build_cinn_pass.cc 19.0 KB
Newer Older
J
jiangcheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/paddle2cinn/build_cinn_pass.h"

17 18
#include <algorithm>
#include <iterator>
J
jiangcheng 已提交
19
#include <memory>
20
#include <regex>
J
jiangcheng 已提交
21 22 23
#include <string>
#include <unordered_map>
#include <unordered_set>
24
#include <utility>
J
jiangcheng 已提交
25 26
#include <vector>

27 28
#include "cinn/frontend/op_mapper_registry.h"
#include "cinn/frontend/op_mappers/use_op_mappers.h"
29 30
#include "gflags/gflags.h"
#include "glog/logging.h"
J
jiangcheng 已提交
31
#include "paddle/fluid/framework/ir/graph.h"
32
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
J
jiangcheng 已提交
33 34
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/ir/subgraph_detector.h"
35
#include "paddle/fluid/framework/op_proto_maker.h"
36
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
37 38
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"
J
jiangcheng 已提交
39

40 41 42
DECLARE_string(allow_cinn_ops);
DECLARE_string(deny_cinn_ops);

J
jiangcheng 已提交
43 44 45 46 47 48 49 50 51
namespace paddle {
namespace framework {
namespace paddle2cinn {

using framework::ir::Graph;
using framework::ir::Node;

using GraphNodeVec = std::vector<Node*>;
using GraphNodeSet = std::unordered_set<Node*>;
52
using GraphNodeMap = std::unordered_map<Node*, Node*>;
J
jiangcheng 已提交
53

54
namespace {
55 56 57 58
// The delim(`;`) that is used to split the FLAGS_allow_cinn_ops
// & FLAGS_deny_cinn_ops.
constexpr char kDelim[] = ";";

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
const std::unordered_map<std::string, std::unordered_set<std::string>>
    kDenyParamMap = {{"batch_norm", {"ReserveSpace"}},
                     {"batch_norm_grad", {"ReserveSpace"}}};

std::unordered_set<std::string> GetDenyVarNames(const GraphNodeSet& cluster) {
  std::unordered_set<std::string> deny_var_set;

  auto get_debug_info = [](const std::unordered_set<std::string>& var_names) {
    std::string debug_info = "[";
    for (auto& var : var_names) {
      debug_info.append(var);
      debug_info.append(", ");
    }
    debug_info.append("]");
    return debug_info;
  };

  for (auto* op : cluster) {
    if (kDenyParamMap.count(op->Name())) {
      const auto* desc = op->Op();
      PADDLE_ENFORCE_NE(desc, nullptr,
                        platform::errors::PreconditionNotMet(
                            "The Op %s's OpDesc should not be NULL, which has "
                            "a parameter in kDenyParamMap.",
                            op->Name().c_str()));

      auto deny_param_names = kDenyParamMap.at(op->Name());
      VLOG(4) << "We found deny param " << get_debug_info(deny_param_names)
              << " in op [" << op->Name() << "].";

      for (const auto& param_name : deny_param_names) {
        if (desc->Inputs().count(param_name)) {
          const auto& arg_names = desc->Input(param_name);
          for (const auto& arg_name : arg_names) {
            deny_var_set.insert(arg_name);
            VLOG(4) << "deny param [" << param_name << "]'s argument name"
                    << " is [" << arg_name << "].";
          }
        }

        if (desc->HasOutput(param_name)) {
          const auto& arg_names = desc->Output(param_name);
          for (const auto& arg_name : arg_names) {
            deny_var_set.insert(arg_name);
            VLOG(4) << "deny param [" << param_name << "]'s argument name"
                    << " is [" << arg_name << "].";
          }
        }
      }
    }
  }

  VLOG(4) << "All deny var names are " << get_debug_info(deny_var_set);

  return deny_var_set;
}

116 117 118 119 120 121 122 123 124 125
std::unordered_set<std::string> StringSplit(const std::string& str,
                                            const std::string& delim) {
  std::regex reg(delim);
  std::unordered_set<std::string> elems{
      std::sregex_token_iterator(str.begin(), str.end(), reg, -1),
      std::sregex_token_iterator()};
  elems.erase("");
  return elems;
}

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
int ExtractOpRole(const GraphNodeSet& cluster) {
  std::unordered_set<int> op_roles;
  std::string attr_name = OpProtoAndCheckerMaker::OpRoleAttrName();
  for (auto* n : cluster) {
    if (n->Op() && n->Op()->HasAttr(attr_name)) {
      op_roles.insert(BOOST_GET_CONST(int, n->Op()->GetAttr(attr_name)));
    }
  }
  if (op_roles.size() == 1U) {
    return *(op_roles.begin());
  } else {
    return static_cast<int>(OpRole::kNotSpecified);
  }
}

141 142
// Deal with subgraph's feed input var node:
// create a new input var node and it's feed op node
143 144 145
void AddFeedOpAndVar(const GraphNodeSet& feed_vars, const GraphNodeSet& cluster,
                     const GraphNodeMap& old_op2new_op,
                     const GraphNodeMap& old_var2new_var, Graph* graph) {
146 147 148 149 150 151 152
  for (auto* old_var : feed_vars) {
    // create feed op
    OpDesc desc;
    desc.SetType("feed");
    desc.SetOutput("Out", {old_var->Name()});
    auto op = graph->CreateOpNode(&desc);

153 154
    // get new feed var node
    auto* var = old_var2new_var.at(old_var);
155
    VLOG(4) << "Add Feed Op before: " << var->Name();
156 157

    // link feed op and feed var
158
    IR_NODE_LINK_TO(op, var);
159 160 161 162

    // link feed var to cluster op
    for (auto* old_op : old_var->outputs) {
      if (cluster.count(old_op)) {
163
        IR_NODE_LINK_TO(var, old_op2new_op.at(old_op));
164 165
      }
      // Do not need relink old op or old var here, they will be
166
      // fixed in RemoveSubGraphFromGraph, here we just deal with
167 168 169 170 171 172 173 174
      // new subgraph's node.
    }
  }
}

// Deal with subgraph's parameter var node:
// create a new input var node, it's data will get by scope,
// so it don't need feed op
175 176 177
void AddParamVar(const GraphNodeSet& param_vars, const GraphNodeSet& cluster,
                 const GraphNodeMap& old_op2new_op,
                 const GraphNodeMap& old_var2new_var, Graph* graph) {
178
  for (auto* old_var : param_vars) {
179
    auto* var = old_var2new_var.at(old_var);
180
    VLOG(4) << "Add Param Var Node: " << var->Name();
181 182 183

    for (auto* old_op : old_var->outputs) {
      if (cluster.count(old_op)) {
184
        IR_NODE_LINK_TO(var, old_op2new_op.at(old_op));
185 186 187 188 189 190 191
      }
    }
  }
}

// Deal with subgraph's outputs var node:
// create a new output var node and it's fetch op
192 193 194
void AddOutputVar(const GraphNodeSet& output_vars, const GraphNodeSet& cluster,
                  const GraphNodeMap& old_op2new_op,
                  const GraphNodeMap& old_var2new_var, Graph* graph) {
195
  for (auto* old_var : output_vars) {
196 197 198 199 200 201
    // create fetch op
    OpDesc desc;
    desc.SetType("fetch");
    desc.SetInput("X", {old_var->Name()});
    auto op = graph->CreateOpNode(&desc);

202
    auto* var = old_var2new_var.at(old_var);
203
    VLOG(4) << "Add Output Var Node: " << var->Name();
204

205 206 207
    // link fetch op and fetch var
    IR_NODE_LINK_TO(var, op);

208 209
    for (auto* old_op : old_var->inputs) {
      if (cluster.count(old_op)) {
210
        IR_NODE_LINK_TO(old_op2new_op.at(old_op), var);
211 212 213 214 215
      }
    }
  }
}

J
jiangcheng 已提交
216 217
// Create new subgraph with and op nodes are cluster nodes, and all
// var node are from internal nodes
218 219
std::unique_ptr<Graph> CreateNewSubGraph(const GraphNodeSet& cluster,
                                         const GraphNodeSet& cluster_internals,
220 221
                                         const GraphNodeSet& cluster_inputs,
                                         const GraphNodeSet& cluster_outputs) {
J
jiangcheng 已提交
222 223
  // Graph's constructor must has one parameter, and in our code,
  // the ProgramDesc is useless, so here we pass a temporary object.
224
  auto subgraph = std::make_unique<Graph>(framework::ProgramDesc());
J
jiangcheng 已提交
225

226
  GraphNodeMap old_op2new_op;
J
jiangcheng 已提交
227
  for (auto* op : cluster) {
228
    auto sub_node = subgraph->CreateOpNode(op->Op());
J
jiangcheng 已提交
229 230 231
    old_op2new_op[op] = sub_node;
  }

232
  GraphNodeMap old_var2new_var;
J
jiangcheng 已提交
233
  for (auto* var : cluster_internals) {
234 235 236 237 238
    PADDLE_ENFORCE_NOT_NULL(var->Var(),
                            platform::errors::PreconditionNotMet(
                                "The var desc of the node in cluster_internals "
                                "shouldn't be null."));
    auto* sub_node = subgraph->CreateVarNode(var->Var());
J
jiangcheng 已提交
239 240
    old_var2new_var[var] = sub_node;
  }
241 242 243 244 245 246 247 248 249 250 251 252
  for (auto* var : cluster_inputs) {
    if (var->Var()) {
      auto* sub_node = subgraph->CreateVarNode(var->Var());
      old_var2new_var[var] = sub_node;
    }
  }
  for (auto* var : cluster_outputs) {
    if (var->Var()) {
      auto* sub_node = subgraph->CreateVarNode(var->Var());
      old_var2new_var[var] = sub_node;
    }
  }
J
jiangcheng 已提交
253

254
  GraphNodeSet need_feed_vars;
255
  std::unordered_set<Node *> param_vars, output_vars;
J
jiangcheng 已提交
256 257 258 259 260
  // the subgraph is independently, so here we only need link
  // to the node in new subgraph, and discard the link to
  // out-graph.
  for (auto* op : cluster) {
    for (auto* var : op->inputs) {
261 262 263 264
      // one output var maybe an input of the cluster
      if (cluster_internals.count(var) ||
          (cluster_outputs.count(var) && old_var2new_var.count(var))) {
        IR_NODE_LINK_TO(old_var2new_var.at(var), old_op2new_op.at(op));
265
      } else if (cluster_inputs.count(var) && var->Var() != nullptr) {
266 267 268 269 270 271 272 273 274 275 276
        if (var->Var()->IsParameter()) {
          // Parameters have been preserved in scope, compared to feed var,
          // param just need add new var and don't need add feed op.
          // The var is used for check whether we need preserve the tensor
          // when transform paddle scope to CINN scope.
          param_vars.insert(var);
        } else {
          // When the var is subgraph input and the var is not parameter,
          // we need add a new feed op to feed the var.
          need_feed_vars.insert(var);
        }
J
jiangcheng 已提交
277 278 279 280
      }
    }
    for (auto* var : op->outputs) {
      if (cluster_internals.count(var)) {
281
        IR_NODE_LINK_TO(old_op2new_op.at(op), old_var2new_var.at(var));
282
      } else if (cluster_outputs.count(var) && var->Var() != nullptr) {
283 284 285 286
        // Create new output var node to guarantee the independency of
        // subgraph. In other words, the subgraph has no connection with
        // other graph, even the input graph.
        output_vars.insert(var);
J
jiangcheng 已提交
287 288 289 290
      }
    }
  }

291 292 293 294 295 296
  AddFeedOpAndVar(need_feed_vars, cluster, old_op2new_op, old_var2new_var,
                  subgraph.get());
  AddParamVar(param_vars, cluster, old_op2new_op, old_var2new_var,
              subgraph.get());
  AddOutputVar(output_vars, cluster, old_op2new_op, old_var2new_var,
               subgraph.get());
J
jiangcheng 已提交
297

298
  return subgraph;
J
jiangcheng 已提交
299 300 301 302
}

// This interface is used to classify all variables involved in a cluster into
// three types: inputs, outputs, and internals.
303 304 305
// The input node is some subgraph op's input but not any subgraph op's output.
// The output node is some subgraph op's output and some out-graph op's input.
// Specially, the internal node is a node that only used by subgraph, and
J
jiangcheng 已提交
306
// out-graph should not using this node at all.
307 308
// cluster_inputs & cluster_outputs & cluster_internals == NULL
// cluster_outputs | cluster_internals == all graph op's outputs node
309 310 311 312 313
void AnalyseClusterVariables(
    const GraphNodeSet& cluster,
    const std::unordered_set<std::string>& deny_var_set,
    GraphNodeSet* cluster_inputs, GraphNodeSet* cluster_outputs,
    GraphNodeSet* cluster_internals) {
J
jiangcheng 已提交
314 315
  // collecting all input and output of op
  for (auto* op_node : cluster) {
316
    const auto& op_name = op_node->Name();
J
jiangcheng 已提交
317
    for (auto* input_var_node : op_node->inputs) {
318 319 320 321
      if (!deny_var_set.count(input_var_node->Name())) {
        // ignore deny var node
        cluster_inputs->insert(input_var_node);
      }
J
jiangcheng 已提交
322 323
    }
    for (auto* output_var_node : op_node->outputs) {
324 325 326
      if (!deny_var_set.count(output_var_node->Name())) {
        cluster_outputs->insert(output_var_node);
      }
J
jiangcheng 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
    }
  }
  // remove output node from cluster_inputs,
  // and add cluster_internals node
  for (auto* var_node : *cluster_outputs) {
    if (cluster_inputs->count(var_node) > 0) {
      // if a input node also exists in output list, remove
      cluster_inputs->erase(var_node);

      // the internal node is must an output node of sub-graph,
      // but not any input node of out-graph.
      bool is_only_used_internal = true;
      for (auto* next_op_node : var_node->outputs) {
        is_only_used_internal &= (cluster.count(next_op_node) > 0);
      }
      if (is_only_used_internal) {
        cluster_internals->insert(var_node);
      }
    }
  }

  // if a output node also exists in internal list, remove.
  for (auto* var_node : *cluster_internals) {
    cluster_outputs->erase(var_node);
  }
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
void AddLinkToCinnOp(const GraphNodeSet& cluster_inputs,
                     const GraphNodeSet& cluster_outputs, Node* cinn_op_node) {
  // add new link from cluster_inputs to cinn_op_node
  for (auto* var_node : cluster_inputs) {
    IR_NODE_LINK_TO(var_node, cinn_op_node);
  }

  // add new link from cinn_op_node to cluster_outputs
  for (auto* var_node : cluster_outputs) {
    IR_NODE_LINK_TO(cinn_op_node, var_node);
  }
}

void AddCinnOpToGraph(const GraphNodeSet& cluster,
                      const GraphNodeSet& cluster_inputs,
                      const GraphNodeSet& cluster_outputs,
370 371 372
                      const std::string& compilation_key,
                      const std::unordered_set<std::string>& deny_var_set,
                      Graph* graph) {
373 374 375
  // Add the cinn launch op
  framework::OpDesc cinn_op_desc;
  cinn_op_desc.SetType(kCinnLaunchOp);
376
  std::vector<std::string> input_names;
377

378
  std::for_each(cluster_inputs.begin(), cluster_inputs.end(),
379 380
                [&input_names, &deny_var_set](Node* n) {
                  if (n->Var() != nullptr && !deny_var_set.count(n->Name())) {
381 382 383
                    input_names.emplace_back(n->Name());
                  }
                });
384
  cinn_op_desc.SetInput("X", input_names);
385
  std::vector<std::string> output_names;
386
  std::for_each(cluster_outputs.begin(), cluster_outputs.end(),
387 388
                [&output_names, &deny_var_set](Node* n) {
                  if (n->Var() != nullptr && !deny_var_set.count(n->Name())) {
389 390 391
                    output_names.emplace_back(n->Name());
                  }
                });
392 393 394 395 396 397 398 399
  cinn_op_desc.SetOutput("Out", output_names);
  cinn_op_desc.SetAttr(kCompilationKey, compilation_key);
  cinn_op_desc.SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                       ExtractOpRole(cluster));
  cinn_op_desc.Flush();
  auto* cinn_op_node = graph->CreateOpNode(&cinn_op_desc);
  // Add new links from or to the the cinn launch op node
  AddLinkToCinnOp(cluster_inputs, cluster_outputs, cinn_op_node);
400 401

  VLOG(4) << "Add op [" << kCinnLaunchOp << "] into graph.";
J
jiangcheng 已提交
402 403 404 405 406 407
}

// Removing cluster node and internals node from Graph
void RemoveSubGraphFromGraph(const GraphNodeSet& cluster,
                             const GraphNodeSet& cluster_internals,
                             Graph* graph) {
408 409 410 411 412 413
  const std::unordered_set<const Node*> const_cluster{cluster.cbegin(),
                                                      cluster.cend()};
  const std::unordered_set<const Node*> const_internals{
      cluster_internals.cbegin(), cluster_internals.cend()};
  ir::GraphSafeRemoveNodes(graph, const_cluster);
  ir::GraphSafeRemoveNodes(graph, const_internals);
J
jiangcheng 已提交
414 415
}

416
// Replacing Cinn subgraph to a cinn op node, whose op_type is
J
jiangcheng 已提交
417 418
// kCinnLaunchOp, and inputs ares cluster_inputs and outputs are
// cluster_outputs.
419
// Meanwhile, move all links of cluster to the cinn op.
420 421 422 423 424
void ReplaceSubGraphWithCinnOpNode(
    const GraphNodeSet& cluster, const GraphNodeSet& cluster_inputs,
    const GraphNodeSet& cluster_outputs, const GraphNodeSet& cluster_internals,
    const std::string& compilation_key,
    const std::unordered_set<std::string>& deny_var_set, Graph* graph) {
425 426
  // Add the cinn op node whose name is "kCinnLaunchOp" into graph
  AddCinnOpToGraph(cluster, cluster_inputs, cluster_outputs, compilation_key,
427
                   deny_var_set, graph);
428
  // Remove the cinn subgraph from graph
J
jiangcheng 已提交
429 430 431 432 433 434 435
  RemoveSubGraphFromGraph(cluster, cluster_internals, graph);
}

// Search all subgraphs which all op node supported by CINN,
// Here we using SubgraphDetector to detecte the subgraph that
// all of op node supported by CINN. We using OpMapperRegistry
// to check whether the op node supported by CINN.
436
void SearchAllSubgraphs(Graph* graph) {
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
  auto allow_ops = StringSplit(FLAGS_allow_cinn_ops, kDelim);
  auto deny_ops = StringSplit(FLAGS_deny_cinn_ops, kDelim);
  auto teller = [&allow_ops, &deny_ops](const Node* node) {
    bool registered = ::cinn::frontend::OpMapperRegistry::Global()->Find(
                          node->Name()) != nullptr;
    // if the op type is registered in CINN and allow_ops is not empty, return
    // true only when it is in allow_ops
    if (allow_ops.size()) {
      return registered && allow_ops.count(node->Name());
    }
    // if the op type is registered in CINN and deny_ops is not empty, return
    // true only when it is not in deny_ops
    if (deny_ops.size()) {
      return registered && !deny_ops.count(node->Name());
    }
    // if the user doesn't set FLAGS_allow_cinn_ops and FLAGS_deny_cinn_ops,
    // return true only when it is registered in CINN
    return registered;
J
jiangcheng 已提交
455
  };
456 457
  VLOG(4) << "The allowed Cinn Ops: " << FLAGS_allow_cinn_ops;
  VLOG(4) << "The denied Cinn Ops: " << FLAGS_deny_cinn_ops;
J
jiangcheng 已提交
458 459 460
  std::vector<GraphNodeVec> clusters =
      framework::ir::SubgraphDetector(graph, teller)();

461 462 463 464 465 466 467 468 469 470
  auto cluster_debug_info = [](const GraphNodeSet& cluster) {
    std::string res = "(";
    for (auto* node : cluster) {
      res.append(node->Name());
      res.append(", ");
    }
    res.append(")");
    return res;
  };

471
  auto* cinn_compiler = CinnCompiler::GetInstance();
J
jiangcheng 已提交
472
  for (const auto& node_vec : clusters) {
473
    // Classify var node to inputs, outputs, and internals.
J
jiangcheng 已提交
474 475
    GraphNodeSet cluster_set(node_vec.begin(), node_vec.end());

476 477
    auto deny_var_set = GetDenyVarNames(cluster_set);

J
jiangcheng 已提交
478
    GraphNodeSet cluster_inputs, cluster_outputs, cluster_internals;
479 480
    AnalyseClusterVariables(cluster_set, deny_var_set, &cluster_inputs,
                            &cluster_outputs, &cluster_internals);
481 482 483 484 485 486 487

    VLOG(4) << "Cluster Ops: " << cluster_debug_info(cluster_set);
    VLOG(4) << "Cluster input vars: " << cluster_debug_info(cluster_inputs);
    VLOG(4) << "Cluster output vars: " << cluster_debug_info(cluster_outputs);
    VLOG(4) << "Cluster internal vars: "
            << cluster_debug_info(cluster_internals);

488 489
    // Create a new subgraph according to the found cluster and
    // save it in CinnCompiler
490 491
    std::string compilation_key = cinn_compiler->AddGraph(CreateNewSubGraph(
        cluster_set, cluster_internals, cluster_inputs, cluster_outputs));
492 493
    VLOG(4) << "Compilation Key:\n"
            << cinn_compiler->ReadableKey(compilation_key);
494

495 496
    // Replace the found cluster to a new cinn op node
    ReplaceSubGraphWithCinnOpNode(cluster_set, cluster_inputs, cluster_outputs,
497 498
                                  cluster_internals, compilation_key,
                                  deny_var_set, graph);
J
jiangcheng 已提交
499 500
  }
}
501
}  // namespace
J
jiangcheng 已提交
502

503
void BuildCinnPass::ApplyImpl(Graph* graph) const { SearchAllSubgraphs(graph); }
J
jiangcheng 已提交
504 505 506 507 508 509

}  // namespace paddle2cinn
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(build_cinn_pass, paddle::framework::paddle2cinn::BuildCinnPass);