test_jit_save_load.py 56.4 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import os
17
import pickle
18
import shutil
19
import tempfile
20 21
import unittest

22
import numpy as np
23

L
Leo Chen 已提交
24
import paddle
25
import paddle.fluid as fluid
26
from paddle.nn import Linear
27
from paddle.fluid import unique_name
28
from paddle.fluid.dygraph.io import INFER_PARAMS_INFO_SUFFIX
29 30 31
from paddle.fluid.layers.utils import flatten
from paddle.jit.api import declarative
from paddle.static import InputSpec
32 33

BATCH_SIZE = 32
34
BATCH_NUM = 10
35 36 37
SEED = 10


38 39
def random_batch_reader(input_size, label_size):
    def _get_random_inputs_and_labels(input_size, label_size):
40
        np.random.seed(SEED)
41 42 43
        input = np.random.random(size=input_size).astype('float32')
        label = np.random.random(size=label_size).astype('int64')
        return input, label
44 45 46

    def __reader__():
        for _ in range(BATCH_NUM):
47
            batch_input, batch_label = _get_random_inputs_and_labels(
48 49
                [BATCH_SIZE, input_size], [BATCH_SIZE, label_size]
            )
50
            yield batch_input, batch_label
51 52 53 54 55 56

    return __reader__


class LinearNet(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
57
        super().__init__()
58 59 60 61 62 63 64
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        return self._linear(x)


65 66
class LinearNetWithInputSpec(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
67
        super().__init__()
68 69 70 71 72 73 74
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
    def forward(self, x):
        return self._linear(x)


75 76
class LinearNetNotDeclarative(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
77
        super().__init__()
78 79 80 81 82 83
        self._linear = Linear(in_size, out_size)

    def forward(self, x):
        return self._linear(x)


84 85
class LinerNetWithLabel(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
86
        super().__init__()
87 88
        self._linear = Linear(in_size, out_size)

89 90 91 92 93 94
    @declarative(
        input_spec=[
            InputSpec(shape=[None, 784], dtype='float32', name="image"),
            InputSpec(shape=[None, 1], dtype='int64', name="label"),
        ]
    )
95 96 97
    def forward(self, x, label):
        out = self._linear(x)
        loss = fluid.layers.cross_entropy(out, label)
98
        avg_loss = paddle.mean(loss)
99 100 101
        return out, avg_loss


C
Chen Weihang 已提交
102 103
class LinerNetWithPruneInput(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
104
        super().__init__()
C
Chen Weihang 已提交
105 106
        self._linear = Linear(in_size, out_size)

107 108 109 110 111 112
    @declarative(
        input_spec=[
            InputSpec(shape=[None, 784], dtype='float32', name="image"),
            InputSpec(shape=[None, 1], dtype='int64', name="label"),
        ]
    )
C
Chen Weihang 已提交
113 114 115
    def forward(self, x, label):
        out = self._linear(x)
        loss = fluid.layers.cross_entropy(out, label)
116
        avg_loss = paddle.mean(loss)
C
Chen Weihang 已提交
117 118 119 120 121
        return out


class LinerNetWithUselessInput(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
122
        super().__init__()
C
Chen Weihang 已提交
123 124
        self._linear = Linear(in_size, out_size)

125 126 127 128 129 130
    @declarative(
        input_spec=[
            InputSpec(shape=[None, 784], dtype='float32', name="image"),
            InputSpec(shape=[None, 1], dtype='int64', name="label"),
        ]
    )
C
Chen Weihang 已提交
131 132 133 134 135
    def forward(self, x, label):
        out = self._linear(x)
        return out


136 137
class LinearNetReturnLoss(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
138
        super().__init__()
139 140 141 142 143 144
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear(x)
        z = self._linear(y)
145
        loss = paddle.mean(z)
146 147 148
        return z, loss


149 150
class LinearNetMultiInput(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
151
        super().__init__()
152 153 154
        self._linear1 = Linear(in_size, out_size)
        self._linear2 = Linear(in_size, out_size)

155 156 157 158 159 160
    @declarative(
        input_spec=[
            InputSpec([None, 8], dtype='float32'),
            InputSpec([None, 8], dtype='float32'),
        ]
    )
161 162 163
    def forward(self, x, y):
        x_out = self._linear1(x)
        y_out = self._linear2(y)
164
        loss = paddle.mean(x_out + y_out)
165 166 167
        return x_out, y_out, loss


168 169
class LinearNetMultiInput1(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
170
        super().__init__()
171 172 173
        self._linear1 = Linear(in_size, out_size)
        self._linear2 = Linear(in_size, out_size)

174 175 176 177 178 179
    @declarative(
        input_spec=(
            InputSpec([None, 8], dtype='float32'),
            InputSpec([None, 8], dtype='float32'),
        )
    )
180 181 182
    def forward(self, x, y):
        x_out = self._linear1(x)
        y_out = self._linear2(y)
183
        loss = paddle.mean(x_out + y_out)
184 185 186
        return x_out, y_out, loss


187 188
class MultiLoadingLinearNet(fluid.dygraph.Layer):
    def __init__(self, size, model_path):
189
        super().__init__()
190
        self._linear = Linear(size, size)
191 192
        self._load_linear1 = paddle.jit.load(model_path)
        self._load_linear2 = paddle.jit.load(model_path)
193 194 195 196 197 198 199 200 201 202 203 204

    @declarative
    def forward(self, x):
        tmp1 = self._linear(x)
        tmp2 = self._load_linear1(tmp1)
        tmp3 = self._load_linear2(tmp2)
        y = self._linear(tmp3)
        return y


class LinearNetReturnHidden(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
205
        super().__init__()
206 207 208 209 210 211 212
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
213
        loss = paddle.mean(z)
214 215 216
        return y, loss


217 218
class LinearNetWithNestOut(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
219
        super().__init__()
220 221 222 223 224 225 226 227
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
        out = y + z
228
        loss = paddle.mean(out)
229 230 231
        return y, [(z, loss), out]


232 233
class LinearNetWithDictInput(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
234
        super().__init__()
235 236
        self._linear = Linear(in_size, out_size)

237 238 239 240 241 242
    @paddle.jit.to_static(
        input_spec=[
            {'img': InputSpec(shape=[None, 8], dtype='float32', name='img')},
            {'label': InputSpec(shape=[None, 1], dtype='int64', name='label')},
        ]
    )
243 244 245 246 247 248 249
    def forward(self, img, label):
        out = self._linear(img['img'])
        # not return loss to avoid prune output
        loss = paddle.nn.functional.cross_entropy(out, label['label'])
        return out


250 251
class LinearNetWithDictInputNoPrune(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
252
        super().__init__()
253 254 255 256 257 258 259
        self._linear = Linear(in_size, out_size)

    def forward(self, img):
        out = self._linear(img['img'] + img['img2'])
        return out


260 261
class EmptyLayer(paddle.nn.Layer):
    def __init__(self):
262
        super().__init__()
263 264 265 266 267 268 269 270

    @paddle.jit.to_static
    def forward(self, x):
        return x


class NoParamLayer(paddle.nn.Layer):
    def __init__(self):
271
        super().__init__()
272 273 274 275 276 277

    @paddle.jit.to_static
    def forward(self, x, y):
        return x + y


278 279
class LinearNetWithMultiStaticFunc(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
280
        super().__init__()
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
        self._linear_0 = Linear(in_size, out_size)
        self._linear_1 = Linear(in_size, out_size)
        self._scale = paddle.to_tensor(9.9)

    @paddle.jit.to_static
    def forward(self, x):
        return self._linear_0(x)

    @paddle.jit.to_static
    def forward_no_param(self, x):
        return x

    @paddle.jit.to_static
    def forward_general(self, x):
        return self._linear_0(x) + self._linear_1(x) * self._scale


298
def train(layer, input_size=784, label_size=1):
299
    # create optimizer
300 301 302
    sgd = fluid.optimizer.SGDOptimizer(
        learning_rate=0.01, parameter_list=layer.parameters()
    )
303 304
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
305 306 307
    train_loader.set_batch_generator(
        random_batch_reader(input_size, label_size)
    )
308 309 310 311 312 313 314 315
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        cost = layer(img)

        loss = fluid.layers.cross_entropy(cost, label)
316
        avg_loss = paddle.mean(loss)
317 318

        avg_loss.backward()
L
Leo Chen 已提交
319
        sgd.minimize(avg_loss)
320 321 322 323
        layer.clear_gradients()
    return [img], layer, avg_loss


324 325
def train_with_label(layer, input_size=784, label_size=1):
    # create optimizer
326 327 328
    sgd = fluid.optimizer.SGDOptimizer(
        learning_rate=0.01, parameter_list=layer.parameters()
    )
329 330
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
331 332 333
    train_loader.set_batch_generator(
        random_batch_reader(input_size, label_size)
    )
334 335 336 337 338 339 340 341 342 343 344 345 346
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        out, avg_loss = layer(img, label)

        avg_loss.backward()
        sgd.minimize(avg_loss)
        layer.clear_gradients()
    return out


347 348
class TestJitSaveLoad(unittest.TestCase):
    def setUp(self):
349
        self.temp_dir = tempfile.TemporaryDirectory()
350 351 352
        self.model_path = os.path.join(
            self.temp_dir.name, "test_jit_save_load/model"
        )
353 354 355
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
356
        paddle.seed(SEED)
L
Leo Chen 已提交
357
        paddle.framework.random._manual_program_seed(SEED)
358

359 360 361
    def tearDown(self):
        self.temp_dir.cleanup()

362
    def train_and_save_model(self, model_path=None):
363 364
        layer = LinearNet(784, 1)
        example_inputs, layer, _ = train(layer)
365
        final_model_path = model_path if model_path else self.model_path
366
        orig_input_types = [type(x) for x in example_inputs]
367 368 369
        paddle.jit.save(
            layer=layer, path=final_model_path, input_spec=example_inputs
        )
370 371
        new_input_types = [type(x) for x in example_inputs]
        self.assertEqual(orig_input_types, new_input_types)
372 373
        return layer

374
    def test_save_load(self):
375 376 377
        # train and save model
        train_layer = self.train_and_save_model()
        # load model
378
        loaded_layer = paddle.jit.load(self.model_path)
379 380 381 382 383
        self.load_and_inference(train_layer, loaded_layer)
        self.load_dygraph_state_dict(train_layer)
        self.load_and_finetune(train_layer, loaded_layer)

    def load_and_inference(self, train_layer, infer_layer):
384
        train_layer.eval()
385
        infer_layer.eval()
386 387
        # inference & compare
        x = fluid.dygraph.to_variable(
388 389
            np.random.random((1, 784)).astype('float32')
        )
390
        np.testing.assert_array_equal(
391 392
            train_layer(x).numpy(), infer_layer(x).numpy()
        )
393

394 395
    def load_and_finetune(self, train_layer, load_train_layer):
        train_layer.train()
396 397
        load_train_layer.train()
        # train & compare
L
Leo Chen 已提交
398 399
        img0, _, train_loss = train(train_layer)
        img1, _, load_train_loss = train(load_train_layer)
400 401 402
        np.testing.assert_array_equal(
            train_loss.numpy(), load_train_loss.numpy()
        )
403

404 405
    def load_dygraph_state_dict(self, train_layer):
        train_layer.eval()
406
        # construct new model
407
        new_layer = LinearNet(784, 1)
408
        orig_state_dict = new_layer.state_dict()
409
        load_state_dict = paddle.load(self.model_path)
410 411 412
        for structured_name in orig_state_dict:
            self.assertTrue(structured_name in load_state_dict)
        new_layer.set_state_dict(load_state_dict)
413 414 415
        new_layer.eval()
        # inference & compare
        x = fluid.dygraph.to_variable(
416 417
            np.random.random((1, 784)).astype('float32')
        )
418
        np.testing.assert_array_equal(
419 420
            train_layer(x).numpy(), new_layer(x).numpy()
        )
421

422
    def test_load_dygraph_no_path(self):
423 424 425
        model_path = os.path.join(
            self.temp_dir.name, "test_jit_save_load.no_path/model_path"
        )
426 427 428
        with self.assertRaises(ValueError):
            model_dict, _ = fluid.dygraph.load_dygraph(model_path)

429
    def test_jit_load_no_path(self):
430 431 432
        path = os.path.join(
            self.temp_dir.name, "test_jit_save_load.no_path/model_path"
        )
433 434 435
        with self.assertRaises(ValueError):
            loaded_layer = paddle.jit.load(path)

436

437 438 439 440
class TestSaveLoadWithNestOut(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
441 442 443 444
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
445 446 447

    def test_nest_output(self):
        x = fluid.dygraph.to_variable(
448 449
            np.random.random((4, 8)).astype('float32')
        )
450 451 452 453 454

        net = LinearNetWithNestOut(8, 8)
        dy_outs = flatten(net(x))
        net = declarative(net, input_spec=[InputSpec([None, 8], name='x')])

455
        model_path = os.path.join(self.temp_dir.name, "net_with_nest_out/model")
456 457 458 459 460 461 462
        paddle.jit.save(net, model_path)

        load_net = paddle.jit.load(model_path)
        load_outs = flatten(load_net(x))

        self.assertTrue(len(dy_outs) == 4)
        for dy_out, load_out in zip(dy_outs, load_outs):
463 464 465
            np.testing.assert_allclose(
                dy_out.numpy(), load_out.numpy(), rtol=1e-05
            )
466 467


468 469
class TestSaveLoadWithDictInput(unittest.TestCase):
    def test_dict_input(self):
470
        # NOTE: This net cannot be executed, it is just
471 472 473
        # a special case for exporting models in model validation
        # We DO NOT recommend this writing way of Layer
        net = LinearNetWithDictInput(8, 8)
474 475 476
        # net.forward.concrete_program.inputs:
        # (<__main__.LinearNetWithDictInput object at 0x7f2655298a98>,
        #  {'img': var img : fluid.VarType.LOD_TENSOR.shape(-1, 8).astype(VarType.FP32)},
477 478
        #  {'label': var label : fluid.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)})
        self.assertEqual(len(net.forward.concrete_program.inputs), 3)
479
        temp_dir = tempfile.TemporaryDirectory()
480 481 482
        path = os.path.join(
            temp_dir.name, "test_jit_save_load_with_dict_input/model"
        )
483
        # prune inputs
484 485 486 487 488 489 490
        paddle.jit.save(
            layer=net,
            path=path,
            input_spec=[
                {'img': InputSpec(shape=[None, 8], dtype='float32', name='img')}
            ],
        )
491 492 493 494 495 496 497 498

        img = paddle.randn(shape=[4, 8], dtype='float32')
        loaded_net = paddle.jit.load(path)
        loaded_out = loaded_net(img)

        # loaded_net._input_spec():
        # [InputSpec(shape=(-1, 8), dtype=VarType.FP32, name=img)]
        self.assertEqual(len(loaded_net._input_spec()), 1)
499
        temp_dir.cleanup()
500 501


502 503 504
class TestSaveLoadWithDictInputNoPrune(unittest.TestCase):
    def test_dict_input(self):
        net = LinearNetWithDictInputNoPrune(8, 8)
505 506
        temp_dir = tempfile.TemporaryDirectory()
        path = os.path.join(
507 508
            temp_dir.name, "test_jit_save_load_with_dict_input_no_prune/model"
        )
509
        # prune inputs
510 511 512 513 514 515 516 517 518 519 520 521 522 523
        paddle.jit.save(
            layer=net,
            path=path,
            input_spec=[
                {
                    'img': InputSpec(
                        shape=[None, 8], dtype='float32', name='img'
                    ),
                    'img2': InputSpec(
                        shape=[None, 8], dtype='float32', name='img2'
                    ),
                }
            ],
        )
524 525 526 527 528 529 530

        img = paddle.randn(shape=[4, 8], dtype='float32')
        img2 = paddle.randn(shape=[4, 8], dtype='float32')
        loaded_net = paddle.jit.load(path)
        loaded_out = loaded_net(img, img2)

        self.assertEqual(len(loaded_net._input_spec()), 2)
531
        temp_dir.cleanup()
532 533


534 535 536 537
class TestSaveLoadWithInputSpec(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
538 539 540 541
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
542 543 544 545

    def test_with_input_spec(self):
        net = LinearNetReturnLoss(8, 8)
        # set x.shape = [None, 8]
546 547 548
        net.forward = declarative(
            net.forward, input_spec=[InputSpec([None, 8], name='x')]
        )
549

550 551 552
        model_path = os.path.join(
            self.temp_dir.name, "input_spec.output_spec/model"
        )
553 554 555 556 557 558 559
        # check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 1)
        input_x = net.forward.inputs[0]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_x.name == 'x')

        # 1. prune loss
560 561
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, output_spec=output_spec)
562 563

        # 2. load to infer
564
        infer_layer = paddle.jit.load(model_path)
565
        x = fluid.dygraph.to_variable(
566 567
            np.random.random((4, 8)).astype('float32')
        )
568 569 570 571 572
        pred = infer_layer(x)

    def test_multi_in_out(self):
        net = LinearNetMultiInput(8, 8)

573 574 575
        model_path = os.path.join(
            self.temp_dir.name, "multi_inout.output_spec1/model"
        )
576 577 578 579 580 581 582 583
        # 1. check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 2)
        input_x = net.forward.inputs[0]
        input_y = net.forward.inputs[1]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_y.shape == (-1, 8))

        # 2. prune loss
584 585
        output_spec = net.forward.outputs[:2]
        paddle.jit.save(net, model_path, output_spec=output_spec)
586 587

        # 3. load to infer
588
        infer_layer = paddle.jit.load(model_path)
589
        x = fluid.dygraph.to_variable(
590 591
            np.random.random((4, 8)).astype('float32')
        )
592
        y = fluid.dygraph.to_variable(
593 594
            np.random.random((4, 8)).astype('float32')
        )
595 596 597 598
        # 4. predict
        pred_x, pred_y = infer_layer(x, y)

        # 1. prune y and loss
599 600 601
        model_path = os.path.join(
            self.temp_dir.name, "multi_inout.output_spec2/model"
        )
602 603
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, [input_x], output_spec=output_spec)
604
        # 2. load again
605
        infer_layer2 = paddle.jit.load(model_path)
606 607 608 609
        # 3. predict
        pred_xx = infer_layer2(x)

        # 4. assert pred_x == pred_xx
610
        np.testing.assert_allclose(pred_x.numpy(), pred_xx.numpy(), rtol=1e-05)
611 612 613 614

    def test_multi_in_out1(self):
        net = LinearNetMultiInput1(8, 8)

615 616 617
        model_path = os.path.join(
            self.temp_dir.name, "multi_inout1.output_spec1/model"
        )
618 619 620 621 622 623 624 625 626 627 628 629 630 631
        # 1. check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 2)
        input_x = net.forward.inputs[0]
        input_y = net.forward.inputs[1]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_y.shape == (-1, 8))

        # 2. prune loss
        output_spec = net.forward.outputs[:2]
        paddle.jit.save(net, model_path, output_spec=output_spec)

        # 3. load to infer
        infer_layer = paddle.jit.load(model_path)
        x = fluid.dygraph.to_variable(
632 633
            np.random.random((4, 8)).astype('float32')
        )
634
        y = fluid.dygraph.to_variable(
635 636
            np.random.random((4, 8)).astype('float32')
        )
637 638 639 640
        # 4. predict
        pred_x, pred_y = infer_layer(x, y)

        # 1. prune y and loss
641 642 643
        model_path = os.path.join(
            self.temp_dir.name, "multi_inout1.output_spec2/model"
        )
644
        output_spec = net.forward.outputs[:1]
645
        paddle.jit.save(net, model_path, (input_x,), output_spec=output_spec)
646 647 648 649 650 651
        # 2. load again
        infer_layer2 = paddle.jit.load(model_path)
        # 3. predict
        pred_xx = infer_layer2(x)

        # 4. assert pred_x == pred_xx
652
        np.testing.assert_allclose(pred_x.numpy(), pred_xx.numpy(), rtol=1e-05)
653 654


655 656 657 658 659
class TestJitSaveLoadConfig(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
660
        paddle.seed(SEED)
L
Leo Chen 已提交
661
        paddle.framework.random._manual_program_seed(SEED)
662 663 664 665
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
666 667 668 669

    def test_output_spec(self):
        train_layer = LinearNetReturnLoss(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
670 671
            learning_rate=0.1, parameter_list=train_layer.parameters()
        )
672
        x = fluid.dygraph.to_variable(
673 674
            np.random.random((4, 8)).astype('float32')
        )
675 676 677 678 679 680
        for i in range(10):
            out, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

681 682 683
        model_path = os.path.join(
            self.temp_dir.name, "save_load_config.output_spec"
        )
684
        output_spec = [out]
685 686 687 688 689 690
        paddle.jit.save(
            layer=train_layer,
            path=model_path,
            input_spec=[x],
            output_spec=output_spec,
        )
691 692

        train_layer.eval()
693
        infer_layer = paddle.jit.load(model_path)
694
        x = fluid.dygraph.to_variable(
695 696
            np.random.random((4, 8)).astype('float32')
        )
697
        np.testing.assert_array_equal(
698 699
            train_layer(x)[0].numpy(), infer_layer(x).numpy()
        )
700

701 702
    def test_save_no_support_config_error(self):
        layer = LinearNet(784, 1)
703
        path = os.path.join(self.temp_dir.name, "no_support_config_test")
704 705 706 707
        with self.assertRaises(ValueError):
            paddle.jit.save(layer=layer, path=path, model_filename="")

    def test_load_empty_model_filename_error(self):
708
        path = os.path.join(self.temp_dir.name, "error_model_filename_test")
709 710 711 712
        with self.assertRaises(ValueError):
            paddle.jit.load(path, model_filename="")

    def test_load_empty_params_filename_error(self):
713
        path = os.path.join(self.temp_dir.name, "error_params_filename_test")
714 715 716 717
        with self.assertRaises(ValueError):
            paddle.jit.load(path, params_filename="")

    def test_load_with_no_support_config(self):
718
        path = os.path.join(self.temp_dir.name, "no_support_config_test")
719 720 721
        with self.assertRaises(ValueError):
            paddle.jit.load(path, separate_params=True)

722

723 724 725
class TestJitMultipleLoading(unittest.TestCase):
    def setUp(self):
        self.linear_size = 4
726
        self.temp_dir = tempfile.TemporaryDirectory()
727 728 729
        self.model_path = os.path.join(
            self.temp_dir.name, "jit_multi_load/model"
        )
730 731 732
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
733
        paddle.seed(SEED)
L
Leo Chen 已提交
734
        paddle.framework.random._manual_program_seed(SEED)
735 736 737
        # train and save base model
        self.train_and_save_orig_model()

738 739 740
    def tearDown(self):
        self.temp_dir.cleanup()

741 742 743
    def train_and_save_orig_model(self):
        layer = LinearNet(self.linear_size, self.linear_size)
        example_inputs, layer, _ = train(layer, self.linear_size, 1)
744 745 746
        paddle.jit.save(
            layer=layer, path=self.model_path, input_spec=example_inputs
        )
747 748

    def test_load_model_retransform_inference(self):
749 750 751
        multi_loaded_layer = MultiLoadingLinearNet(
            self.linear_size, self.model_path
        )
752 753 754 755 756 757 758
        state_dict = multi_loaded_layer.state_dict()
        name_set = set()
        for _, var in state_dict.items():
            self.assertTrue(var.name not in name_set)
            name_set.add(var.name)


759 760 761
class TestJitPruneModelAndLoad(unittest.TestCase):
    def setUp(self):
        self.linear_size = 4
762
        self.temp_dir = tempfile.TemporaryDirectory()
763 764 765
        self.model_path = os.path.join(
            self.temp_dir.name, "jit_prune_model_and_load/model"
        )
766 767 768
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
769
        paddle.seed(SEED)
L
Leo Chen 已提交
770
        paddle.framework.random._manual_program_seed(SEED)
771

772 773 774
    def tearDown(self):
        self.temp_dir.cleanup()

775 776 777
    def train_and_save(self):
        train_layer = LinearNetReturnHidden(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
778 779
            learning_rate=0.1, parameter_list=train_layer.parameters()
        )
780
        x = fluid.dygraph.to_variable(
781 782
            np.random.random((4, 8)).astype('float32')
        )
783 784 785 786 787 788
        for i in range(10):
            hidden, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

789
        output_spec = [hidden]
790 791 792 793 794 795
        paddle.jit.save(
            layer=train_layer,
            path=self.model_path,
            input_spec=[x],
            output_spec=output_spec,
        )
796 797 798 799 800 801 802

        return train_layer

    def test_load_pruned_model(self):
        train_layer = self.train_and_save()
        train_layer.eval()

803
        infer_layer = paddle.jit.load(self.model_path)
804 805

        x = fluid.dygraph.to_variable(
806 807
            np.random.random((4, 8)).astype('float32')
        )
808
        np.testing.assert_array_equal(
809 810
            train_layer(x)[0].numpy(), infer_layer(x).numpy()
        )
811 812 813 814 815

    def test_load_var_not_in_extra_var_info(self):
        self.train_and_save()

        # chage extra var info
816
        var_info_path = self.model_path + INFER_PARAMS_INFO_SUFFIX
817 818 819 820 821 822 823
        with open(var_info_path, 'rb') as f:
            extra_var_info = pickle.load(f)
            extra_var_info.clear()
        with open(var_info_path, 'wb') as f:
            pickle.dump(extra_var_info, f, protocol=2)

        with self.assertRaises(RuntimeError):
824
            paddle.jit.load(self.model_path)
825 826


827 828 829 830 831
class TestJitSaveMultiCases(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
832
        paddle.seed(SEED)
833
        paddle.framework.random._manual_program_seed(SEED)
834 835 836 837
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
838

839 840 841
    def verify_inference_correctness(
        self, layer, model_path, with_label_and_loss=False, with_label=False
    ):
842 843 844 845
        layer.eval()
        loaded_layer = paddle.jit.load(model_path)
        loaded_layer.eval()
        # inference & compare
Z
Zhou Wei 已提交
846
        x = paddle.to_tensor(np.random.random((1, 784)).astype('float32'))
C
Chen Weihang 已提交
847
        if with_label_and_loss:
Z
Zhou Wei 已提交
848
            y = paddle.to_tensor(np.random.random((1, 1)).astype('int64'))
849 850
            pred, _ = layer(x, y)
            pred = pred.numpy()
C
Chen Weihang 已提交
851 852 853 854
        elif with_label:
            y = paddle.to_tensor(np.random.random((1, 1)).astype('int64'))
            pred = layer(x, y)
            pred = pred.numpy()
855 856 857
        else:
            pred = layer(x).numpy()
        loaded_pred = loaded_layer(x).numpy()
858 859 860
        np.testing.assert_array_equal(
            pred,
            loaded_pred,
861 862 863 864
            err_msg='Result diff when load and inference:\nlayer result:\n{}\nloaded layer result:\n{}'.format(
                pred, loaded_pred
            ),
        )
865 866 867 868 869 870

    def test_no_prune_to_static_after_train(self):
        layer = LinearNet(784, 1)

        train(layer)

871 872 873
        model_path = os.path.join(
            self.temp_dir.name, "test_no_prune_to_static_after_train/model"
        )
874 875 876 877 878 879 880
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_to_static_no_train(self):
        layer = LinearNetWithInputSpec(784, 1)

881 882 883
        model_path = os.path.join(
            self.temp_dir.name, "test_no_prune_to_static_no_train/model"
        )
884 885 886 887 888 889 890 891 892
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train(self):
        layer = LinearNetNotDeclarative(784, 1)

        train(layer)

893
        model_path = os.path.join(
894 895
            self.temp_dir.name, "test_no_prune_no_to_static_after_train/model"
        )
896 897 898
        paddle.jit.save(
            layer,
            model_path,
899 900
            input_spec=[InputSpec(shape=[None, 784], dtype='float32')],
        )
901 902 903 904 905 906 907 908

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train_with_examples(self):
        layer = LinearNetNotDeclarative(784, 1)

        example_inputs, _, _ = train(layer)

909 910
        model_path = os.path.join(
            self.temp_dir.name,
911 912
            "test_no_prune_no_to_static_after_train_with_examples/model",
        )
913
        paddle.jit.save(layer=layer, path=model_path, input_spec=example_inputs)
914 915 916 917 918 919

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_no_train(self):
        layer = LinearNetNotDeclarative(784, 1)

920 921 922
        model_path = os.path.join(
            self.temp_dir.name, "test_no_prune_no_to_static_no_train/model"
        )
923 924 925
        paddle.jit.save(
            layer,
            model_path,
926 927
            input_spec=[InputSpec(shape=[None, 784], dtype='float32')],
        )
928 929 930 931 932 933 934 935

        self.verify_inference_correctness(layer, model_path)

    def test_prune_to_static_after_train(self):
        layer = LinerNetWithLabel(784, 1)

        out = train_with_label(layer)

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
        model_path = os.path.join(
            self.temp_dir.name, "test_prune_to_static_after_train/model"
        )
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(shape=[None, 784], dtype='float32', name="image")
            ],
            output_spec=[out],
        )

        self.verify_inference_correctness(
            layer, model_path, with_label_and_loss=True
        )
951 952 953 954

    def test_prune_to_static_no_train(self):
        layer = LinerNetWithLabel(784, 1)

955 956 957
        model_path = os.path.join(
            self.temp_dir.name, "test_prune_to_static_no_train/model"
        )
958 959
        # TODO: no train, cannot get output_spec var here
        # now only can use index
960
        output_spec = layer.forward.outputs[:1]
961 962 963 964 965 966 967 968 969 970 971 972
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(shape=[None, 784], dtype='float32', name="image")
            ],
            output_spec=output_spec,
        )

        self.verify_inference_correctness(
            layer, model_path, with_label_and_loss=True
        )
C
Chen Weihang 已提交
973 974 975 976

    def test_prune_input_to_static_no_train(self):
        layer = LinerNetWithPruneInput(784, 1)

977 978 979 980 981 982 983 984 985 986
        model_path = os.path.join(
            self.temp_dir.name, "test_prune_input_to_static_no_train/model"
        )
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(shape=[None, 784], dtype='float32', name="image")
            ],
        )
C
Chen Weihang 已提交
987 988 989 990 991 992

        self.verify_inference_correctness(layer, model_path, with_label=True)

    def test_prune_useless_input_to_static_no_train(self):
        layer = LinerNetWithUselessInput(784, 1)

993 994
        model_path = os.path.join(
            self.temp_dir.name,
995 996 997 998 999 1000 1001 1002 1003
            "test_prune_useless_input_to_static_no_train/model",
        )
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(shape=[None, 784], dtype='float32', name="image")
            ],
        )
C
Chen Weihang 已提交
1004 1005

        self.verify_inference_correctness(layer, model_path, with_label=True)
1006 1007 1008 1009 1010 1011

    def test_no_prune_input_spec_name_warning(self):
        layer = LinearNetWithInputSpec(784, 1)

        train(layer)

1012
        model_path = os.path.join(
1013 1014
            self.temp_dir.name, "test_no_prune_input_spec_name_warning/model"
        )
1015 1016 1017
        paddle.jit.save(
            layer,
            model_path,
1018 1019 1020 1021 1022 1023 1024 1025 1026
            input_spec=[InputSpec(shape=[None, 784], dtype='float32')],
        )
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(shape=[None, 784], dtype='float32', name='feed_input')
            ],
        )
1027 1028 1029 1030 1031 1032 1033 1034

        self.verify_inference_correctness(layer, model_path)

    def test_not_prune_output_spec_name_warning(self):
        layer = LinearNet(784, 1)

        train(layer)

1035
        model_path = os.path.join(
1036 1037
            self.temp_dir.name, "test_not_prune_output_spec_name_warning/model"
        )
Z
Zhou Wei 已提交
1038
        out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
1039
        paddle.jit.save(layer, model_path, output_spec=[out])
1040 1041 1042 1043 1044 1045

        self.verify_inference_correctness(layer, model_path)

    def test_prune_input_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

1046 1047 1048
        model_path = os.path.join(
            self.temp_dir.name, "test_prune_input_spec_name_error/model"
        )
1049 1050 1051 1052
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
1053 1054
                input_spec=[InputSpec(shape=[None, 784], dtype='float32')],
            )
1055
        with self.assertRaises(ValueError):
1056 1057 1058 1059 1060 1061 1062 1063 1064
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[
                    InputSpec(
                        shape=[None, 784], dtype='float32', name='feed_input'
                    )
                ],
            )
1065 1066 1067 1068 1069 1070

    def test_prune_output_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

        train_with_label(layer)

1071 1072 1073
        model_path = os.path.join(
            self.temp_dir.name, "test_prune_to_static_after_train/model"
        )
Z
Zhou Wei 已提交
1074
        out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
1075
        with self.assertRaises(ValueError):
1076 1077 1078 1079 1080 1081 1082 1083
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[
                    InputSpec(shape=[None, 784], dtype='float32', name="image")
                ],
                output_spec=[out],
            )
1084 1085


1086 1087
class TestJitSaveLoadEmptyLayer(unittest.TestCase):
    def setUp(self):
1088
        self.temp_dir = tempfile.TemporaryDirectory()
1089 1090 1091
        self.model_path = os.path.join(
            self.temp_dir.name, "jit_save_load_empty_layer/model"
        )
1092 1093 1094
        # enable dygraph mode
        paddle.disable_static()

1095 1096 1097
    def tearDown(self):
        self.temp_dir.cleanup()

1098 1099
    def test_save_load_empty_layer(self):
        layer = EmptyLayer()
Z
Zhou Wei 已提交
1100
        x = paddle.to_tensor(np.random.random((10)).astype('float32'))
1101 1102 1103 1104
        out = layer(x)
        paddle.jit.save(layer, self.model_path)
        load_layer = paddle.jit.load(self.model_path)
        load_out = load_layer(x)
1105
        np.testing.assert_array_equal(out, load_out)
1106 1107 1108 1109


class TestJitSaveLoadNoParamLayer(unittest.TestCase):
    def setUp(self):
1110
        self.temp_dir = tempfile.TemporaryDirectory()
1111 1112 1113
        self.model_path = os.path.join(
            self.temp_dir.name, "jit_save_load_no_param_layer/model"
        )
1114 1115 1116
        # enable dygraph mode
        paddle.disable_static()

1117 1118 1119
    def tearDown(self):
        self.temp_dir.cleanup()

1120 1121
    def test_save_load_no_param_layer(self):
        layer = NoParamLayer()
Z
Zhou Wei 已提交
1122 1123
        x = paddle.to_tensor(np.random.random((5)).astype('float32'))
        y = paddle.to_tensor(np.random.random((5)).astype('float32'))
1124 1125 1126 1127
        out = layer(x, y)
        paddle.jit.save(layer, self.model_path)
        load_layer = paddle.jit.load(self.model_path)
        load_out = load_layer(x, y)
1128
        np.testing.assert_array_equal(out, load_out)
1129 1130


1131 1132 1133 1134
class TestJitSaveLoadMultiMethods(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()
1135 1136 1137 1138
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1139 1140

    def test_jit_save_load_inference(self):
1141
        model_path_inference = os.path.join(
1142 1143
            self.temp_dir.name, "jit_save_load_multi_methods/model"
        )
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
        IMAGE_SIZE = 224
        layer = LinearNetWithMultiStaticFunc(IMAGE_SIZE, 10)
        inps = paddle.randn([1, IMAGE_SIZE])
        result_origin = {}
        for func in dir(layer):
            if func.startswith('forward'):
                result_origin[func] = getattr(layer, func, None)(inps)
        paddle.jit.save(layer, model_path_inference)
        load_net = paddle.jit.load(model_path_inference)
        for func, result in result_origin.items():
            self.assertTrue(
1155 1156 1157 1158 1159
                float(
                    (result - getattr(load_net, func, None)(inps)).abs().max()
                )
                < 1e-5
            )
1160 1161

    def test_jit_save_load_multi_methods_inputspec(self):
1162 1163 1164
        model_path = os.path.join(
            self.temp_dir.name, 'jit_save_load_multi_methods/model'
        )
1165 1166
        layer = LinearNetWithMultiStaticFunc(784, 1)
        with self.assertRaises(ValueError):
1167 1168 1169
            paddle.jit.save(
                layer, model_path, input_spec=[InputSpec(shape=[None, 784])]
            )
1170

1171
    def test_parse_name(self):
1172 1173 1174
        model_path_inference = os.path.join(
            self.temp_dir.name, "jit_save_load_parse_name/model"
        )
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
        IMAGE_SIZE = 224
        layer = LinearNet(IMAGE_SIZE, 1)
        inps = paddle.randn([1, IMAGE_SIZE])
        layer(inps)
        paddle.jit.save(layer, model_path_inference)
        paddle.jit.save(layer, model_path_inference + '_v2')
        load_net = paddle.jit.load(model_path_inference)

        self.assertFalse(hasattr(load_net, 'v2'))

1185

W
WeiXin 已提交
1186 1187
class LayerSaved(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
1188
        super().__init__()
W
WeiXin 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
        self.hidden = 100
        self._linear_0 = Linear(in_size, self.hidden)
        self._linear_1_0 = Linear(self.hidden, self.hidden)
        self._linear_1_1 = Linear(self.hidden, self.hidden)
        self._linear_2 = Linear(self.hidden, out_size)
        self._scale = paddle.to_tensor(9.9)

    @paddle.jit.to_static
    def forward(self, x):
        y = self._linear_0(x)
        # Multiple blocks
1200
        if paddle.shape(x)[0] == 1:
W
WeiXin 已提交
1201 1202 1203 1204 1205 1206
            y = self._linear_1_0(y)
        else:
            y += self._linear_1_1(y + self._scale)
        return self._linear_2(y)


1207 1208
class Net(paddle.nn.Layer):
    def __init__(self):
1209
        super().__init__()
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
        self.fc1 = paddle.nn.Linear(4, 4)
        self.fc2 = paddle.nn.Linear(4, 4)
        self.bias = 0.4
        self.flag = paddle.ones([2], dtype="int32")

    @paddle.jit.to_static(input_spec=[InputSpec([None, 4], dtype='float32')])
    def log_softmax(self, input):
        return paddle.nn.functional.log_softmax(input, axis=-1)

    @paddle.jit.to_static(input_spec=[InputSpec([None, 4], dtype='float32')])
    def forward(self, x):
        out = self.fc1(x)
        out = paddle.nn.functional.relu(out)
        out = paddle.mean(out)
        return out

    @paddle.jit.to_static(input_spec=[InputSpec([None, 4], dtype='float32')])
    def infer(self, input):
        out = self.fc2(input)
        out = out + self.bias
        out = paddle.mean(out)
        return out

    # For extra Python float
    @paddle.jit.to_static(property=True)
    def fbias(self):
        return self.bias + 1

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
    @paddle.jit.to_static(property=True)
    def down_sampling(self):
        return 4

    @paddle.jit.to_static(property=True)
    def fstr(self):
        return "save str property"

    @paddle.jit.to_static(property=True)
    def ints(self):
        return [10, 20]

    @paddle.jit.to_static(property=True)
    def floats(self):
        return [1.1, 2.2]

    @paddle.jit.to_static(property=True)
    def strs(self):
        return ["hello", "world"]


class NetTensor(paddle.nn.Layer):
    def __init__(self):
        super().__init__()
        self.fc1 = paddle.nn.Linear(4, 4)
        self.fc2 = paddle.nn.Linear(4, 4)
        self.bias = 0.4
        self.flag = paddle.ones([2], dtype="int32")

    @paddle.jit.to_static(input_spec=[InputSpec([None, 4], dtype='float32')])
    def forward(self, x):
        out = self.fc1(x)
        out = paddle.nn.functional.relu(out)
        out = paddle.mean(out)
        return out

1274 1275
    @paddle.jit.to_static(property=True)
    def fflag(self):
1276
        return True
1277 1278


1279
class TestJitSaveCombineProperty(unittest.TestCase):
1280 1281 1282 1283 1284 1285 1286 1287
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

1288
    def test_jit_save_combine_property(self):
1289 1290 1291
        model_path = os.path.join(
            self.temp_dir.name, "test_jit_save_combine/model"
        )
1292 1293 1294
        # Use new namespace
        with unique_name.guard():
            net = Net()
1295
        # save
1296
        paddle.jit.save(net, model_path, combine_params=True)
1297

1298
    def test_jit_save_tensor_property(self):
1299 1300 1301
        model_path = os.path.join(
            self.temp_dir.name, "test_jit_save_combine/model"
        )
1302 1303 1304 1305 1306 1307
        # Use new namespace
        with unique_name.guard():
            net = NetTensor()

        paddle.jit.save(net, model_path, combine_params=True)

1308

W
WeiXin 已提交
1309 1310
class LayerLoadFinetune(paddle.nn.Layer):
    def __init__(self, in_size, out_size, load_path):
1311
        super().__init__()
W
WeiXin 已提交
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
        # Test duplicate name
        self._linear_0 = Linear(in_size, in_size)
        self._linear_1_0 = Linear(out_size, in_size)
        self._linear_1_1 = Linear(out_size, in_size)
        self._linear_2 = Linear(out_size, out_size)
        self._scale = paddle.to_tensor(9.9)

        # Load multiple times
        self._load_l1 = paddle.jit.load(load_path)
        self._load_l2 = paddle.jit.load(load_path)

    @paddle.jit.to_static
    def forward(self, x):
        y = self._linear_0(x)
        y = self._load_l1(y)
        # Multiple blocks
1328
        if paddle.shape(x)[0] == 1:
W
WeiXin 已提交
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
            y = self._linear_1_0(y)
            y = self._load_l1(y)
        else:
            y += self._linear_1_1(x + self._scale)
            y = self._load_l2(y)
        y = self._linear_1_0(y)
        y = self._load_l1(y)
        y = self._linear_1_0(y)
        # Use the same layer multiple times.
        y = self._load_l1(y)
        return y


1342 1343 1344 1345
class TestJitSaveLoadSaveWithoutRunning(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()
1346 1347 1348 1349
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1350 1351

    def test_save_load_finetune_load(self):
1352
        model_path = os.path.join(
1353 1354
            self.temp_dir.name, "test_jit_save_load_save_without_running/model"
        )
1355 1356 1357 1358 1359 1360
        IMAGE_SIZE = 224
        inps0 = paddle.randn([1, IMAGE_SIZE])
        inps1 = paddle.randn([2, IMAGE_SIZE])
        # Use new namespace
        with unique_name.guard():
            layer_save = LayerSaved(IMAGE_SIZE, IMAGE_SIZE)
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
        # save
        paddle.jit.save(
            layer_save,
            model_path,
            input_spec=[
                paddle.static.InputSpec(
                    shape=[None, IMAGE_SIZE], dtype='float32'
                )
            ],
        )
1371 1372
        result_00 = layer_save(inps0)
        result_01 = layer_save(inps1)
1373
        # load and save without running
1374 1375
        with unique_name.guard():
            layer_load = paddle.jit.load(model_path)
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
            paddle.jit.save(
                layer_load,
                model_path,
                input_spec=[
                    paddle.static.InputSpec(
                        shape=[None, IMAGE_SIZE], dtype='float32'
                    )
                ],
            )
        # reload
1386 1387 1388 1389 1390 1391 1392 1393
        layer_reload = paddle.jit.load(model_path)
        result_10 = layer_reload(inps0)
        result_11 = layer_reload(inps1)

        self.assertTrue(float((result_00 - result_10).abs().max()) < 1e-5)
        self.assertTrue(float((result_01 - result_11).abs().max()) < 1e-5)


W
WeiXin 已提交
1394 1395 1396 1397
class TestJitSaveLoadFinetuneLoad(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()
1398 1399 1400 1401
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
W
WeiXin 已提交
1402 1403

    def test_save_load_finetune_load(self):
1404 1405 1406
        model_path = os.path.join(
            self.temp_dir.name, "test_jit_save_load_finetune_load/model"
        )
W
WeiXin 已提交
1407 1408 1409 1410 1411 1412 1413
        IMAGE_SIZE = 224
        inps0 = paddle.randn([1, IMAGE_SIZE])
        inps1 = paddle.randn([2, IMAGE_SIZE])
        # Use new namespace
        with unique_name.guard():
            layer_save = LayerSaved(IMAGE_SIZE, IMAGE_SIZE)
        layer_save(inps0)
1414
        # save
W
WeiXin 已提交
1415
        paddle.jit.save(layer_save, model_path)
1416
        # load
W
WeiXin 已提交
1417 1418
        with unique_name.guard():
            layer_load = LayerLoadFinetune(IMAGE_SIZE, IMAGE_SIZE, model_path)
1419
        # train
W
WeiXin 已提交
1420 1421 1422
        train(layer_load, input_size=IMAGE_SIZE)
        result_00 = layer_load(inps0)
        result_01 = layer_load(inps1)
1423
        # save
W
WeiXin 已提交
1424
        paddle.jit.save(layer_load, model_path)
1425
        # load
W
WeiXin 已提交
1426 1427 1428 1429 1430 1431 1432 1433
        layer_finetune = paddle.jit.load(model_path)
        result_10 = layer_finetune(inps0)
        result_11 = layer_finetune(inps1)

        self.assertTrue(float((result_00 - result_10).abs().max()) < 1e-5)
        self.assertTrue(float(((result_01 - result_11)).abs().max()) < 1e-5)


1434 1435 1436 1437
# NOTE(weixin): When there are multiple test functions in an
# `unittest.TestCase`, functions will affect each other,
# and there is a risk of random failure.
# So divided into three TestCase: TestJitSaveLoadFunctionCase1,
1438 1439
# TestJitSaveLoadFunctionCase2, TestJitSaveLoadFunctionCase3.
class TestJitSaveLoadFunctionCase1(unittest.TestCase):
1440 1441
    def setUp(self):
        paddle.disable_static()
1442 1443 1444 1445
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1446 1447 1448 1449 1450 1451

    def test_jit_save_load_static_function(self):
        @paddle.jit.to_static
        def fun(inputs):
            return paddle.tanh(inputs)

1452 1453 1454
        path = os.path.join(
            self.temp_dir.name, 'test_jit_save_load_function_1/func'
        )
1455 1456 1457 1458 1459 1460 1461 1462 1463
        inps = paddle.rand([3, 6])
        origin = fun(inps)

        paddle.jit.save(fun, path)
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)
        self.assertTrue((load_result - origin).abs().max() < 1e-10)

1464 1465 1466 1467

class TestJitSaveLoadFunctionCase2(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()
1468 1469 1470 1471
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1472

1473
    def test_jit_save_load_function_input_spec(self):
1474 1475 1476 1477 1478
        @paddle.jit.to_static(
            input_spec=[
                InputSpec(shape=[None, 6], dtype='float32', name='x'),
            ]
        )
1479 1480 1481
        def fun(inputs):
            return paddle.nn.functional.relu(inputs)

1482 1483 1484
        path = os.path.join(
            self.temp_dir.name, 'test_jit_save_load_function_2/func'
        )
1485 1486 1487 1488 1489 1490 1491 1492
        inps = paddle.rand([3, 6])
        origin = fun(inps)

        paddle.jit.save(fun, path)
        load_func = paddle.jit.load(path)
        load_result = load_func(inps)
        self.assertTrue((load_result - origin).abs().max() < 1e-10)

1493 1494 1495 1496

class TestJitSaveLoadFunctionCase3(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()
1497 1498 1499 1500
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1501

1502 1503 1504 1505
    def test_jit_save_load_function_function(self):
        def fun(inputs):
            return paddle.tanh(inputs)

1506 1507 1508
        path = os.path.join(
            self.temp_dir.name, 'test_jit_save_load_function_3/func'
        )
1509 1510 1511
        inps = paddle.rand([3, 6])
        origin = fun(inps)

1512 1513 1514 1515 1516 1517 1518
        paddle.jit.save(
            fun,
            path,
            input_spec=[
                InputSpec(shape=[None, 6], dtype='float32', name='x'),
            ],
        )
1519 1520 1521 1522 1523 1524
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)
        self.assertTrue((load_result - origin).abs().max() < 1e-10)


1525 1526 1527
class TestJitSaveLoadFunctionWithParamCase1(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()
1528 1529 1530 1531
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1532 1533 1534 1535

    def test_jit_save_load_function(self):
        class LinearNet(paddle.nn.Layer):
            def __init__(self):
1536
                super().__init__()
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
                self._linear = paddle.nn.Linear(5, 6)

            def forward(self, x):
                return paddle.tanh(x)

            def anothor_forward(self, x):
                return self._linear(x)

        layer = LinearNet()

        inps = paddle.rand([3, 5])
        origin = layer.anothor_forward(inps)

1550 1551 1552
        func = paddle.jit.to_static(
            layer.anothor_forward, [paddle.static.InputSpec(shape=[-1, 5])]
        )
1553 1554
        path = os.path.join(
            self.temp_dir.name,
1555 1556
            'test_jit_save_load_function_with_params_case1/func',
        )
1557 1558 1559 1560
        paddle.jit.save(func, path)
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)
1561
        np.testing.assert_array_equal(load_result.numpy(), origin.numpy())
1562 1563 1564 1565 1566


class TestJitSaveLoadFunctionWithParamCase2(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()
1567 1568 1569 1570
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1571 1572 1573 1574

    def test_jit_save_load_function(self):
        class LinearNet(paddle.nn.Layer):
            def __init__(self):
1575
                super().__init__()
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
                self._linear = paddle.nn.Linear(5, 6)

            def forward(self, x):
                return paddle.tanh(x)

            @paddle.jit.to_static(input_spec=[InputSpec(shape=[-1, 5])])
            def anothor_forward(self, x):
                return self._linear(x)

        layer = LinearNet()

        inps = paddle.rand([3, 5])

1589 1590
        path = os.path.join(
            self.temp_dir.name,
1591 1592
            'test_jit_save_load_function_with_params_case2/func',
        )
1593 1594 1595 1596 1597 1598
        paddle.jit.save(layer.anothor_forward, path)
        origin_result = layer.anothor_forward(inps)
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)

1599 1600 1601
        np.testing.assert_array_equal(
            origin_result.numpy(), load_result.numpy()
        )
1602 1603 1604 1605 1606


class TestJitSaveLoadFunctionWithParamCase3(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()
1607 1608 1609 1610
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1611 1612 1613 1614

    def test_jit_save_load_function(self):
        class LinearNet(paddle.nn.Layer):
            def __init__(self):
1615
                super().__init__()
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
                self._linear = paddle.nn.Linear(5, 6)

            def forward(self, x):
                return paddle.tanh(x)

            @paddle.jit.to_static
            def anothor_forward(self, x):
                return self._linear(x)

        layer = LinearNet()

        inps = paddle.rand([3, 5])
        origin = layer.anothor_forward(inps)

1630 1631
        path = os.path.join(
            self.temp_dir.name,
1632 1633
            'test_jit_save_load_function_with_params_case3/func',
        )
1634 1635 1636 1637
        paddle.jit.save(layer.anothor_forward, path)
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)
1638
        np.testing.assert_array_equal(load_result.numpy(), origin.numpy())
1639 1640


1641
class TestJitSaveLoadDataParallel(unittest.TestCase):
1642 1643 1644 1645 1646 1647
    def setUp(self):
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

1648 1649 1650 1651 1652 1653 1654 1655
    def verify_inference_correctness(self, layer, path):
        layer.eval()
        loaded_layer = paddle.jit.load(path)
        loaded_layer.eval()
        # inference & compare
        x = paddle.to_tensor(np.random.random((1, 784)).astype('float32'))
        pred = layer(x).numpy()
        loaded_pred = loaded_layer(x).numpy()
1656 1657 1658
        np.testing.assert_array_equal(
            pred,
            loaded_pred,
1659 1660 1661 1662
            err_msg='Result diff when load and inference:\nlayer result:\n{}\nloaded layer result:\n{}'.format(
                pred, loaded_pred
            ),
        )
1663 1664 1665 1666

    def test_jit_save_data_parallel_with_inputspec(self):
        layer = LinearNetNotDeclarative(784, 1)
        layer = paddle.DataParallel(layer)
1667 1668 1669 1670 1671 1672
        path = os.path.join(
            self.temp_dir.name, "jit_save_data_parallel_with_inputspec/model"
        )
        paddle.jit.save(
            layer=layer, path=path, input_spec=[InputSpec(shape=[None, 784])]
        )
1673 1674 1675 1676 1677 1678 1679

        self.verify_inference_correctness(layer, path)

    def test_jit_save_data_parallel_with_to_static(self):
        layer = LinearNetWithInputSpec(784, 1)
        layer = paddle.DataParallel(layer)

1680 1681 1682
        path = os.path.join(
            self.temp_dir.name, "jit_save_data_parallel_with_to_static/model"
        )
1683 1684 1685 1686 1687
        paddle.jit.save(layer, path)

        self.verify_inference_correctness(layer, path)


1688 1689 1690 1691 1692
class InputSepcLayer(paddle.nn.Layer):
    '''
    A layer with InputSpec to test InputSpec compatibility
    '''

1693 1694 1695 1696 1697 1698
    @paddle.jit.to_static(
        input_spec=[
            InputSpec(shape=[None, 8], dtype='float32', name='x'),
            InputSpec(shape=[None, 1], dtype='float64', name='y'),
        ]
    )
1699 1700 1701 1702 1703
    def forward(self, x, y):
        return x, y


class TestInputSpecCompatibility(unittest.TestCase):
1704 1705 1706 1707 1708 1709
    def setUp(self):
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

1710 1711 1712 1713 1714
    def _assert_input_spec_layer_return(self, expect_layer, test_layer):
        input_x = paddle.uniform([8, 8], dtype='float32')
        input_y = paddle.uniform([8, 1], dtype='float64')
        expected_result = expect_layer(input_x, input_y)
        test_result = test_layer(input_x, input_y)
1715 1716 1717 1718 1719 1720
        np.testing.assert_allclose(
            expected_result[0].numpy(), test_result[0].numpy()
        )
        np.testing.assert_allclose(
            expected_result[1].numpy(), test_result[1].numpy()
        )
1721 1722 1723

    def test_jit_save_compatible_input_sepc(self):
        layer = InputSepcLayer()
1724 1725 1726
        save_dir = os.path.join(
            self.temp_dir.name, "jit_save_compatible_input_spec"
        )
1727 1728 1729 1730 1731 1732 1733
        path = save_dir + "/model"

        paddle.jit.save(layer=layer, path=path)
        no_input_spec_layer = paddle.jit.load(path)
        self._assert_input_spec_layer_return(layer, no_input_spec_layer)
        shutil.rmtree(save_dir)

1734 1735 1736 1737 1738 1739 1740 1741
        paddle.jit.save(
            layer=layer,
            path=path,
            input_spec=[
                InputSpec(shape=[None, 8], dtype='float32', name='x'),
                InputSpec(shape=[None, 1], dtype='float64', name='y'),
            ],
        )
1742 1743 1744 1745
        same_input_spec_layer = paddle.jit.load(path)
        self._assert_input_spec_layer_return(layer, same_input_spec_layer)
        shutil.rmtree(save_dir)

1746 1747 1748 1749 1750 1751 1752 1753
        paddle.jit.save(
            layer=layer,
            path=path,
            input_spec=[
                InputSpec(shape=[8, 8], dtype='float32'),
                InputSpec(shape=[8, -1], dtype='float64'),
            ],
        )
1754 1755 1756 1757 1758 1759
        compatible_input_spec_layer = paddle.jit.load(path)
        self._assert_input_spec_layer_return(layer, compatible_input_spec_layer)
        shutil.rmtree(save_dir)

    def test_jit_save_incompatible_input_sepc(self):
        layer = InputSepcLayer()
1760 1761 1762
        save_dir = os.path.join(
            self.temp_dir.name, "jit_save_compatible_input_spec"
        )
1763 1764 1765 1766
        path = save_dir + "/model"

        with self.assertRaises(ValueError):
            # type mismatch
1767 1768 1769 1770 1771 1772 1773 1774
            paddle.jit.save(
                layer=layer,
                path=path,
                input_spec=[
                    InputSpec(shape=[None, 8], dtype='float64'),
                    InputSpec(shape=[None, 1], dtype='float64'),
                ],
            )
1775 1776 1777

        with self.assertRaises(ValueError):
            # shape len mismatch
1778 1779 1780 1781 1782 1783 1784 1785
            paddle.jit.save(
                layer=layer,
                path=path,
                input_spec=[
                    InputSpec(shape=[None, 8, 1], dtype='float32'),
                    InputSpec(shape=[None, 1], dtype='float64'),
                ],
            )
1786 1787 1788

        with self.assertRaises(ValueError):
            # shape mismatch
1789 1790 1791 1792 1793 1794 1795 1796
            paddle.jit.save(
                layer=layer,
                path=path,
                input_spec=[
                    InputSpec(shape=[None, 8], dtype='float32'),
                    InputSpec(shape=[None, 2], dtype='float64'),
                ],
            )
1797 1798 1799 1800
        if os.path.exists(save_dir):
            shutil.rmtree(save_dir)


H
Hui Zhang 已提交
1801 1802
class NotJitForward(paddle.nn.Layer):
    def __init__(self):
1803
        super().__init__()
H
Hui Zhang 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832

    def forward(self, x, y):
        return x + y


class TestNotJitForward(unittest.TestCase):
    def setUp(self):
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

    def test_jit_not_save_forward(self):
        layer = NotJitForward()

        save_dir = os.path.join(self.temp_dir.name, "jit_not_save_forward")
        path = save_dir + "/model"

        paddle.jit.save(layer=layer, path=path, skip_forward=True)

        self.assertTrue(not os.path.exists(path + ".pdmodel"))
        self.assertTrue(not os.path.exists(path + ".pdparam"))

        with self.assertRaises(ValueError):
            paddle.jit.load(path=path)

        shutil.rmtree(save_dir)


1833
if __name__ == '__main__':
1834 1835
    with fluid.framework._test_eager_guard():
        unittest.main()