test_jit_save_load.py 58.0 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

18
import os
19
import pickle
20
import shutil
21
import unittest
22
import tempfile
23
import numpy as np
L
Leo Chen 已提交
24
import paddle
25
from paddle.static import InputSpec
26
import paddle.fluid as fluid
27
from paddle.fluid.layers.utils import flatten
28
from paddle.fluid.dygraph import Linear
29
from paddle.fluid.dygraph import declarative, ProgramTranslator
30
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX, INFER_PARAMS_INFO_SUFFIX
W
WeiXin 已提交
31
from paddle.fluid import unique_name
32 33

BATCH_SIZE = 32
34
BATCH_NUM = 10
35 36 37
SEED = 10


38
def random_batch_reader(input_size, label_size):
39

40
    def _get_random_inputs_and_labels(input_size, label_size):
41
        np.random.seed(SEED)
42 43 44
        input = np.random.random(size=input_size).astype('float32')
        label = np.random.random(size=label_size).astype('int64')
        return input, label
45 46 47

    def __reader__():
        for _ in range(BATCH_NUM):
48 49 50
            batch_input, batch_label = _get_random_inputs_and_labels(
                [BATCH_SIZE, input_size], [BATCH_SIZE, label_size])
            yield batch_input, batch_label
51 52 53 54 55

    return __reader__


class LinearNet(fluid.dygraph.Layer):
56

57 58 59 60 61 62 63 64 65
    def __init__(self, in_size, out_size):
        super(LinearNet, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        return self._linear(x)


66
class LinearNetWithInputSpec(fluid.dygraph.Layer):
67

68 69 70 71 72 73 74 75 76
    def __init__(self, in_size, out_size):
        super(LinearNetWithInputSpec, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
    def forward(self, x):
        return self._linear(x)


77
class LinearNetNotDeclarative(fluid.dygraph.Layer):
78

79 80 81 82 83 84 85 86
    def __init__(self, in_size, out_size):
        super(LinearNetNotDeclarative, self).__init__()
        self._linear = Linear(in_size, out_size)

    def forward(self, x):
        return self._linear(x)


87
class LinerNetWithLabel(paddle.nn.Layer):
88

89 90 91 92 93
    def __init__(self, in_size, out_size):
        super(LinerNetWithLabel, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[
94 95
        InputSpec(shape=[None, 784], dtype='float32', name="image"),
        InputSpec(shape=[None, 1], dtype='int64', name="label")
96 97 98 99
    ])
    def forward(self, x, label):
        out = self._linear(x)
        loss = fluid.layers.cross_entropy(out, label)
100
        avg_loss = paddle.mean(loss)
101 102 103
        return out, avg_loss


C
Chen Weihang 已提交
104
class LinerNetWithPruneInput(paddle.nn.Layer):
105

C
Chen Weihang 已提交
106 107 108 109 110
    def __init__(self, in_size, out_size):
        super(LinerNetWithPruneInput, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[
111 112
        InputSpec(shape=[None, 784], dtype='float32', name="image"),
        InputSpec(shape=[None, 1], dtype='int64', name="label")
C
Chen Weihang 已提交
113 114 115 116
    ])
    def forward(self, x, label):
        out = self._linear(x)
        loss = fluid.layers.cross_entropy(out, label)
117
        avg_loss = paddle.mean(loss)
C
Chen Weihang 已提交
118 119 120 121
        return out


class LinerNetWithUselessInput(paddle.nn.Layer):
122

C
Chen Weihang 已提交
123 124 125 126 127
    def __init__(self, in_size, out_size):
        super(LinerNetWithUselessInput, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[
128 129
        InputSpec(shape=[None, 784], dtype='float32', name="image"),
        InputSpec(shape=[None, 1], dtype='int64', name="label")
C
Chen Weihang 已提交
130 131 132 133 134 135
    ])
    def forward(self, x, label):
        out = self._linear(x)
        return out


136
class LinearNetReturnLoss(fluid.dygraph.Layer):
137

138 139 140 141 142 143 144 145
    def __init__(self, in_size, out_size):
        super(LinearNetReturnLoss, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear(x)
        z = self._linear(y)
146
        loss = paddle.mean(z)
147 148 149
        return z, loss


150
class LinearNetMultiInput(fluid.dygraph.Layer):
151

152 153 154 155 156 157
    def __init__(self, in_size, out_size):
        super(LinearNetMultiInput, self).__init__()
        self._linear1 = Linear(in_size, out_size)
        self._linear2 = Linear(in_size, out_size)

    @declarative(input_spec=[
158 159
        InputSpec([None, 8], dtype='float32'),
        InputSpec([None, 8], dtype='float32')
160 161 162 163
    ])
    def forward(self, x, y):
        x_out = self._linear1(x)
        y_out = self._linear2(y)
164
        loss = paddle.mean(x_out + y_out)
165 166 167
        return x_out, y_out, loss


168
class LinearNetMultiInput1(fluid.dygraph.Layer):
169

170 171 172 173 174
    def __init__(self, in_size, out_size):
        super(LinearNetMultiInput1, self).__init__()
        self._linear1 = Linear(in_size, out_size)
        self._linear2 = Linear(in_size, out_size)

175 176
    @declarative(input_spec=(InputSpec([None, 8], dtype='float32'),
                             InputSpec([None, 8], dtype='float32')))
177 178 179
    def forward(self, x, y):
        x_out = self._linear1(x)
        y_out = self._linear2(y)
180
        loss = paddle.mean(x_out + y_out)
181 182 183
        return x_out, y_out, loss


184
class MultiLoadingLinearNet(fluid.dygraph.Layer):
185

186 187 188
    def __init__(self, size, model_path):
        super(MultiLoadingLinearNet, self).__init__()
        self._linear = Linear(size, size)
189 190
        self._load_linear1 = paddle.jit.load(model_path)
        self._load_linear2 = paddle.jit.load(model_path)
191 192 193 194 195 196 197 198 199 200 201

    @declarative
    def forward(self, x):
        tmp1 = self._linear(x)
        tmp2 = self._load_linear1(tmp1)
        tmp3 = self._load_linear2(tmp2)
        y = self._linear(tmp3)
        return y


class LinearNetReturnHidden(fluid.dygraph.Layer):
202

203 204 205 206 207 208 209 210 211
    def __init__(self, in_size, out_size):
        super(LinearNetReturnHidden, self).__init__()
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
212
        loss = paddle.mean(z)
213 214 215
        return y, loss


216
class LinearNetWithNestOut(fluid.dygraph.Layer):
217

218 219 220 221 222 223 224 225 226 227
    def __init__(self, in_size, out_size):
        super(LinearNetWithNestOut, self).__init__()
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
        out = y + z
228
        loss = paddle.mean(out)
229 230 231
        return y, [(z, loss), out]


232
class LinearNetWithDictInput(paddle.nn.Layer):
233

234 235 236 237 238
    def __init__(self, in_size, out_size):
        super(LinearNetWithDictInput, self).__init__()
        self._linear = Linear(in_size, out_size)

    @paddle.jit.to_static(input_spec=[{
239 240
        'img':
        InputSpec(shape=[None, 8], dtype='float32', name='img')
241
    }, {
242 243
        'label':
        InputSpec(shape=[None, 1], dtype='int64', name='label')
244 245 246 247 248 249 250 251
    }])
    def forward(self, img, label):
        out = self._linear(img['img'])
        # not return loss to avoid prune output
        loss = paddle.nn.functional.cross_entropy(out, label['label'])
        return out


252
class LinearNetWithDictInputNoPrune(paddle.nn.Layer):
253

254 255 256 257 258 259 260 261 262
    def __init__(self, in_size, out_size):
        super(LinearNetWithDictInputNoPrune, self).__init__()
        self._linear = Linear(in_size, out_size)

    def forward(self, img):
        out = self._linear(img['img'] + img['img2'])
        return out


263
class EmptyLayer(paddle.nn.Layer):
264

265 266 267 268 269 270 271 272 273
    def __init__(self):
        super(EmptyLayer, self).__init__()

    @paddle.jit.to_static
    def forward(self, x):
        return x


class NoParamLayer(paddle.nn.Layer):
274

275 276 277 278 279 280 281 282
    def __init__(self):
        super(NoParamLayer, self).__init__()

    @paddle.jit.to_static
    def forward(self, x, y):
        return x + y


283
class LinearNetWithMultiStaticFunc(fluid.dygraph.Layer):
284

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    def __init__(self, in_size, out_size):
        super(LinearNetWithMultiStaticFunc, self).__init__()
        self._linear_0 = Linear(in_size, out_size)
        self._linear_1 = Linear(in_size, out_size)
        self._scale = paddle.to_tensor(9.9)

    @paddle.jit.to_static
    def forward(self, x):
        return self._linear_0(x)

    @paddle.jit.to_static
    def forward_no_param(self, x):
        return x

    @paddle.jit.to_static
    def forward_general(self, x):
        return self._linear_0(x) + self._linear_1(x) * self._scale


304
def train(layer, input_size=784, label_size=1):
305
    # create optimizer
306 307
    sgd = fluid.optimizer.SGDOptimizer(learning_rate=0.01,
                                       parameter_list=layer.parameters())
308 309
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
310 311
    train_loader.set_batch_generator(random_batch_reader(
        input_size, label_size))
312 313 314 315 316 317 318 319
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        cost = layer(img)

        loss = fluid.layers.cross_entropy(cost, label)
320
        avg_loss = paddle.mean(loss)
321 322

        avg_loss.backward()
L
Leo Chen 已提交
323
        sgd.minimize(avg_loss)
324 325 326 327
        layer.clear_gradients()
    return [img], layer, avg_loss


328 329
def train_with_label(layer, input_size=784, label_size=1):
    # create optimizer
330 331
    sgd = fluid.optimizer.SGDOptimizer(learning_rate=0.01,
                                       parameter_list=layer.parameters())
332 333
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
334 335
    train_loader.set_batch_generator(random_batch_reader(
        input_size, label_size))
336 337 338 339 340 341 342 343 344 345 346 347 348
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        out, avg_loss = layer(img, label)

        avg_loss.backward()
        sgd.minimize(avg_loss)
        layer.clear_gradients()
    return out


349
class TestJitSaveLoad(unittest.TestCase):
350

351
    def setUp(self):
352 353 354
        self.temp_dir = tempfile.TemporaryDirectory()
        self.model_path = os.path.join(self.temp_dir.name,
                                       "test_jit_save_load/model")
355 356 357
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
358
        paddle.seed(SEED)
L
Leo Chen 已提交
359
        paddle.framework.random._manual_program_seed(SEED)
360

361 362 363
    def tearDown(self):
        self.temp_dir.cleanup()

364
    def train_and_save_model(self, model_path=None):
365 366
        layer = LinearNet(784, 1)
        example_inputs, layer, _ = train(layer)
367
        final_model_path = model_path if model_path else self.model_path
368
        orig_input_types = [type(x) for x in example_inputs]
369 370 371
        paddle.jit.save(layer=layer,
                        path=final_model_path,
                        input_spec=example_inputs)
372 373
        new_input_types = [type(x) for x in example_inputs]
        self.assertEqual(orig_input_types, new_input_types)
374 375
        return layer

376
    def test_save_load(self):
377 378 379
        # train and save model
        train_layer = self.train_and_save_model()
        # load model
380
        loaded_layer = paddle.jit.load(self.model_path)
381 382 383 384 385
        self.load_and_inference(train_layer, loaded_layer)
        self.load_dygraph_state_dict(train_layer)
        self.load_and_finetune(train_layer, loaded_layer)

    def load_and_inference(self, train_layer, infer_layer):
386
        train_layer.eval()
387
        infer_layer.eval()
388 389 390 391
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
392 393
            np.array_equal(train_layer(x).numpy(),
                           infer_layer(x).numpy()))
394

395 396
    def load_and_finetune(self, train_layer, load_train_layer):
        train_layer.train()
397 398
        load_train_layer.train()
        # train & compare
L
Leo Chen 已提交
399 400
        img0, _, train_loss = train(train_layer)
        img1, _, load_train_loss = train(load_train_layer)
401 402 403
        self.assertTrue(
            np.array_equal(train_loss.numpy(), load_train_loss.numpy()))

404 405
    def load_dygraph_state_dict(self, train_layer):
        train_layer.eval()
406
        # construct new model
407
        new_layer = LinearNet(784, 1)
408
        orig_state_dict = new_layer.state_dict()
409
        load_state_dict = paddle.load(self.model_path)
410 411 412
        for structured_name in orig_state_dict:
            self.assertTrue(structured_name in load_state_dict)
        new_layer.set_state_dict(load_state_dict)
413 414 415 416 417
        new_layer.eval()
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
418 419
            np.array_equal(train_layer(x).numpy(),
                           new_layer(x).numpy()))
420

421
    def test_load_dygraph_no_path(self):
422 423
        model_path = os.path.join(self.temp_dir.name,
                                  "test_jit_save_load.no_path/model_path")
424 425 426
        with self.assertRaises(ValueError):
            model_dict, _ = fluid.dygraph.load_dygraph(model_path)

427
    def test_jit_load_no_path(self):
428 429
        path = os.path.join(self.temp_dir.name,
                            "test_jit_save_load.no_path/model_path")
430 431 432
        with self.assertRaises(ValueError):
            loaded_layer = paddle.jit.load(path)

433

434
class TestSaveLoadWithNestOut(unittest.TestCase):
435

436 437 438
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
439 440 441 442
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
443 444 445 446 447 448 449 450 451

    def test_nest_output(self):
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))

        net = LinearNetWithNestOut(8, 8)
        dy_outs = flatten(net(x))
        net = declarative(net, input_spec=[InputSpec([None, 8], name='x')])

452
        model_path = os.path.join(self.temp_dir.name, "net_with_nest_out/model")
453 454 455 456 457 458 459 460 461 462
        paddle.jit.save(net, model_path)

        load_net = paddle.jit.load(model_path)
        load_outs = flatten(load_net(x))

        self.assertTrue(len(dy_outs) == 4)
        for dy_out, load_out in zip(dy_outs, load_outs):
            self.assertTrue(np.allclose(dy_out.numpy(), load_out.numpy()))


463
class TestSaveLoadWithDictInput(unittest.TestCase):
464

465
    def test_dict_input(self):
466
        # NOTE: This net cannot be executed, it is just
467 468 469
        # a special case for exporting models in model validation
        # We DO NOT recommend this writing way of Layer
        net = LinearNetWithDictInput(8, 8)
470 471 472
        # net.forward.concrete_program.inputs:
        # (<__main__.LinearNetWithDictInput object at 0x7f2655298a98>,
        #  {'img': var img : fluid.VarType.LOD_TENSOR.shape(-1, 8).astype(VarType.FP32)},
473 474
        #  {'label': var label : fluid.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)})
        self.assertEqual(len(net.forward.concrete_program.inputs), 3)
475 476 477
        temp_dir = tempfile.TemporaryDirectory()
        path = os.path.join(temp_dir.name,
                            "test_jit_save_load_with_dict_input/model")
478
        # prune inputs
479 480 481 482 483 484 485 486
        paddle.jit.save(layer=net,
                        path=path,
                        input_spec=[{
                            'img':
                            InputSpec(shape=[None, 8],
                                      dtype='float32',
                                      name='img')
                        }])
487 488 489 490 491 492 493 494

        img = paddle.randn(shape=[4, 8], dtype='float32')
        loaded_net = paddle.jit.load(path)
        loaded_out = loaded_net(img)

        # loaded_net._input_spec():
        # [InputSpec(shape=(-1, 8), dtype=VarType.FP32, name=img)]
        self.assertEqual(len(loaded_net._input_spec()), 1)
495
        temp_dir.cleanup()
496 497


498
class TestSaveLoadWithDictInputNoPrune(unittest.TestCase):
499

500 501
    def test_dict_input(self):
        net = LinearNetWithDictInputNoPrune(8, 8)
502 503 504
        temp_dir = tempfile.TemporaryDirectory()
        path = os.path.join(
            temp_dir.name, "test_jit_save_load_with_dict_input_no_prune/model")
505
        # prune inputs
506 507 508 509 510 511 512 513 514 515 516 517
        paddle.jit.save(layer=net,
                        path=path,
                        input_spec=[{
                            'img':
                            InputSpec(shape=[None, 8],
                                      dtype='float32',
                                      name='img'),
                            'img2':
                            InputSpec(shape=[None, 8],
                                      dtype='float32',
                                      name='img2')
                        }])
518 519 520 521 522 523 524

        img = paddle.randn(shape=[4, 8], dtype='float32')
        img2 = paddle.randn(shape=[4, 8], dtype='float32')
        loaded_net = paddle.jit.load(path)
        loaded_out = loaded_net(img, img2)

        self.assertEqual(len(loaded_net._input_spec()), 2)
525
        temp_dir.cleanup()
526 527


528
class TestSaveLoadWithInputSpec(unittest.TestCase):
529

530 531 532
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
533 534 535 536
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
537 538 539 540

    def test_with_input_spec(self):
        net = LinearNetReturnLoss(8, 8)
        # set x.shape = [None, 8]
541 542
        net.forward = declarative(net.forward,
                                  input_spec=[InputSpec([None, 8], name='x')])
543

544 545
        model_path = os.path.join(self.temp_dir.name,
                                  "input_spec.output_spec/model")
546 547 548 549 550 551 552
        # check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 1)
        input_x = net.forward.inputs[0]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_x.name == 'x')

        # 1. prune loss
553 554
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, output_spec=output_spec)
555 556

        # 2. load to infer
557
        infer_layer = paddle.jit.load(model_path)
558 559 560 561 562 563 564
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        pred = infer_layer(x)

    def test_multi_in_out(self):
        net = LinearNetMultiInput(8, 8)

565 566
        model_path = os.path.join(self.temp_dir.name,
                                  "multi_inout.output_spec1/model")
567 568 569 570 571 572 573 574
        # 1. check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 2)
        input_x = net.forward.inputs[0]
        input_y = net.forward.inputs[1]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_y.shape == (-1, 8))

        # 2. prune loss
575 576
        output_spec = net.forward.outputs[:2]
        paddle.jit.save(net, model_path, output_spec=output_spec)
577 578

        # 3. load to infer
579
        infer_layer = paddle.jit.load(model_path)
580 581 582 583 584 585 586 587
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        y = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        # 4. predict
        pred_x, pred_y = infer_layer(x, y)

        # 1. prune y and loss
588 589
        model_path = os.path.join(self.temp_dir.name,
                                  "multi_inout.output_spec2/model")
590 591
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, [input_x], output_spec=output_spec)
592
        # 2. load again
593
        infer_layer2 = paddle.jit.load(model_path)
594 595 596 597 598
        # 3. predict
        pred_xx = infer_layer2(x)

        # 4. assert pred_x == pred_xx
        self.assertTrue(np.allclose(pred_x.numpy(), pred_xx.numpy()))
599 600 601 602

    def test_multi_in_out1(self):
        net = LinearNetMultiInput1(8, 8)

603 604
        model_path = os.path.join(self.temp_dir.name,
                                  "multi_inout1.output_spec1/model")
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
        # 1. check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 2)
        input_x = net.forward.inputs[0]
        input_y = net.forward.inputs[1]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_y.shape == (-1, 8))

        # 2. prune loss
        output_spec = net.forward.outputs[:2]
        paddle.jit.save(net, model_path, output_spec=output_spec)

        # 3. load to infer
        infer_layer = paddle.jit.load(model_path)
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        y = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        # 4. predict
        pred_x, pred_y = infer_layer(x, y)

        # 1. prune y and loss
626 627
        model_path = os.path.join(self.temp_dir.name,
                                  "multi_inout1.output_spec2/model")
628 629 630 631 632 633 634 635 636
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, (input_x, ), output_spec=output_spec)
        # 2. load again
        infer_layer2 = paddle.jit.load(model_path)
        # 3. predict
        pred_xx = infer_layer2(x)

        # 4. assert pred_x == pred_xx
        self.assertTrue(np.allclose(pred_x.numpy(), pred_xx.numpy()))
637 638


639
class TestJitSaveLoadConfig(unittest.TestCase):
640

641 642 643 644
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
645
        paddle.seed(SEED)
L
Leo Chen 已提交
646
        paddle.framework.random._manual_program_seed(SEED)
647 648 649 650
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
651 652 653 654 655 656 657 658 659 660 661 662 663

    def test_output_spec(self):
        train_layer = LinearNetReturnLoss(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            out, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

664 665
        model_path = os.path.join(self.temp_dir.name,
                                  "save_load_config.output_spec")
666
        output_spec = [out]
667 668 669 670
        paddle.jit.save(layer=train_layer,
                        path=model_path,
                        input_spec=[x],
                        output_spec=output_spec)
671 672

        train_layer.eval()
673
        infer_layer = paddle.jit.load(model_path)
674 675 676
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
677 678
            np.array_equal(train_layer(x)[0].numpy(),
                           infer_layer(x).numpy()))
679

680 681
    def test_save_no_support_config_error(self):
        layer = LinearNet(784, 1)
682
        path = os.path.join(self.temp_dir.name, "no_support_config_test")
683 684 685 686
        with self.assertRaises(ValueError):
            paddle.jit.save(layer=layer, path=path, model_filename="")

    def test_load_empty_model_filename_error(self):
687
        path = os.path.join(self.temp_dir.name, "error_model_filename_test")
688 689 690 691
        with self.assertRaises(ValueError):
            paddle.jit.load(path, model_filename="")

    def test_load_empty_params_filename_error(self):
692
        path = os.path.join(self.temp_dir.name, "error_params_filename_test")
693 694 695 696
        with self.assertRaises(ValueError):
            paddle.jit.load(path, params_filename="")

    def test_load_with_no_support_config(self):
697
        path = os.path.join(self.temp_dir.name, "no_support_config_test")
698 699 700
        with self.assertRaises(ValueError):
            paddle.jit.load(path, separate_params=True)

701

702
class TestJitMultipleLoading(unittest.TestCase):
703

704 705
    def setUp(self):
        self.linear_size = 4
706 707 708
        self.temp_dir = tempfile.TemporaryDirectory()
        self.model_path = os.path.join(self.temp_dir.name,
                                       "jit_multi_load/model")
709 710 711
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
712
        paddle.seed(SEED)
L
Leo Chen 已提交
713
        paddle.framework.random._manual_program_seed(SEED)
714 715 716
        # train and save base model
        self.train_and_save_orig_model()

717 718 719
    def tearDown(self):
        self.temp_dir.cleanup()

720 721 722
    def train_and_save_orig_model(self):
        layer = LinearNet(self.linear_size, self.linear_size)
        example_inputs, layer, _ = train(layer, self.linear_size, 1)
723 724 725
        paddle.jit.save(layer=layer,
                        path=self.model_path,
                        input_spec=example_inputs)
726 727 728 729 730 731 732 733 734 735 736

    def test_load_model_retransform_inference(self):
        multi_loaded_layer = MultiLoadingLinearNet(self.linear_size,
                                                   self.model_path)
        state_dict = multi_loaded_layer.state_dict()
        name_set = set()
        for _, var in state_dict.items():
            self.assertTrue(var.name not in name_set)
            name_set.add(var.name)


737
class TestJitPruneModelAndLoad(unittest.TestCase):
738

739 740
    def setUp(self):
        self.linear_size = 4
741 742 743
        self.temp_dir = tempfile.TemporaryDirectory()
        self.model_path = os.path.join(self.temp_dir.name,
                                       "jit_prune_model_and_load/model")
744 745 746
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
747
        paddle.seed(SEED)
L
Leo Chen 已提交
748
        paddle.framework.random._manual_program_seed(SEED)
749

750 751 752
    def tearDown(self):
        self.temp_dir.cleanup()

753 754 755 756 757 758 759 760 761 762 763 764
    def train_and_save(self):
        train_layer = LinearNetReturnHidden(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            hidden, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

765
        output_spec = [hidden]
766 767 768 769
        paddle.jit.save(layer=train_layer,
                        path=self.model_path,
                        input_spec=[x],
                        output_spec=output_spec)
770 771 772 773 774 775 776

        return train_layer

    def test_load_pruned_model(self):
        train_layer = self.train_and_save()
        train_layer.eval()

777
        infer_layer = paddle.jit.load(self.model_path)
778 779 780 781

        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
782 783
            np.array_equal(train_layer(x)[0].numpy(),
                           infer_layer(x).numpy()))
784 785 786 787 788

    def test_load_var_not_in_extra_var_info(self):
        self.train_and_save()

        # chage extra var info
789
        var_info_path = self.model_path + INFER_PARAMS_INFO_SUFFIX
790 791 792 793 794 795 796
        with open(var_info_path, 'rb') as f:
            extra_var_info = pickle.load(f)
            extra_var_info.clear()
        with open(var_info_path, 'wb') as f:
            pickle.dump(extra_var_info, f, protocol=2)

        with self.assertRaises(RuntimeError):
797
            paddle.jit.load(self.model_path)
798 799


800
class TestJitSaveMultiCases(unittest.TestCase):
801

802 803 804 805
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
806
        paddle.seed(SEED)
807
        paddle.framework.random._manual_program_seed(SEED)
808 809 810 811
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
812

C
Chen Weihang 已提交
813 814 815 816 817
    def verify_inference_correctness(self,
                                     layer,
                                     model_path,
                                     with_label_and_loss=False,
                                     with_label=False):
818 819 820 821
        layer.eval()
        loaded_layer = paddle.jit.load(model_path)
        loaded_layer.eval()
        # inference & compare
Z
Zhou Wei 已提交
822
        x = paddle.to_tensor(np.random.random((1, 784)).astype('float32'))
C
Chen Weihang 已提交
823
        if with_label_and_loss:
Z
Zhou Wei 已提交
824
            y = paddle.to_tensor(np.random.random((1, 1)).astype('int64'))
825 826
            pred, _ = layer(x, y)
            pred = pred.numpy()
C
Chen Weihang 已提交
827 828 829 830
        elif with_label:
            y = paddle.to_tensor(np.random.random((1, 1)).astype('int64'))
            pred = layer(x, y)
            pred = pred.numpy()
831 832 833 834 835 836 837 838 839 840 841 842 843
        else:
            pred = layer(x).numpy()
        loaded_pred = loaded_layer(x).numpy()
        self.assertTrue(
            np.array_equal(pred, loaded_pred),
            msg="Result diff when load and inference:\nlayer result:\n{}\n" \
                "loaded layer result:\n{}".format(pred, loaded_pred))

    def test_no_prune_to_static_after_train(self):
        layer = LinearNet(784, 1)

        train(layer)

844 845
        model_path = os.path.join(self.temp_dir.name,
                                  "test_no_prune_to_static_after_train/model")
846 847 848 849 850 851 852
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_to_static_no_train(self):
        layer = LinearNetWithInputSpec(784, 1)

853 854
        model_path = os.path.join(self.temp_dir.name,
                                  "test_no_prune_to_static_no_train/model")
855 856 857 858 859 860 861 862 863
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train(self):
        layer = LinearNetNotDeclarative(784, 1)

        train(layer)

864 865
        model_path = os.path.join(
            self.temp_dir.name, "test_no_prune_no_to_static_after_train/model")
866 867 868
        paddle.jit.save(
            layer,
            model_path,
869
            input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
870 871 872 873 874 875 876 877

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train_with_examples(self):
        layer = LinearNetNotDeclarative(784, 1)

        example_inputs, _, _ = train(layer)

878 879 880
        model_path = os.path.join(
            self.temp_dir.name,
            "test_no_prune_no_to_static_after_train_with_examples/model")
881
        paddle.jit.save(layer=layer, path=model_path, input_spec=example_inputs)
882 883 884 885 886 887

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_no_train(self):
        layer = LinearNetNotDeclarative(784, 1)

888 889
        model_path = os.path.join(self.temp_dir.name,
                                  "test_no_prune_no_to_static_no_train/model")
890 891 892
        paddle.jit.save(
            layer,
            model_path,
893
            input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
894 895 896 897 898 899 900 901

        self.verify_inference_correctness(layer, model_path)

    def test_prune_to_static_after_train(self):
        layer = LinerNetWithLabel(784, 1)

        out = train_with_label(layer)

902 903
        model_path = os.path.join(self.temp_dir.name,
                                  "test_prune_to_static_after_train/model")
904 905 906 907 908 909 910 911 912 913 914 915
        paddle.jit.save(layer,
                        model_path,
                        input_spec=[
                            InputSpec(shape=[None, 784],
                                      dtype='float32',
                                      name="image")
                        ],
                        output_spec=[out])

        self.verify_inference_correctness(layer,
                                          model_path,
                                          with_label_and_loss=True)
916 917 918 919

    def test_prune_to_static_no_train(self):
        layer = LinerNetWithLabel(784, 1)

920 921
        model_path = os.path.join(self.temp_dir.name,
                                  "test_prune_to_static_no_train/model")
922 923
        # TODO: no train, cannot get output_spec var here
        # now only can use index
924
        output_spec = layer.forward.outputs[:1]
925 926 927 928 929 930 931 932 933 934 935 936
        paddle.jit.save(layer,
                        model_path,
                        input_spec=[
                            InputSpec(shape=[None, 784],
                                      dtype='float32',
                                      name="image")
                        ],
                        output_spec=output_spec)

        self.verify_inference_correctness(layer,
                                          model_path,
                                          with_label_and_loss=True)
C
Chen Weihang 已提交
937 938 939 940

    def test_prune_input_to_static_no_train(self):
        layer = LinerNetWithPruneInput(784, 1)

941 942
        model_path = os.path.join(self.temp_dir.name,
                                  "test_prune_input_to_static_no_train/model")
943 944 945 946 947 948 949
        paddle.jit.save(layer,
                        model_path,
                        input_spec=[
                            InputSpec(shape=[None, 784],
                                      dtype='float32',
                                      name="image")
                        ])
C
Chen Weihang 已提交
950 951 952 953 954 955

        self.verify_inference_correctness(layer, model_path, with_label=True)

    def test_prune_useless_input_to_static_no_train(self):
        layer = LinerNetWithUselessInput(784, 1)

956 957 958
        model_path = os.path.join(
            self.temp_dir.name,
            "test_prune_useless_input_to_static_no_train/model")
959 960 961 962 963 964 965
        paddle.jit.save(layer,
                        model_path,
                        input_spec=[
                            InputSpec(shape=[None, 784],
                                      dtype='float32',
                                      name="image")
                        ])
C
Chen Weihang 已提交
966 967

        self.verify_inference_correctness(layer, model_path, with_label=True)
968 969 970 971 972 973

    def test_no_prune_input_spec_name_warning(self):
        layer = LinearNetWithInputSpec(784, 1)

        train(layer)

974 975
        model_path = os.path.join(
            self.temp_dir.name, "test_no_prune_input_spec_name_warning/model")
976 977 978
        paddle.jit.save(
            layer,
            model_path,
979 980 981 982 983 984 985 986
            input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
        paddle.jit.save(layer,
                        model_path,
                        input_spec=[
                            InputSpec(shape=[None, 784],
                                      dtype='float32',
                                      name='feed_input')
                        ])
987 988 989 990 991 992 993 994

        self.verify_inference_correctness(layer, model_path)

    def test_not_prune_output_spec_name_warning(self):
        layer = LinearNet(784, 1)

        train(layer)

995 996
        model_path = os.path.join(
            self.temp_dir.name, "test_not_prune_output_spec_name_warning/model")
Z
Zhou Wei 已提交
997
        out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
998
        paddle.jit.save(layer, model_path, output_spec=[out])
999 1000 1001 1002 1003 1004

        self.verify_inference_correctness(layer, model_path)

    def test_prune_input_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

1005 1006
        model_path = os.path.join(self.temp_dir.name,
                                  "test_prune_input_spec_name_error/model")
1007 1008 1009 1010
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
1011
                input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
1012
        with self.assertRaises(ValueError):
1013 1014 1015 1016 1017 1018 1019
            paddle.jit.save(layer,
                            model_path,
                            input_spec=[
                                InputSpec(shape=[None, 784],
                                          dtype='float32',
                                          name='feed_input')
                            ])
1020 1021 1022 1023 1024 1025

    def test_prune_output_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

        train_with_label(layer)

1026 1027
        model_path = os.path.join(self.temp_dir.name,
                                  "test_prune_to_static_after_train/model")
Z
Zhou Wei 已提交
1028
        out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
1029
        with self.assertRaises(ValueError):
1030 1031 1032 1033 1034 1035 1036 1037
            paddle.jit.save(layer,
                            model_path,
                            input_spec=[
                                InputSpec(shape=[None, 784],
                                          dtype='float32',
                                          name="image")
                            ],
                            output_spec=[out])
1038 1039


1040
class TestJitSaveLoadEmptyLayer(unittest.TestCase):
1041

1042
    def setUp(self):
1043 1044 1045
        self.temp_dir = tempfile.TemporaryDirectory()
        self.model_path = os.path.join(self.temp_dir.name,
                                       "jit_save_load_empty_layer/model")
1046 1047 1048
        # enable dygraph mode
        paddle.disable_static()

1049 1050 1051
    def tearDown(self):
        self.temp_dir.cleanup()

1052 1053
    def test_save_load_empty_layer(self):
        layer = EmptyLayer()
Z
Zhou Wei 已提交
1054
        x = paddle.to_tensor(np.random.random((10)).astype('float32'))
1055 1056 1057 1058 1059 1060 1061 1062
        out = layer(x)
        paddle.jit.save(layer, self.model_path)
        load_layer = paddle.jit.load(self.model_path)
        load_out = load_layer(x)
        self.assertTrue(np.array_equal(out, load_out))


class TestJitSaveLoadNoParamLayer(unittest.TestCase):
1063

1064
    def setUp(self):
1065 1066 1067
        self.temp_dir = tempfile.TemporaryDirectory()
        self.model_path = os.path.join(self.temp_dir.name,
                                       "jit_save_load_no_param_layer/model")
1068 1069 1070
        # enable dygraph mode
        paddle.disable_static()

1071 1072 1073
    def tearDown(self):
        self.temp_dir.cleanup()

1074 1075
    def test_save_load_no_param_layer(self):
        layer = NoParamLayer()
Z
Zhou Wei 已提交
1076 1077
        x = paddle.to_tensor(np.random.random((5)).astype('float32'))
        y = paddle.to_tensor(np.random.random((5)).astype('float32'))
1078 1079 1080 1081 1082 1083 1084
        out = layer(x, y)
        paddle.jit.save(layer, self.model_path)
        load_layer = paddle.jit.load(self.model_path)
        load_out = load_layer(x, y)
        self.assertTrue(np.array_equal(out, load_out))


1085
class TestJitSaveLoadMultiMethods(unittest.TestCase):
1086

1087 1088 1089
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()
1090 1091 1092 1093
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1094 1095

    def test_jit_save_load_inference(self):
1096 1097
        model_path_inference = os.path.join(
            self.temp_dir.name, "jit_save_load_multi_methods/model")
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
        IMAGE_SIZE = 224
        layer = LinearNetWithMultiStaticFunc(IMAGE_SIZE, 10)
        inps = paddle.randn([1, IMAGE_SIZE])
        result_origin = {}
        for func in dir(layer):
            if func.startswith('forward'):
                result_origin[func] = getattr(layer, func, None)(inps)
        paddle.jit.save(layer, model_path_inference)
        load_net = paddle.jit.load(model_path_inference)
        for func, result in result_origin.items():
            self.assertTrue(
1109 1110
                float((result -
                       getattr(load_net, func, None)(inps)).abs().max()) < 1e-5)
1111 1112

    def test_jit_save_load_multi_methods_inputspec(self):
1113 1114
        model_path = os.path.join(self.temp_dir.name,
                                  'jit_save_load_multi_methods/model')
1115 1116
        layer = LinearNetWithMultiStaticFunc(784, 1)
        with self.assertRaises(ValueError):
1117 1118 1119
            paddle.jit.save(layer,
                            model_path,
                            input_spec=[InputSpec(shape=[None, 784])])
1120

1121
    def test_parse_name(self):
1122 1123
        model_path_inference = os.path.join(self.temp_dir.name,
                                            "jit_save_load_parse_name/model")
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
        IMAGE_SIZE = 224
        layer = LinearNet(IMAGE_SIZE, 1)
        inps = paddle.randn([1, IMAGE_SIZE])
        layer(inps)
        paddle.jit.save(layer, model_path_inference)
        paddle.jit.save(layer, model_path_inference + '_v2')
        load_net = paddle.jit.load(model_path_inference)

        self.assertFalse(hasattr(load_net, 'v2'))

1134

W
WeiXin 已提交
1135
class LayerSaved(paddle.nn.Layer):
1136

W
WeiXin 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
    def __init__(self, in_size, out_size):
        super(LayerSaved, self).__init__()
        self.hidden = 100
        self._linear_0 = Linear(in_size, self.hidden)
        self._linear_1_0 = Linear(self.hidden, self.hidden)
        self._linear_1_1 = Linear(self.hidden, self.hidden)
        self._linear_2 = Linear(self.hidden, out_size)
        self._scale = paddle.to_tensor(9.9)

    @paddle.jit.to_static
    def forward(self, x):
        y = self._linear_0(x)
        # Multiple blocks
1150
        if paddle.shape(x)[0] == 1:
W
WeiXin 已提交
1151 1152 1153 1154 1155 1156
            y = self._linear_1_0(y)
        else:
            y += self._linear_1_1(y + self._scale)
        return self._linear_2(y)


1157 1158 1159
class Net(paddle.nn.Layer):

    def __init__(self):
1160
        super().__init__()
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
        self.fc1 = paddle.nn.Linear(4, 4)
        self.fc2 = paddle.nn.Linear(4, 4)
        self.bias = 0.4
        self.flag = paddle.ones([2], dtype="int32")

    @paddle.jit.to_static(input_spec=[InputSpec([None, 4], dtype='float32')])
    def log_softmax(self, input):
        return paddle.nn.functional.log_softmax(input, axis=-1)

    @paddle.jit.to_static(input_spec=[InputSpec([None, 4], dtype='float32')])
    def forward(self, x):
        out = self.fc1(x)
        out = paddle.nn.functional.relu(out)
        out = paddle.mean(out)
        return out

    @paddle.jit.to_static(input_spec=[InputSpec([None, 4], dtype='float32')])
    def infer(self, input):
        out = self.fc2(input)
        out = out + self.bias
        out = paddle.mean(out)
        return out

    # For extra Python float
    @paddle.jit.to_static(property=True)
    def fbias(self):
        return self.bias + 1

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
    @paddle.jit.to_static(property=True)
    def down_sampling(self):
        return 4

    @paddle.jit.to_static(property=True)
    def fstr(self):
        return "save str property"

    @paddle.jit.to_static(property=True)
    def ints(self):
        return [10, 20]

    @paddle.jit.to_static(property=True)
    def floats(self):
        return [1.1, 2.2]

    @paddle.jit.to_static(property=True)
    def strs(self):
        return ["hello", "world"]


class NetTensor(paddle.nn.Layer):

    def __init__(self):
        super().__init__()
        self.fc1 = paddle.nn.Linear(4, 4)
        self.fc2 = paddle.nn.Linear(4, 4)
        self.bias = 0.4
        self.flag = paddle.ones([2], dtype="int32")

    @paddle.jit.to_static(input_spec=[InputSpec([None, 4], dtype='float32')])
    def forward(self, x):
        out = self.fc1(x)
        out = paddle.nn.functional.relu(out)
        out = paddle.mean(out)
        return out

1226 1227
    @paddle.jit.to_static(property=True)
    def fflag(self):
1228
        return True
1229 1230


1231
class TestJitSaveCombineProperty(unittest.TestCase):
1232 1233 1234 1235 1236 1237 1238 1239 1240

    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

1241
    def test_jit_save_combine_property(self):
1242 1243 1244 1245 1246 1247
        model_path = os.path.join(self.temp_dir.name,
                                  "test_jit_save_combine/model")
        # Use new namespace
        with unique_name.guard():
            net = Net()
        #save
1248
        paddle.jit.save(net, model_path, combine_params=True)
1249

1250 1251 1252 1253 1254 1255 1256 1257 1258
    def test_jit_save_tensor_property(self):
        model_path = os.path.join(self.temp_dir.name,
                                  "test_jit_save_combine/model")
        # Use new namespace
        with unique_name.guard():
            net = NetTensor()

        paddle.jit.save(net, model_path, combine_params=True)

1259

W
WeiXin 已提交
1260
class LayerLoadFinetune(paddle.nn.Layer):
1261

W
WeiXin 已提交
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
    def __init__(self, in_size, out_size, load_path):
        super(LayerLoadFinetune, self).__init__()
        # Test duplicate name
        self._linear_0 = Linear(in_size, in_size)
        self._linear_1_0 = Linear(out_size, in_size)
        self._linear_1_1 = Linear(out_size, in_size)
        self._linear_2 = Linear(out_size, out_size)
        self._scale = paddle.to_tensor(9.9)

        # Load multiple times
        self._load_l1 = paddle.jit.load(load_path)
        self._load_l2 = paddle.jit.load(load_path)

    @paddle.jit.to_static
    def forward(self, x):
        y = self._linear_0(x)
        y = self._load_l1(y)
        # Multiple blocks
1280
        if paddle.shape(x)[0] == 1:
W
WeiXin 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
            y = self._linear_1_0(y)
            y = self._load_l1(y)
        else:
            y += self._linear_1_1(x + self._scale)
            y = self._load_l2(y)
        y = self._linear_1_0(y)
        y = self._load_l1(y)
        y = self._linear_1_0(y)
        # Use the same layer multiple times.
        y = self._load_l1(y)
        return y


1294
class TestJitSaveLoadSaveWithoutRunning(unittest.TestCase):
1295

1296 1297 1298
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()
1299 1300 1301 1302
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1303 1304

    def test_save_load_finetune_load(self):
1305 1306
        model_path = os.path.join(
            self.temp_dir.name, "test_jit_save_load_save_without_running/model")
1307 1308 1309 1310 1311 1312 1313
        IMAGE_SIZE = 224
        inps0 = paddle.randn([1, IMAGE_SIZE])
        inps1 = paddle.randn([2, IMAGE_SIZE])
        # Use new namespace
        with unique_name.guard():
            layer_save = LayerSaved(IMAGE_SIZE, IMAGE_SIZE)
        #save
1314 1315 1316 1317 1318 1319
        paddle.jit.save(layer_save,
                        model_path,
                        input_spec=[
                            paddle.static.InputSpec(shape=[None, IMAGE_SIZE],
                                                    dtype='float32')
                        ])
1320 1321 1322 1323 1324
        result_00 = layer_save(inps0)
        result_01 = layer_save(inps1)
        #load and save without running
        with unique_name.guard():
            layer_load = paddle.jit.load(model_path)
1325 1326 1327 1328 1329 1330
            paddle.jit.save(layer_load,
                            model_path,
                            input_spec=[
                                paddle.static.InputSpec(
                                    shape=[None, IMAGE_SIZE], dtype='float32')
                            ])
1331 1332 1333 1334 1335 1336 1337 1338 1339
        #reload
        layer_reload = paddle.jit.load(model_path)
        result_10 = layer_reload(inps0)
        result_11 = layer_reload(inps1)

        self.assertTrue(float((result_00 - result_10).abs().max()) < 1e-5)
        self.assertTrue(float((result_01 - result_11).abs().max()) < 1e-5)


W
WeiXin 已提交
1340
class TestJitSaveLoadFinetuneLoad(unittest.TestCase):
1341

W
WeiXin 已提交
1342 1343 1344
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()
1345 1346 1347 1348
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
W
WeiXin 已提交
1349 1350

    def test_save_load_finetune_load(self):
1351 1352
        model_path = os.path.join(self.temp_dir.name,
                                  "test_jit_save_load_finetune_load/model")
W
WeiXin 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
        IMAGE_SIZE = 224
        inps0 = paddle.randn([1, IMAGE_SIZE])
        inps1 = paddle.randn([2, IMAGE_SIZE])
        # Use new namespace
        with unique_name.guard():
            layer_save = LayerSaved(IMAGE_SIZE, IMAGE_SIZE)
        layer_save(inps0)
        #save
        paddle.jit.save(layer_save, model_path)
        #load
        with unique_name.guard():
            layer_load = LayerLoadFinetune(IMAGE_SIZE, IMAGE_SIZE, model_path)
        #train
        train(layer_load, input_size=IMAGE_SIZE)
        result_00 = layer_load(inps0)
        result_01 = layer_load(inps1)
        #save
        paddle.jit.save(layer_load, model_path)
        #load
        layer_finetune = paddle.jit.load(model_path)
        result_10 = layer_finetune(inps0)
        result_11 = layer_finetune(inps1)

        self.assertTrue(float((result_00 - result_10).abs().max()) < 1e-5)
        self.assertTrue(float(((result_01 - result_11)).abs().max()) < 1e-5)


1380 1381 1382 1383
# NOTE(weixin): When there are multiple test functions in an
# `unittest.TestCase`, functions will affect each other,
# and there is a risk of random failure.
# So divided into three TestCase: TestJitSaveLoadFunctionCase1,
1384 1385
# TestJitSaveLoadFunctionCase2, TestJitSaveLoadFunctionCase3.
class TestJitSaveLoadFunctionCase1(unittest.TestCase):
1386

1387 1388
    def setUp(self):
        paddle.disable_static()
1389 1390 1391 1392
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1393 1394

    def test_jit_save_load_static_function(self):
1395

1396 1397 1398 1399
        @paddle.jit.to_static
        def fun(inputs):
            return paddle.tanh(inputs)

1400 1401
        path = os.path.join(self.temp_dir.name,
                            'test_jit_save_load_function_1/func')
1402 1403 1404 1405 1406 1407 1408 1409 1410
        inps = paddle.rand([3, 6])
        origin = fun(inps)

        paddle.jit.save(fun, path)
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)
        self.assertTrue((load_result - origin).abs().max() < 1e-10)

1411 1412

class TestJitSaveLoadFunctionCase2(unittest.TestCase):
1413

1414 1415
    def setUp(self):
        paddle.disable_static()
1416 1417 1418 1419
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1420

1421
    def test_jit_save_load_function_input_spec(self):
1422

1423
        @paddle.jit.to_static(input_spec=[
1424
            InputSpec(shape=[None, 6], dtype='float32', name='x'),
1425 1426 1427 1428
        ])
        def fun(inputs):
            return paddle.nn.functional.relu(inputs)

1429 1430
        path = os.path.join(self.temp_dir.name,
                            'test_jit_save_load_function_2/func')
1431 1432 1433 1434 1435 1436 1437 1438
        inps = paddle.rand([3, 6])
        origin = fun(inps)

        paddle.jit.save(fun, path)
        load_func = paddle.jit.load(path)
        load_result = load_func(inps)
        self.assertTrue((load_result - origin).abs().max() < 1e-10)

1439 1440

class TestJitSaveLoadFunctionCase3(unittest.TestCase):
1441

1442 1443
    def setUp(self):
        paddle.disable_static()
1444 1445 1446 1447
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1448

1449
    def test_jit_save_load_function_function(self):
1450

1451 1452 1453
        def fun(inputs):
            return paddle.tanh(inputs)

1454 1455
        path = os.path.join(self.temp_dir.name,
                            'test_jit_save_load_function_3/func')
1456 1457 1458
        inps = paddle.rand([3, 6])
        origin = fun(inps)

1459 1460 1461 1462 1463 1464 1465
        paddle.jit.save(fun,
                        path,
                        input_spec=[
                            InputSpec(shape=[None, 6],
                                      dtype='float32',
                                      name='x'),
                        ])
1466 1467 1468 1469 1470 1471
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)
        self.assertTrue((load_result - origin).abs().max() < 1e-10)


1472
class TestJitSaveLoadFunctionWithParamCase1(unittest.TestCase):
1473

1474 1475
    def setUp(self):
        paddle.disable_static()
1476 1477 1478 1479
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1480 1481

    def test_jit_save_load_function(self):
1482

1483
        class LinearNet(paddle.nn.Layer):
1484

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
            def __init__(self):
                super(LinearNet, self).__init__()
                self._linear = paddle.nn.Linear(5, 6)

            def forward(self, x):
                return paddle.tanh(x)

            def anothor_forward(self, x):
                return self._linear(x)

        layer = LinearNet()

        inps = paddle.rand([3, 5])
        origin = layer.anothor_forward(inps)

1500 1501
        func = paddle.jit.to_static(layer.anothor_forward,
                                    [paddle.static.InputSpec(shape=[-1, 5])])
1502 1503 1504
        path = os.path.join(
            self.temp_dir.name,
            'test_jit_save_load_function_with_params_case1/func')
1505 1506 1507 1508 1509 1510 1511 1512
        paddle.jit.save(func, path)
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)
        self.assertTrue(np.array_equal(load_result.numpy(), origin.numpy()))


class TestJitSaveLoadFunctionWithParamCase2(unittest.TestCase):
1513

1514 1515
    def setUp(self):
        paddle.disable_static()
1516 1517 1518 1519
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1520 1521

    def test_jit_save_load_function(self):
1522

1523
        class LinearNet(paddle.nn.Layer):
1524

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
            def __init__(self):
                super(LinearNet, self).__init__()
                self._linear = paddle.nn.Linear(5, 6)

            def forward(self, x):
                return paddle.tanh(x)

            @paddle.jit.to_static(input_spec=[InputSpec(shape=[-1, 5])])
            def anothor_forward(self, x):
                return self._linear(x)

        layer = LinearNet()

        inps = paddle.rand([3, 5])

1540 1541 1542
        path = os.path.join(
            self.temp_dir.name,
            'test_jit_save_load_function_with_params_case2/func')
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
        paddle.jit.save(layer.anothor_forward, path)
        origin_result = layer.anothor_forward(inps)
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)

        self.assertTrue(
            np.array_equal(origin_result.numpy(), load_result.numpy()))


class TestJitSaveLoadFunctionWithParamCase3(unittest.TestCase):
1554

1555 1556
    def setUp(self):
        paddle.disable_static()
1557 1558 1559 1560
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1561 1562

    def test_jit_save_load_function(self):
1563

1564
        class LinearNet(paddle.nn.Layer):
1565

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
            def __init__(self):
                super(LinearNet, self).__init__()
                self._linear = paddle.nn.Linear(5, 6)

            def forward(self, x):
                return paddle.tanh(x)

            @paddle.jit.to_static
            def anothor_forward(self, x):
                return self._linear(x)

        layer = LinearNet()

        inps = paddle.rand([3, 5])
        origin = layer.anothor_forward(inps)

1582 1583 1584
        path = os.path.join(
            self.temp_dir.name,
            'test_jit_save_load_function_with_params_case3/func')
1585 1586 1587 1588 1589 1590 1591
        paddle.jit.save(layer.anothor_forward, path)
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)
        self.assertTrue(np.array_equal(load_result.numpy(), origin.numpy()))


1592
class TestJitSaveLoadDataParallel(unittest.TestCase):
1593

1594 1595 1596 1597 1598 1599
    def setUp(self):
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
    def verify_inference_correctness(self, layer, path):
        layer.eval()
        loaded_layer = paddle.jit.load(path)
        loaded_layer.eval()
        # inference & compare
        x = paddle.to_tensor(np.random.random((1, 784)).astype('float32'))
        pred = layer(x).numpy()
        loaded_pred = loaded_layer(x).numpy()
        self.assertTrue(
            np.array_equal(pred, loaded_pred),
            msg="Result diff when load and inference:\nlayer result:\n{}\n" \
                "loaded layer result:\n{}".format(pred, loaded_pred))

    def test_jit_save_data_parallel_with_inputspec(self):
        layer = LinearNetNotDeclarative(784, 1)
        layer = paddle.DataParallel(layer)
1616 1617
        path = os.path.join(self.temp_dir.name,
                            "jit_save_data_parallel_with_inputspec/model")
1618 1619 1620
        paddle.jit.save(layer=layer,
                        path=path,
                        input_spec=[InputSpec(shape=[None, 784])])
1621 1622 1623 1624 1625 1626 1627

        self.verify_inference_correctness(layer, path)

    def test_jit_save_data_parallel_with_to_static(self):
        layer = LinearNetWithInputSpec(784, 1)
        layer = paddle.DataParallel(layer)

1628 1629
        path = os.path.join(self.temp_dir.name,
                            "jit_save_data_parallel_with_to_static/model")
1630 1631 1632 1633 1634
        paddle.jit.save(layer, path)

        self.verify_inference_correctness(layer, path)


1635 1636 1637 1638 1639 1640
class InputSepcLayer(paddle.nn.Layer):
    '''
    A layer with InputSpec to test InputSpec compatibility
    '''

    @paddle.jit.to_static(input_spec=[
1641 1642
        InputSpec(shape=[None, 8], dtype='float32', name='x'),
        InputSpec(shape=[None, 1], dtype='float64', name='y')
1643 1644 1645 1646 1647 1648
    ])
    def forward(self, x, y):
        return x, y


class TestInputSpecCompatibility(unittest.TestCase):
1649

1650 1651 1652 1653 1654 1655
    def setUp(self):
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
    def _assert_input_spec_layer_return(self, expect_layer, test_layer):
        input_x = paddle.uniform([8, 8], dtype='float32')
        input_y = paddle.uniform([8, 1], dtype='float64')
        expected_result = expect_layer(input_x, input_y)
        test_result = test_layer(input_x, input_y)
        np.testing.assert_allclose(expected_result[0].numpy(),
                                   test_result[0].numpy())
        np.testing.assert_allclose(expected_result[1].numpy(),
                                   test_result[1].numpy())

    def test_jit_save_compatible_input_sepc(self):
        layer = InputSepcLayer()
1668 1669
        save_dir = os.path.join(self.temp_dir.name,
                                "jit_save_compatible_input_spec")
1670 1671 1672 1673 1674 1675 1676
        path = save_dir + "/model"

        paddle.jit.save(layer=layer, path=path)
        no_input_spec_layer = paddle.jit.load(path)
        self._assert_input_spec_layer_return(layer, no_input_spec_layer)
        shutil.rmtree(save_dir)

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
        paddle.jit.save(layer=layer,
                        path=path,
                        input_spec=[
                            InputSpec(shape=[None, 8],
                                      dtype='float32',
                                      name='x'),
                            InputSpec(shape=[None, 1],
                                      dtype='float64',
                                      name='y')
                        ])
1687 1688 1689 1690
        same_input_spec_layer = paddle.jit.load(path)
        self._assert_input_spec_layer_return(layer, same_input_spec_layer)
        shutil.rmtree(save_dir)

1691 1692 1693 1694 1695 1696
        paddle.jit.save(layer=layer,
                        path=path,
                        input_spec=[
                            InputSpec(shape=[8, 8], dtype='float32'),
                            InputSpec(shape=[8, -1], dtype='float64')
                        ])
1697 1698 1699 1700 1701 1702
        compatible_input_spec_layer = paddle.jit.load(path)
        self._assert_input_spec_layer_return(layer, compatible_input_spec_layer)
        shutil.rmtree(save_dir)

    def test_jit_save_incompatible_input_sepc(self):
        layer = InputSepcLayer()
1703 1704
        save_dir = os.path.join(self.temp_dir.name,
                                "jit_save_compatible_input_spec")
1705 1706 1707 1708
        path = save_dir + "/model"

        with self.assertRaises(ValueError):
            # type mismatch
1709 1710 1711 1712 1713 1714
            paddle.jit.save(layer=layer,
                            path=path,
                            input_spec=[
                                InputSpec(shape=[None, 8], dtype='float64'),
                                InputSpec(shape=[None, 1], dtype='float64')
                            ])
1715 1716 1717

        with self.assertRaises(ValueError):
            # shape len mismatch
1718 1719 1720 1721 1722 1723
            paddle.jit.save(layer=layer,
                            path=path,
                            input_spec=[
                                InputSpec(shape=[None, 8, 1], dtype='float32'),
                                InputSpec(shape=[None, 1], dtype='float64')
                            ])
1724 1725 1726

        with self.assertRaises(ValueError):
            # shape mismatch
1727 1728 1729 1730 1731 1732
            paddle.jit.save(layer=layer,
                            path=path,
                            input_spec=[
                                InputSpec(shape=[None, 8], dtype='float32'),
                                InputSpec(shape=[None, 2], dtype='float64')
                            ])
1733 1734 1735 1736
        if os.path.exists(save_dir):
            shutil.rmtree(save_dir)


1737
if __name__ == '__main__':
1738 1739
    with fluid.framework._test_eager_guard():
        unittest.main()