                             const GraphNodeSet& cluster_internals,
                             Graph* graph) {
312 313 314 315 316 317
  const std::unordered_set<const Node*> const_cluster{cluster.cbegin(),
                                                      cluster.cend()};
  const std::unordered_set<const Node*> const_internals{
      cluster_internals.cbegin(), cluster_internals.cend()};
  ir::GraphSafeRemoveNodes(graph, const_cluster);
  ir::GraphSafeRemoveNodes(graph, const_internals);
J
jiangcheng 已提交
318 319
}

320
// Replacing Cinn subgraph to a cinn op node, whose op_type is
J
jiangcheng 已提交
321 322
// kCinnLaunchOp, and inputs ares cluster_inputs and outputs are
// cluster_outputs.
323 324 325 326 327 328 329 330 331 332 333
// Meanwhile, move all links of cluster to the cinn op.
void ReplaceSubGraphWithCinnOpNode(const GraphNodeSet& cluster,
                                   const GraphNodeSet& cluster_inputs,
                                   const GraphNodeSet& cluster_outputs,
                                   const GraphNodeSet& cluster_internals,
                                   const std::string& compilation_key,
                                   Graph* graph) {
  // Add the cinn op node whose name is "kCinnLaunchOp" into graph
  AddCinnOpToGraph(cluster, cluster_inputs, cluster_outputs, compilation_key,
                   graph);
  // Remove the cinn subgraph from graph
J
jiangcheng 已提交
334 335 336 337 338 339 340
  RemoveSubGraphFromGraph(cluster, cluster_internals, graph);
}

// Search all subgraphs which all op node supported by CINN,
// Here we using SubgraphDetector to detecte the subgraph that
// all of op node supported by CINN. We using OpMapperRegistry
// to check whether the op node supported by CINN.
341
void SearchAllSubgraphs(Graph* graph) {
J
jiangcheng 已提交
342 343 344 345 346 347 348
  auto teller = [](const Node* node) {
    return ::cinn::frontend::OpMapperRegistry::Global()->Find(node->Name()) !=
           nullptr;
  };
  std::vector<GraphNodeVec> clusters =
      framework::ir::SubgraphDetector(graph, teller)();

349 350 351 352 353 354 355 356 357 358
  auto cluster_debug_info = [](const GraphNodeSet& cluster) {
    std::string res = "(";
    for (auto* node : cluster) {
      res.append(node->Name());
      res.append(", ");
    }
    res.append(")");
    return res;
  };

359
  auto* cinn_compiler = CinnCompiler::GetInstance();
J
jiangcheng 已提交
360
  for (const auto& node_vec : clusters) {
361
    // Classify var node to inputs, outputs, and internals.
J
jiangcheng 已提交
362 363 364 365 366
    GraphNodeSet cluster_set(node_vec.begin(), node_vec.end());

    GraphNodeSet cluster_inputs, cluster_outputs, cluster_internals;
    AnalyseClusterVariables(cluster_set, &cluster_inputs, &cluster_outputs,
                            &cluster_internals);
367 368 369 370 371 372 373

    VLOG(4) << "Cluster Ops: " << cluster_debug_info(cluster_set);
    VLOG(4) << "Cluster input vars: " << cluster_debug_info(cluster_inputs);
    VLOG(4) << "Cluster output vars: " << cluster_debug_info(cluster_outputs);
    VLOG(4) << "Cluster internal vars: "
            << cluster_debug_info(cluster_internals);

374 375
    // Create a new subgraph according to the found cluster and
    // save it in CinnCompiler
376 377
    std::string compilation_key = cinn_compiler->AddGraph(CreateNewSubGraph(
        cluster_set, cluster_internals, cluster_inputs, cluster_outputs));
378 379
    VLOG(4) << "Compilation Key: " << compilation_key;

380 381 382
    // Replace the found cluster to a new cinn op node
    ReplaceSubGraphWithCinnOpNode(cluster_set, cluster_inputs, cluster_outputs,
                                  cluster_internals, compilation_key, graph);
J
jiangcheng 已提交
383 384
  }
}
385
}  // namespace
J
jiangcheng 已提交
386

387
void BuildCinnPass::ApplyImpl(Graph* graph) const { SearchAllSubgraphs(graph); }
J
jiangcheng 已提交
388 389 390 391 392 393

}  // namespace paddle2cinn
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(build_cinn_pass, paddle::framework::paddle2cinn::BuildCinnPass);