test_jit_save_load.py 58.8 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import os
17
import pickle
18
import shutil
19
import unittest
20
import tempfile
21
import numpy as np
L
Leo Chen 已提交
22
import paddle
23
from paddle.static import InputSpec
24
import paddle.fluid as fluid
25
from paddle.fluid.layers.utils import flatten
26
from paddle.fluid.dygraph import Linear
27 28
from paddle.fluid.dygraph import declarative
from paddle.fluid.dygraph.io import INFER_PARAMS_INFO_SUFFIX
W
WeiXin 已提交
29
from paddle.fluid import unique_name
30 31

BATCH_SIZE = 32
32
BATCH_NUM = 10
33 34 35
SEED = 10


36
def random_batch_reader(input_size, label_size):
37

38
    def _get_random_inputs_and_labels(input_size, label_size):
39
        np.random.seed(SEED)
40 41 42
        input = np.random.random(size=input_size).astype('float32')
        label = np.random.random(size=label_size).astype('int64')
        return input, label
43 44 45

    def __reader__():
        for _ in range(BATCH_NUM):
46 47 48
            batch_input, batch_label = _get_random_inputs_and_labels(
                [BATCH_SIZE, input_size], [BATCH_SIZE, label_size])
            yield batch_input, batch_label
49 50 51 52 53

    return __reader__


class LinearNet(fluid.dygraph.Layer):
54

55 56 57 58 59 60 61 62 63
    def __init__(self, in_size, out_size):
        super(LinearNet, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        return self._linear(x)


64
class LinearNetWithInputSpec(fluid.dygraph.Layer):
65

66 67 68 69 70 71 72 73 74
    def __init__(self, in_size, out_size):
        super(LinearNetWithInputSpec, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
    def forward(self, x):
        return self._linear(x)


75
class LinearNetNotDeclarative(fluid.dygraph.Layer):
76

77 78 79 80 81 82 83 84
    def __init__(self, in_size, out_size):
        super(LinearNetNotDeclarative, self).__init__()
        self._linear = Linear(in_size, out_size)

    def forward(self, x):
        return self._linear(x)


85
class LinerNetWithLabel(paddle.nn.Layer):
86

87 88 89 90 91
    def __init__(self, in_size, out_size):
        super(LinerNetWithLabel, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[
92 93
        InputSpec(shape=[None, 784], dtype='float32', name="image"),
        InputSpec(shape=[None, 1], dtype='int64', name="label")
94 95 96 97
    ])
    def forward(self, x, label):
        out = self._linear(x)
        loss = fluid.layers.cross_entropy(out, label)
98
        avg_loss = paddle.mean(loss)
99 100 101
        return out, avg_loss


C
Chen Weihang 已提交
102
class LinerNetWithPruneInput(paddle.nn.Layer):
103

C
Chen Weihang 已提交
104 105 106 107 108
    def __init__(self, in_size, out_size):
        super(LinerNetWithPruneInput, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[
109 110
        InputSpec(shape=[None, 784], dtype='float32', name="image"),
        InputSpec(shape=[None, 1], dtype='int64', name="label")
C
Chen Weihang 已提交
111 112 113 114
    ])
    def forward(self, x, label):
        out = self._linear(x)
        loss = fluid.layers.cross_entropy(out, label)
115
        avg_loss = paddle.mean(loss)
C
Chen Weihang 已提交
116 117 118 119
        return out


class LinerNetWithUselessInput(paddle.nn.Layer):
120

C
Chen Weihang 已提交
121 122 123 124 125
    def __init__(self, in_size, out_size):
        super(LinerNetWithUselessInput, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[
126 127
        InputSpec(shape=[None, 784], dtype='float32', name="image"),
        InputSpec(shape=[None, 1], dtype='int64', name="label")
C
Chen Weihang 已提交
128 129 130 131 132 133
    ])
    def forward(self, x, label):
        out = self._linear(x)
        return out


134
class LinearNetReturnLoss(fluid.dygraph.Layer):
135

136 137 138 139 140 141 142 143
    def __init__(self, in_size, out_size):
        super(LinearNetReturnLoss, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear(x)
        z = self._linear(y)
144
        loss = paddle.mean(z)
145 146 147
        return z, loss


148
class LinearNetMultiInput(fluid.dygraph.Layer):
149

150 151 152 153 154 155
    def __init__(self, in_size, out_size):
        super(LinearNetMultiInput, self).__init__()
        self._linear1 = Linear(in_size, out_size)
        self._linear2 = Linear(in_size, out_size)

    @declarative(input_spec=[
156 157
        InputSpec([None, 8], dtype='float32'),
        InputSpec([None, 8], dtype='float32')
158 159 160 161
    ])
    def forward(self, x, y):
        x_out = self._linear1(x)
        y_out = self._linear2(y)
162
        loss = paddle.mean(x_out + y_out)
163 164 165
        return x_out, y_out, loss


166
class LinearNetMultiInput1(fluid.dygraph.Layer):
167

168 169 170 171 172
    def __init__(self, in_size, out_size):
        super(LinearNetMultiInput1, self).__init__()
        self._linear1 = Linear(in_size, out_size)
        self._linear2 = Linear(in_size, out_size)

173 174
    @declarative(input_spec=(InputSpec([None, 8], dtype='float32'),
                             InputSpec([None, 8], dtype='float32')))
175 176 177
    def forward(self, x, y):
        x_out = self._linear1(x)
        y_out = self._linear2(y)
178
        loss = paddle.mean(x_out + y_out)
179 180 181
        return x_out, y_out, loss


182
class MultiLoadingLinearNet(fluid.dygraph.Layer):
183

184 185 186
    def __init__(self, size, model_path):
        super(MultiLoadingLinearNet, self).__init__()
        self._linear = Linear(size, size)
187 188
        self._load_linear1 = paddle.jit.load(model_path)
        self._load_linear2 = paddle.jit.load(model_path)
189 190 191 192 193 194 195 196 197 198 199

    @declarative
    def forward(self, x):
        tmp1 = self._linear(x)
        tmp2 = self._load_linear1(tmp1)
        tmp3 = self._load_linear2(tmp2)
        y = self._linear(tmp3)
        return y


class LinearNetReturnHidden(fluid.dygraph.Layer):
200

201 202 203 204 205 206 207 208 209
    def __init__(self, in_size, out_size):
        super(LinearNetReturnHidden, self).__init__()
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
210
        loss = paddle.mean(z)
211 212 213
        return y, loss


214
class LinearNetWithNestOut(fluid.dygraph.Layer):
215

216 217 218 219 220 221 222 223 224 225
    def __init__(self, in_size, out_size):
        super(LinearNetWithNestOut, self).__init__()
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
        out = y + z
226
        loss = paddle.mean(out)
227 228 229
        return y, [(z, loss), out]


230
class LinearNetWithDictInput(paddle.nn.Layer):
231

232 233 234 235 236
    def __init__(self, in_size, out_size):
        super(LinearNetWithDictInput, self).__init__()
        self._linear = Linear(in_size, out_size)

    @paddle.jit.to_static(input_spec=[{
237 238
        'img':
        InputSpec(shape=[None, 8], dtype='float32', name='img')
239
    }, {
240 241
        'label':
        InputSpec(shape=[None, 1], dtype='int64', name='label')
242 243 244 245 246 247 248 249
    }])
    def forward(self, img, label):
        out = self._linear(img['img'])
        # not return loss to avoid prune output
        loss = paddle.nn.functional.cross_entropy(out, label['label'])
        return out


250
class LinearNetWithDictInputNoPrune(paddle.nn.Layer):
251

252 253 254 255 256 257 258 259 260
    def __init__(self, in_size, out_size):
        super(LinearNetWithDictInputNoPrune, self).__init__()
        self._linear = Linear(in_size, out_size)

    def forward(self, img):
        out = self._linear(img['img'] + img['img2'])
        return out


261
class EmptyLayer(paddle.nn.Layer):
262

263 264 265 266 267 268 269 270 271
    def __init__(self):
        super(EmptyLayer, self).__init__()

    @paddle.jit.to_static
    def forward(self, x):
        return x


class NoParamLayer(paddle.nn.Layer):
272

273 274 275 276 277 278 279 280
    def __init__(self):
        super(NoParamLayer, self).__init__()

    @paddle.jit.to_static
    def forward(self, x, y):
        return x + y


281
class LinearNetWithMultiStaticFunc(fluid.dygraph.Layer):
282

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    def __init__(self, in_size, out_size):
        super(LinearNetWithMultiStaticFunc, self).__init__()
        self._linear_0 = Linear(in_size, out_size)
        self._linear_1 = Linear(in_size, out_size)
        self._scale = paddle.to_tensor(9.9)

    @paddle.jit.to_static
    def forward(self, x):
        return self._linear_0(x)

    @paddle.jit.to_static
    def forward_no_param(self, x):
        return x

    @paddle.jit.to_static
    def forward_general(self, x):
        return self._linear_0(x) + self._linear_1(x) * self._scale


302
def train(layer, input_size=784, label_size=1):
303
    # create optimizer
304 305
    sgd = fluid.optimizer.SGDOptimizer(learning_rate=0.01,
                                       parameter_list=layer.parameters())
306 307
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
308 309
    train_loader.set_batch_generator(random_batch_reader(
        input_size, label_size))
310 311 312 313 314 315 316 317
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        cost = layer(img)

        loss = fluid.layers.cross_entropy(cost, label)
318
        avg_loss = paddle.mean(loss)
319 320

        avg_loss.backward()
L
Leo Chen 已提交
321
        sgd.minimize(avg_loss)
322 323 324 325
        layer.clear_gradients()
    return [img], layer, avg_loss


326 327
def train_with_label(layer, input_size=784, label_size=1):
    # create optimizer
328 329
    sgd = fluid.optimizer.SGDOptimizer(learning_rate=0.01,
                                       parameter_list=layer.parameters())
330 331
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
332 333
    train_loader.set_batch_generator(random_batch_reader(
        input_size, label_size))
334 335 336 337 338 339 340 341 342 343 344 345 346
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        out, avg_loss = layer(img, label)

        avg_loss.backward()
        sgd.minimize(avg_loss)
        layer.clear_gradients()
    return out


347
class TestJitSaveLoad(unittest.TestCase):
348

349
    def setUp(self):
350 351 352
        self.temp_dir = tempfile.TemporaryDirectory()
        self.model_path = os.path.join(self.temp_dir.name,
                                       "test_jit_save_load/model")
353 354 355
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
356
        paddle.seed(SEED)
L
Leo Chen 已提交
357
        paddle.framework.random._manual_program_seed(SEED)
358

359 360 361
    def tearDown(self):
        self.temp_dir.cleanup()

362
    def train_and_save_model(self, model_path=None):
363 364
        layer = LinearNet(784, 1)
        example_inputs, layer, _ = train(layer)
365
        final_model_path = model_path if model_path else self.model_path
366
        orig_input_types = [type(x) for x in example_inputs]
367 368 369
        paddle.jit.save(layer=layer,
                        path=final_model_path,
                        input_spec=example_inputs)
370 371
        new_input_types = [type(x) for x in example_inputs]
        self.assertEqual(orig_input_types, new_input_types)
372 373
        return layer

374
    def test_save_load(self):
375 376 377
        # train and save model
        train_layer = self.train_and_save_model()
        # load model
378
        loaded_layer = paddle.jit.load(self.model_path)
379 380 381 382 383
        self.load_and_inference(train_layer, loaded_layer)
        self.load_dygraph_state_dict(train_layer)
        self.load_and_finetune(train_layer, loaded_layer)

    def load_and_inference(self, train_layer, infer_layer):
384
        train_layer.eval()
385
        infer_layer.eval()
386 387 388
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
389 390 391
        np.testing.assert_array_equal(
            train_layer(x).numpy(),
            infer_layer(x).numpy())
392

393 394
    def load_and_finetune(self, train_layer, load_train_layer):
        train_layer.train()
395 396
        load_train_layer.train()
        # train & compare
L
Leo Chen 已提交
397 398
        img0, _, train_loss = train(train_layer)
        img1, _, load_train_loss = train(load_train_layer)
399 400
        np.testing.assert_array_equal(train_loss.numpy(),
                                      load_train_loss.numpy())
401

402 403
    def load_dygraph_state_dict(self, train_layer):
        train_layer.eval()
404
        # construct new model
405
        new_layer = LinearNet(784, 1)
406
        orig_state_dict = new_layer.state_dict()
407
        load_state_dict = paddle.load(self.model_path)
408 409 410
        for structured_name in orig_state_dict:
            self.assertTrue(structured_name in load_state_dict)
        new_layer.set_state_dict(load_state_dict)
411 412 413 414
        new_layer.eval()
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
415 416 417
        np.testing.assert_array_equal(
            train_layer(x).numpy(),
            new_layer(x).numpy())
418

419
    def test_load_dygraph_no_path(self):
420 421
        model_path = os.path.join(self.temp_dir.name,
                                  "test_jit_save_load.no_path/model_path")
422 423 424
        with self.assertRaises(ValueError):
            model_dict, _ = fluid.dygraph.load_dygraph(model_path)

425
    def test_jit_load_no_path(self):
426 427
        path = os.path.join(self.temp_dir.name,
                            "test_jit_save_load.no_path/model_path")
428 429 430
        with self.assertRaises(ValueError):
            loaded_layer = paddle.jit.load(path)

431

432
class TestSaveLoadWithNestOut(unittest.TestCase):
433

434 435 436
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
437 438 439 440
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
441 442 443 444 445 446 447 448 449

    def test_nest_output(self):
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))

        net = LinearNetWithNestOut(8, 8)
        dy_outs = flatten(net(x))
        net = declarative(net, input_spec=[InputSpec([None, 8], name='x')])

450
        model_path = os.path.join(self.temp_dir.name, "net_with_nest_out/model")
451 452 453 454 455 456 457
        paddle.jit.save(net, model_path)

        load_net = paddle.jit.load(model_path)
        load_outs = flatten(load_net(x))

        self.assertTrue(len(dy_outs) == 4)
        for dy_out, load_out in zip(dy_outs, load_outs):
458 459 460
            np.testing.assert_allclose(dy_out.numpy(),
                                       load_out.numpy(),
                                       rtol=1e-05)
461 462


463
class TestSaveLoadWithDictInput(unittest.TestCase):
464

465
    def test_dict_input(self):
466
        # NOTE: This net cannot be executed, it is just
467 468 469
        # a special case for exporting models in model validation
        # We DO NOT recommend this writing way of Layer
        net = LinearNetWithDictInput(8, 8)
470 471 472
        # net.forward.concrete_program.inputs:
        # (<__main__.LinearNetWithDictInput object at 0x7f2655298a98>,
        #  {'img': var img : fluid.VarType.LOD_TENSOR.shape(-1, 8).astype(VarType.FP32)},
473 474
        #  {'label': var label : fluid.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)})
        self.assertEqual(len(net.forward.concrete_program.inputs), 3)
475 476 477
        temp_dir = tempfile.TemporaryDirectory()
        path = os.path.join(temp_dir.name,
                            "test_jit_save_load_with_dict_input/model")
478
        # prune inputs
479 480 481 482 483 484 485 486
        paddle.jit.save(layer=net,
                        path=path,
                        input_spec=[{
                            'img':
                            InputSpec(shape=[None, 8],
                                      dtype='float32',
                                      name='img')
                        }])
487 488 489 490 491 492 493 494

        img = paddle.randn(shape=[4, 8], dtype='float32')
        loaded_net = paddle.jit.load(path)
        loaded_out = loaded_net(img)

        # loaded_net._input_spec():
        # [InputSpec(shape=(-1, 8), dtype=VarType.FP32, name=img)]
        self.assertEqual(len(loaded_net._input_spec()), 1)
495
        temp_dir.cleanup()
496 497


498
class TestSaveLoadWithDictInputNoPrune(unittest.TestCase):
499

500 501
    def test_dict_input(self):
        net = LinearNetWithDictInputNoPrune(8, 8)
502 503 504
        temp_dir = tempfile.TemporaryDirectory()
        path = os.path.join(
            temp_dir.name, "test_jit_save_load_with_dict_input_no_prune/model")
505
        # prune inputs
506 507 508 509 510 511 512 513 514 515 516 517
        paddle.jit.save(layer=net,
                        path=path,
                        input_spec=[{
                            'img':
                            InputSpec(shape=[None, 8],
                                      dtype='float32',
                                      name='img'),
                            'img2':
                            InputSpec(shape=[None, 8],
                                      dtype='float32',
                                      name='img2')
                        }])
518 519 520 521 522 523 524

        img = paddle.randn(shape=[4, 8], dtype='float32')
        img2 = paddle.randn(shape=[4, 8], dtype='float32')
        loaded_net = paddle.jit.load(path)
        loaded_out = loaded_net(img, img2)

        self.assertEqual(len(loaded_net._input_spec()), 2)
525
        temp_dir.cleanup()
526 527


528
class TestSaveLoadWithInputSpec(unittest.TestCase):
529

530 531 532
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
533 534 535 536
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
537 538 539 540

    def test_with_input_spec(self):
        net = LinearNetReturnLoss(8, 8)
        # set x.shape = [None, 8]
541 542
        net.forward = declarative(net.forward,
                                  input_spec=[InputSpec([None, 8], name='x')])
543

544 545
        model_path = os.path.join(self.temp_dir.name,
                                  "input_spec.output_spec/model")
546 547 548 549 550 551 552
        # check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 1)
        input_x = net.forward.inputs[0]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_x.name == 'x')

        # 1. prune loss
553 554
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, output_spec=output_spec)
555 556

        # 2. load to infer
557
        infer_layer = paddle.jit.load(model_path)
558 559 560 561 562 563 564
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        pred = infer_layer(x)

    def test_multi_in_out(self):
        net = LinearNetMultiInput(8, 8)

565 566
        model_path = os.path.join(self.temp_dir.name,
                                  "multi_inout.output_spec1/model")
567 568 569 570 571 572 573 574
        # 1. check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 2)
        input_x = net.forward.inputs[0]
        input_y = net.forward.inputs[1]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_y.shape == (-1, 8))

        # 2. prune loss
575 576
        output_spec = net.forward.outputs[:2]
        paddle.jit.save(net, model_path, output_spec=output_spec)
577 578

        # 3. load to infer
579
        infer_layer = paddle.jit.load(model_path)
580 581 582 583 584 585 586 587
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        y = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        # 4. predict
        pred_x, pred_y = infer_layer(x, y)

        # 1. prune y and loss
588 589
        model_path = os.path.join(self.temp_dir.name,
                                  "multi_inout.output_spec2/model")
590 591
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, [input_x], output_spec=output_spec)
592
        # 2. load again
593
        infer_layer2 = paddle.jit.load(model_path)
594 595 596 597
        # 3. predict
        pred_xx = infer_layer2(x)

        # 4. assert pred_x == pred_xx
598
        np.testing.assert_allclose(pred_x.numpy(), pred_xx.numpy(), rtol=1e-05)
599 600 601 602

    def test_multi_in_out1(self):
        net = LinearNetMultiInput1(8, 8)

603 604
        model_path = os.path.join(self.temp_dir.name,
                                  "multi_inout1.output_spec1/model")
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
        # 1. check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 2)
        input_x = net.forward.inputs[0]
        input_y = net.forward.inputs[1]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_y.shape == (-1, 8))

        # 2. prune loss
        output_spec = net.forward.outputs[:2]
        paddle.jit.save(net, model_path, output_spec=output_spec)

        # 3. load to infer
        infer_layer = paddle.jit.load(model_path)
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        y = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        # 4. predict
        pred_x, pred_y = infer_layer(x, y)

        # 1. prune y and loss
626 627
        model_path = os.path.join(self.temp_dir.name,
                                  "multi_inout1.output_spec2/model")
628 629 630 631 632 633 634 635
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, (input_x, ), output_spec=output_spec)
        # 2. load again
        infer_layer2 = paddle.jit.load(model_path)
        # 3. predict
        pred_xx = infer_layer2(x)

        # 4. assert pred_x == pred_xx
636
        np.testing.assert_allclose(pred_x.numpy(), pred_xx.numpy(), rtol=1e-05)
637 638


639
class TestJitSaveLoadConfig(unittest.TestCase):
640

641 642 643 644
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
645
        paddle.seed(SEED)
L
Leo Chen 已提交
646
        paddle.framework.random._manual_program_seed(SEED)
647 648 649 650
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
651 652 653 654 655 656 657 658 659 660 661 662 663

    def test_output_spec(self):
        train_layer = LinearNetReturnLoss(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            out, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

664 665
        model_path = os.path.join(self.temp_dir.name,
                                  "save_load_config.output_spec")
666
        output_spec = [out]
667 668 669 670
        paddle.jit.save(layer=train_layer,
                        path=model_path,
                        input_spec=[x],
                        output_spec=output_spec)
671 672

        train_layer.eval()
673
        infer_layer = paddle.jit.load(model_path)
674 675
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
676 677 678
        np.testing.assert_array_equal(
            train_layer(x)[0].numpy(),
            infer_layer(x).numpy())
679

680 681
    def test_save_no_support_config_error(self):
        layer = LinearNet(784, 1)
682
        path = os.path.join(self.temp_dir.name, "no_support_config_test")
683 684 685 686
        with self.assertRaises(ValueError):
            paddle.jit.save(layer=layer, path=path, model_filename="")

    def test_load_empty_model_filename_error(self):
687
        path = os.path.join(self.temp_dir.name, "error_model_filename_test")
688 689 690 691
        with self.assertRaises(ValueError):
            paddle.jit.load(path, model_filename="")

    def test_load_empty_params_filename_error(self):
692
        path = os.path.join(self.temp_dir.name, "error_params_filename_test")
693 694 695 696
        with self.assertRaises(ValueError):
            paddle.jit.load(path, params_filename="")

    def test_load_with_no_support_config(self):
697
        path = os.path.join(self.temp_dir.name, "no_support_config_test")
698 699 700
        with self.assertRaises(ValueError):
            paddle.jit.load(path, separate_params=True)

701

702
class TestJitMultipleLoading(unittest.TestCase):
703

704 705
    def setUp(self):
        self.linear_size = 4
706 707 708
        self.temp_dir = tempfile.TemporaryDirectory()
        self.model_path = os.path.join(self.temp_dir.name,
                                       "jit_multi_load/model")
709 710 711
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
712
        paddle.seed(SEED)
L
Leo Chen 已提交
713
        paddle.framework.random._manual_program_seed(SEED)
714 715 716
        # train and save base model
        self.train_and_save_orig_model()

717 718 719
    def tearDown(self):
        self.temp_dir.cleanup()

720 721 722
    def train_and_save_orig_model(self):
        layer = LinearNet(self.linear_size, self.linear_size)
        example_inputs, layer, _ = train(layer, self.linear_size, 1)
723 724 725
        paddle.jit.save(layer=layer,
                        path=self.model_path,
                        input_spec=example_inputs)
726 727 728 729 730 731 732 733 734 735 736

    def test_load_model_retransform_inference(self):
        multi_loaded_layer = MultiLoadingLinearNet(self.linear_size,
                                                   self.model_path)
        state_dict = multi_loaded_layer.state_dict()
        name_set = set()
        for _, var in state_dict.items():
            self.assertTrue(var.name not in name_set)
            name_set.add(var.name)


737
class TestJitPruneModelAndLoad(unittest.TestCase):
738

739 740
    def setUp(self):
        self.linear_size = 4
741 742 743
        self.temp_dir = tempfile.TemporaryDirectory()
        self.model_path = os.path.join(self.temp_dir.name,
                                       "jit_prune_model_and_load/model")
744 745 746
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
747
        paddle.seed(SEED)
L
Leo Chen 已提交
748
        paddle.framework.random._manual_program_seed(SEED)
749

750 751 752
    def tearDown(self):
        self.temp_dir.cleanup()

753 754 755 756 757 758 759 760 761 762 763 764
    def train_and_save(self):
        train_layer = LinearNetReturnHidden(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            hidden, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

765
        output_spec = [hidden]
766 767 768 769
        paddle.jit.save(layer=train_layer,
                        path=self.model_path,
                        input_spec=[x],
                        output_spec=output_spec)
770 771 772 773 774 775 776

        return train_layer

    def test_load_pruned_model(self):
        train_layer = self.train_and_save()
        train_layer.eval()

777
        infer_layer = paddle.jit.load(self.model_path)
778 779 780

        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
781 782 783
        np.testing.assert_array_equal(
            train_layer(x)[0].numpy(),
            infer_layer(x).numpy())
784 785 786 787 788

    def test_load_var_not_in_extra_var_info(self):
        self.train_and_save()

        # chage extra var info
789
        var_info_path = self.model_path + INFER_PARAMS_INFO_SUFFIX
790 791 792 793 794 795 796
        with open(var_info_path, 'rb') as f:
            extra_var_info = pickle.load(f)
            extra_var_info.clear()
        with open(var_info_path, 'wb') as f:
            pickle.dump(extra_var_info, f, protocol=2)

        with self.assertRaises(RuntimeError):
797
            paddle.jit.load(self.model_path)
798 799


800
class TestJitSaveMultiCases(unittest.TestCase):
801

802 803 804 805
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
806
        paddle.seed(SEED)
807
        paddle.framework.random._manual_program_seed(SEED)
808 809 810 811
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
812

C
Chen Weihang 已提交
813 814 815 816 817
    def verify_inference_correctness(self,
                                     layer,
                                     model_path,
                                     with_label_and_loss=False,
                                     with_label=False):
818 819 820 821
        layer.eval()
        loaded_layer = paddle.jit.load(model_path)
        loaded_layer.eval()
        # inference & compare
Z
Zhou Wei 已提交
822
        x = paddle.to_tensor(np.random.random((1, 784)).astype('float32'))
C
Chen Weihang 已提交
823
        if with_label_and_loss:
Z
Zhou Wei 已提交
824
            y = paddle.to_tensor(np.random.random((1, 1)).astype('int64'))
825 826
            pred, _ = layer(x, y)
            pred = pred.numpy()
C
Chen Weihang 已提交
827 828 829 830
        elif with_label:
            y = paddle.to_tensor(np.random.random((1, 1)).astype('int64'))
            pred = layer(x, y)
            pred = pred.numpy()
831 832 833
        else:
            pred = layer(x).numpy()
        loaded_pred = loaded_layer(x).numpy()
834 835 836 837 838 839
        np.testing.assert_array_equal(
            pred,
            loaded_pred,
            err_msg=
            'Result diff when load and inference:\nlayer result:\n{}\nloaded layer result:\n{}'
            .format(pred, loaded_pred))
840 841 842 843 844 845

    def test_no_prune_to_static_after_train(self):
        layer = LinearNet(784, 1)

        train(layer)

846 847
        model_path = os.path.join(self.temp_dir.name,
                                  "test_no_prune_to_static_after_train/model")
848 849 850 851 852 853 854
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_to_static_no_train(self):
        layer = LinearNetWithInputSpec(784, 1)

855 856
        model_path = os.path.join(self.temp_dir.name,
                                  "test_no_prune_to_static_no_train/model")
857 858 859 860 861 862 863 864 865
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train(self):
        layer = LinearNetNotDeclarative(784, 1)

        train(layer)

866 867
        model_path = os.path.join(
            self.temp_dir.name, "test_no_prune_no_to_static_after_train/model")
868 869 870
        paddle.jit.save(
            layer,
            model_path,
871
            input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
872 873 874 875 876 877 878 879

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train_with_examples(self):
        layer = LinearNetNotDeclarative(784, 1)

        example_inputs, _, _ = train(layer)

880 881 882
        model_path = os.path.join(
            self.temp_dir.name,
            "test_no_prune_no_to_static_after_train_with_examples/model")
883
        paddle.jit.save(layer=layer, path=model_path, input_spec=example_inputs)
884 885 886 887 888 889

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_no_train(self):
        layer = LinearNetNotDeclarative(784, 1)

890 891
        model_path = os.path.join(self.temp_dir.name,
                                  "test_no_prune_no_to_static_no_train/model")
892 893 894
        paddle.jit.save(
            layer,
            model_path,
895
            input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
896 897 898 899 900 901 902 903

        self.verify_inference_correctness(layer, model_path)

    def test_prune_to_static_after_train(self):
        layer = LinerNetWithLabel(784, 1)

        out = train_with_label(layer)

904 905
        model_path = os.path.join(self.temp_dir.name,
                                  "test_prune_to_static_after_train/model")
906 907 908 909 910 911 912 913 914 915 916 917
        paddle.jit.save(layer,
                        model_path,
                        input_spec=[
                            InputSpec(shape=[None, 784],
                                      dtype='float32',
                                      name="image")
                        ],
                        output_spec=[out])

        self.verify_inference_correctness(layer,
                                          model_path,
                                          with_label_and_loss=True)
918 919 920 921

    def test_prune_to_static_no_train(self):
        layer = LinerNetWithLabel(784, 1)

922 923
        model_path = os.path.join(self.temp_dir.name,
                                  "test_prune_to_static_no_train/model")
924 925
        # TODO: no train, cannot get output_spec var here
        # now only can use index
926
        output_spec = layer.forward.outputs[:1]
927 928 929 930 931 932 933 934 935 936 937 938
        paddle.jit.save(layer,
                        model_path,
                        input_spec=[
                            InputSpec(shape=[None, 784],
                                      dtype='float32',
                                      name="image")
                        ],
                        output_spec=output_spec)

        self.verify_inference_correctness(layer,
                                          model_path,
                                          with_label_and_loss=True)
C
Chen Weihang 已提交
939 940 941 942

    def test_prune_input_to_static_no_train(self):
        layer = LinerNetWithPruneInput(784, 1)

943 944
        model_path = os.path.join(self.temp_dir.name,
                                  "test_prune_input_to_static_no_train/model")
945 946 947 948 949 950 951
        paddle.jit.save(layer,
                        model_path,
                        input_spec=[
                            InputSpec(shape=[None, 784],
                                      dtype='float32',
                                      name="image")
                        ])
C
Chen Weihang 已提交
952 953 954 955 956 957

        self.verify_inference_correctness(layer, model_path, with_label=True)

    def test_prune_useless_input_to_static_no_train(self):
        layer = LinerNetWithUselessInput(784, 1)

958 959 960
        model_path = os.path.join(
            self.temp_dir.name,
            "test_prune_useless_input_to_static_no_train/model")
961 962 963 964 965 966 967
        paddle.jit.save(layer,
                        model_path,
                        input_spec=[
                            InputSpec(shape=[None, 784],
                                      dtype='float32',
                                      name="image")
                        ])
C
Chen Weihang 已提交
968 969

        self.verify_inference_correctness(layer, model_path, with_label=True)
970 971 972 973 974 975

    def test_no_prune_input_spec_name_warning(self):
        layer = LinearNetWithInputSpec(784, 1)

        train(layer)

976 977
        model_path = os.path.join(
            self.temp_dir.name, "test_no_prune_input_spec_name_warning/model")
978 979 980
        paddle.jit.save(
            layer,
            model_path,
981 982 983 984 985 986 987 988
            input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
        paddle.jit.save(layer,
                        model_path,
                        input_spec=[
                            InputSpec(shape=[None, 784],
                                      dtype='float32',
                                      name='feed_input')
                        ])
989 990 991 992 993 994 995 996

        self.verify_inference_correctness(layer, model_path)

    def test_not_prune_output_spec_name_warning(self):
        layer = LinearNet(784, 1)

        train(layer)

997 998
        model_path = os.path.join(
            self.temp_dir.name, "test_not_prune_output_spec_name_warning/model")
Z
Zhou Wei 已提交
999
        out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
1000
        paddle.jit.save(layer, model_path, output_spec=[out])
1001 1002 1003 1004 1005 1006

        self.verify_inference_correctness(layer, model_path)

    def test_prune_input_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

1007 1008
        model_path = os.path.join(self.temp_dir.name,
                                  "test_prune_input_spec_name_error/model")
1009 1010 1011 1012
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
1013
                input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
1014
        with self.assertRaises(ValueError):
1015 1016 1017 1018 1019 1020 1021
            paddle.jit.save(layer,
                            model_path,
                            input_spec=[
                                InputSpec(shape=[None, 784],
                                          dtype='float32',
                                          name='feed_input')
                            ])
1022 1023 1024 1025 1026 1027

    def test_prune_output_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

        train_with_label(layer)

1028 1029
        model_path = os.path.join(self.temp_dir.name,
                                  "test_prune_to_static_after_train/model")
Z
Zhou Wei 已提交
1030
        out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
1031
        with self.assertRaises(ValueError):
1032 1033 1034 1035 1036 1037 1038 1039
            paddle.jit.save(layer,
                            model_path,
                            input_spec=[
                                InputSpec(shape=[None, 784],
                                          dtype='float32',
                                          name="image")
                            ],
                            output_spec=[out])
1040 1041


1042
class TestJitSaveLoadEmptyLayer(unittest.TestCase):
1043

1044
    def setUp(self):
1045 1046 1047
        self.temp_dir = tempfile.TemporaryDirectory()
        self.model_path = os.path.join(self.temp_dir.name,
                                       "jit_save_load_empty_layer/model")
1048 1049 1050
        # enable dygraph mode
        paddle.disable_static()

1051 1052 1053
    def tearDown(self):
        self.temp_dir.cleanup()

1054 1055
    def test_save_load_empty_layer(self):
        layer = EmptyLayer()
Z
Zhou Wei 已提交
1056
        x = paddle.to_tensor(np.random.random((10)).astype('float32'))
1057 1058 1059 1060
        out = layer(x)
        paddle.jit.save(layer, self.model_path)
        load_layer = paddle.jit.load(self.model_path)
        load_out = load_layer(x)
1061
        np.testing.assert_array_equal(out, load_out)
1062 1063 1064


class TestJitSaveLoadNoParamLayer(unittest.TestCase):
1065

1066
    def setUp(self):
1067 1068 1069
        self.temp_dir = tempfile.TemporaryDirectory()
        self.model_path = os.path.join(self.temp_dir.name,
                                       "jit_save_load_no_param_layer/model")
1070 1071 1072
        # enable dygraph mode
        paddle.disable_static()

1073 1074 1075
    def tearDown(self):
        self.temp_dir.cleanup()

1076 1077
    def test_save_load_no_param_layer(self):
        layer = NoParamLayer()
Z
Zhou Wei 已提交
1078 1079
        x = paddle.to_tensor(np.random.random((5)).astype('float32'))
        y = paddle.to_tensor(np.random.random((5)).astype('float32'))
1080 1081 1082 1083
        out = layer(x, y)
        paddle.jit.save(layer, self.model_path)
        load_layer = paddle.jit.load(self.model_path)
        load_out = load_layer(x, y)
1084
        np.testing.assert_array_equal(out, load_out)
1085 1086


1087
class TestJitSaveLoadMultiMethods(unittest.TestCase):
1088

1089 1090 1091
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()
1092 1093 1094 1095
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1096 1097

    def test_jit_save_load_inference(self):
1098 1099
        model_path_inference = os.path.join(
            self.temp_dir.name, "jit_save_load_multi_methods/model")
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
        IMAGE_SIZE = 224
        layer = LinearNetWithMultiStaticFunc(IMAGE_SIZE, 10)
        inps = paddle.randn([1, IMAGE_SIZE])
        result_origin = {}
        for func in dir(layer):
            if func.startswith('forward'):
                result_origin[func] = getattr(layer, func, None)(inps)
        paddle.jit.save(layer, model_path_inference)
        load_net = paddle.jit.load(model_path_inference)
        for func, result in result_origin.items():
            self.assertTrue(
1111 1112
                float((result -
                       getattr(load_net, func, None)(inps)).abs().max()) < 1e-5)
1113 1114

    def test_jit_save_load_multi_methods_inputspec(self):
1115 1116
        model_path = os.path.join(self.temp_dir.name,
                                  'jit_save_load_multi_methods/model')
1117 1118
        layer = LinearNetWithMultiStaticFunc(784, 1)
        with self.assertRaises(ValueError):
1119 1120 1121
            paddle.jit.save(layer,
                            model_path,
                            input_spec=[InputSpec(shape=[None, 784])])
1122

1123
    def test_parse_name(self):
1124 1125
        model_path_inference = os.path.join(self.temp_dir.name,
                                            "jit_save_load_parse_name/model")
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
        IMAGE_SIZE = 224
        layer = LinearNet(IMAGE_SIZE, 1)
        inps = paddle.randn([1, IMAGE_SIZE])
        layer(inps)
        paddle.jit.save(layer, model_path_inference)
        paddle.jit.save(layer, model_path_inference + '_v2')
        load_net = paddle.jit.load(model_path_inference)

        self.assertFalse(hasattr(load_net, 'v2'))

1136

W
WeiXin 已提交
1137
class LayerSaved(paddle.nn.Layer):
1138

W
WeiXin 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
    def __init__(self, in_size, out_size):
        super(LayerSaved, self).__init__()
        self.hidden = 100
        self._linear_0 = Linear(in_size, self.hidden)
        self._linear_1_0 = Linear(self.hidden, self.hidden)
        self._linear_1_1 = Linear(self.hidden, self.hidden)
        self._linear_2 = Linear(self.hidden, out_size)
        self._scale = paddle.to_tensor(9.9)

    @paddle.jit.to_static
    def forward(self, x):
        y = self._linear_0(x)
        # Multiple blocks
1152
        if paddle.shape(x)[0] == 1:
W
WeiXin 已提交
1153 1154 1155 1156 1157 1158
            y = self._linear_1_0(y)
        else:
            y += self._linear_1_1(y + self._scale)
        return self._linear_2(y)


1159 1160 1161
class Net(paddle.nn.Layer):

    def __init__(self):
1162
        super().__init__()
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
        self.fc1 = paddle.nn.Linear(4, 4)
        self.fc2 = paddle.nn.Linear(4, 4)
        self.bias = 0.4
        self.flag = paddle.ones([2], dtype="int32")

    @paddle.jit.to_static(input_spec=[InputSpec([None, 4], dtype='float32')])
    def log_softmax(self, input):
        return paddle.nn.functional.log_softmax(input, axis=-1)

    @paddle.jit.to_static(input_spec=[InputSpec([None, 4], dtype='float32')])
    def forward(self, x):
        out = self.fc1(x)
        out = paddle.nn.functional.relu(out)
        out = paddle.mean(out)
        return out

    @paddle.jit.to_static(input_spec=[InputSpec([None, 4], dtype='float32')])
    def infer(self, input):
        out = self.fc2(input)
        out = out + self.bias
        out = paddle.mean(out)
        return out

    # For extra Python float
    @paddle.jit.to_static(property=True)
    def fbias(self):
        return self.bias + 1

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
    @paddle.jit.to_static(property=True)
    def down_sampling(self):
        return 4

    @paddle.jit.to_static(property=True)
    def fstr(self):
        return "save str property"

    @paddle.jit.to_static(property=True)
    def ints(self):
        return [10, 20]

    @paddle.jit.to_static(property=True)
    def floats(self):
        return [1.1, 2.2]

    @paddle.jit.to_static(property=True)
    def strs(self):
        return ["hello", "world"]


class NetTensor(paddle.nn.Layer):

    def __init__(self):
        super().__init__()
        self.fc1 = paddle.nn.Linear(4, 4)
        self.fc2 = paddle.nn.Linear(4, 4)
        self.bias = 0.4
        self.flag = paddle.ones([2], dtype="int32")

    @paddle.jit.to_static(input_spec=[InputSpec([None, 4], dtype='float32')])
    def forward(self, x):
        out = self.fc1(x)
        out = paddle.nn.functional.relu(out)
        out = paddle.mean(out)
        return out

1228 1229
    @paddle.jit.to_static(property=True)
    def fflag(self):
1230
        return True
1231 1232


1233
class TestJitSaveCombineProperty(unittest.TestCase):
1234 1235 1236 1237 1238 1239 1240 1241 1242

    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

1243
    def test_jit_save_combine_property(self):
1244 1245 1246 1247 1248 1249
        model_path = os.path.join(self.temp_dir.name,
                                  "test_jit_save_combine/model")
        # Use new namespace
        with unique_name.guard():
            net = Net()
        #save
1250
        paddle.jit.save(net, model_path, combine_params=True)
1251

1252 1253 1254 1255 1256 1257 1258 1259 1260
    def test_jit_save_tensor_property(self):
        model_path = os.path.join(self.temp_dir.name,
                                  "test_jit_save_combine/model")
        # Use new namespace
        with unique_name.guard():
            net = NetTensor()

        paddle.jit.save(net, model_path, combine_params=True)

1261

W
WeiXin 已提交
1262
class LayerLoadFinetune(paddle.nn.Layer):
1263

W
WeiXin 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
    def __init__(self, in_size, out_size, load_path):
        super(LayerLoadFinetune, self).__init__()
        # Test duplicate name
        self._linear_0 = Linear(in_size, in_size)
        self._linear_1_0 = Linear(out_size, in_size)
        self._linear_1_1 = Linear(out_size, in_size)
        self._linear_2 = Linear(out_size, out_size)
        self._scale = paddle.to_tensor(9.9)

        # Load multiple times
        self._load_l1 = paddle.jit.load(load_path)
        self._load_l2 = paddle.jit.load(load_path)

    @paddle.jit.to_static
    def forward(self, x):
        y = self._linear_0(x)
        y = self._load_l1(y)
        # Multiple blocks
1282
        if paddle.shape(x)[0] == 1:
W
WeiXin 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
            y = self._linear_1_0(y)
            y = self._load_l1(y)
        else:
            y += self._linear_1_1(x + self._scale)
            y = self._load_l2(y)
        y = self._linear_1_0(y)
        y = self._load_l1(y)
        y = self._linear_1_0(y)
        # Use the same layer multiple times.
        y = self._load_l1(y)
        return y


1296
class TestJitSaveLoadSaveWithoutRunning(unittest.TestCase):
1297

1298 1299 1300
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()
1301 1302 1303 1304
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1305 1306

    def test_save_load_finetune_load(self):
1307 1308
        model_path = os.path.join(
            self.temp_dir.name, "test_jit_save_load_save_without_running/model")
1309 1310 1311 1312 1313 1314 1315
        IMAGE_SIZE = 224
        inps0 = paddle.randn([1, IMAGE_SIZE])
        inps1 = paddle.randn([2, IMAGE_SIZE])
        # Use new namespace
        with unique_name.guard():
            layer_save = LayerSaved(IMAGE_SIZE, IMAGE_SIZE)
        #save
1316 1317 1318 1319 1320 1321
        paddle.jit.save(layer_save,
                        model_path,
                        input_spec=[
                            paddle.static.InputSpec(shape=[None, IMAGE_SIZE],
                                                    dtype='float32')
                        ])
1322 1323 1324 1325 1326
        result_00 = layer_save(inps0)
        result_01 = layer_save(inps1)
        #load and save without running
        with unique_name.guard():
            layer_load = paddle.jit.load(model_path)
1327 1328 1329 1330 1331 1332
            paddle.jit.save(layer_load,
                            model_path,
                            input_spec=[
                                paddle.static.InputSpec(
                                    shape=[None, IMAGE_SIZE], dtype='float32')
                            ])
1333 1334 1335 1336 1337 1338 1339 1340 1341
        #reload
        layer_reload = paddle.jit.load(model_path)
        result_10 = layer_reload(inps0)
        result_11 = layer_reload(inps1)

        self.assertTrue(float((result_00 - result_10).abs().max()) < 1e-5)
        self.assertTrue(float((result_01 - result_11).abs().max()) < 1e-5)


W
WeiXin 已提交
1342
class TestJitSaveLoadFinetuneLoad(unittest.TestCase):
1343

W
WeiXin 已提交
1344 1345 1346
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()
1347 1348 1349 1350
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
W
WeiXin 已提交
1351 1352

    def test_save_load_finetune_load(self):
1353 1354
        model_path = os.path.join(self.temp_dir.name,
                                  "test_jit_save_load_finetune_load/model")
W
WeiXin 已提交
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
        IMAGE_SIZE = 224
        inps0 = paddle.randn([1, IMAGE_SIZE])
        inps1 = paddle.randn([2, IMAGE_SIZE])
        # Use new namespace
        with unique_name.guard():
            layer_save = LayerSaved(IMAGE_SIZE, IMAGE_SIZE)
        layer_save(inps0)
        #save
        paddle.jit.save(layer_save, model_path)
        #load
        with unique_name.guard():
            layer_load = LayerLoadFinetune(IMAGE_SIZE, IMAGE_SIZE, model_path)
        #train
        train(layer_load, input_size=IMAGE_SIZE)
        result_00 = layer_load(inps0)
        result_01 = layer_load(inps1)
        #save
        paddle.jit.save(layer_load, model_path)
        #load
        layer_finetune = paddle.jit.load(model_path)
        result_10 = layer_finetune(inps0)
        result_11 = layer_finetune(inps1)

        self.assertTrue(float((result_00 - result_10).abs().max()) < 1e-5)
        self.assertTrue(float(((result_01 - result_11)).abs().max()) < 1e-5)


1382 1383 1384 1385
# NOTE(weixin): When there are multiple test functions in an
# `unittest.TestCase`, functions will affect each other,
# and there is a risk of random failure.
# So divided into three TestCase: TestJitSaveLoadFunctionCase1,
1386 1387
# TestJitSaveLoadFunctionCase2, TestJitSaveLoadFunctionCase3.
class TestJitSaveLoadFunctionCase1(unittest.TestCase):
1388

1389 1390
    def setUp(self):
        paddle.disable_static()
1391 1392 1393 1394
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1395 1396

    def test_jit_save_load_static_function(self):
1397

1398 1399 1400 1401
        @paddle.jit.to_static
        def fun(inputs):
            return paddle.tanh(inputs)

1402 1403
        path = os.path.join(self.temp_dir.name,
                            'test_jit_save_load_function_1/func')
1404 1405 1406 1407 1408 1409 1410 1411 1412
        inps = paddle.rand([3, 6])
        origin = fun(inps)

        paddle.jit.save(fun, path)
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)
        self.assertTrue((load_result - origin).abs().max() < 1e-10)

1413 1414

class TestJitSaveLoadFunctionCase2(unittest.TestCase):
1415

1416 1417
    def setUp(self):
        paddle.disable_static()
1418 1419 1420 1421
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1422

1423
    def test_jit_save_load_function_input_spec(self):
1424

1425
        @paddle.jit.to_static(input_spec=[
1426
            InputSpec(shape=[None, 6], dtype='float32', name='x'),
1427 1428 1429 1430
        ])
        def fun(inputs):
            return paddle.nn.functional.relu(inputs)

1431 1432
        path = os.path.join(self.temp_dir.name,
                            'test_jit_save_load_function_2/func')
1433 1434 1435 1436 1437 1438 1439 1440
        inps = paddle.rand([3, 6])
        origin = fun(inps)

        paddle.jit.save(fun, path)
        load_func = paddle.jit.load(path)
        load_result = load_func(inps)
        self.assertTrue((load_result - origin).abs().max() < 1e-10)

1441 1442

class TestJitSaveLoadFunctionCase3(unittest.TestCase):
1443

1444 1445
    def setUp(self):
        paddle.disable_static()
1446 1447 1448 1449
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1450

1451
    def test_jit_save_load_function_function(self):
1452

1453 1454 1455
        def fun(inputs):
            return paddle.tanh(inputs)

1456 1457
        path = os.path.join(self.temp_dir.name,
                            'test_jit_save_load_function_3/func')
1458 1459 1460
        inps = paddle.rand([3, 6])
        origin = fun(inps)

1461 1462 1463 1464 1465 1466 1467
        paddle.jit.save(fun,
                        path,
                        input_spec=[
                            InputSpec(shape=[None, 6],
                                      dtype='float32',
                                      name='x'),
                        ])
1468 1469 1470 1471 1472 1473
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)
        self.assertTrue((load_result - origin).abs().max() < 1e-10)


1474
class TestJitSaveLoadFunctionWithParamCase1(unittest.TestCase):
1475

1476 1477
    def setUp(self):
        paddle.disable_static()
1478 1479 1480 1481
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1482 1483

    def test_jit_save_load_function(self):
1484

1485
        class LinearNet(paddle.nn.Layer):
1486

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
            def __init__(self):
                super(LinearNet, self).__init__()
                self._linear = paddle.nn.Linear(5, 6)

            def forward(self, x):
                return paddle.tanh(x)

            def anothor_forward(self, x):
                return self._linear(x)

        layer = LinearNet()

        inps = paddle.rand([3, 5])
        origin = layer.anothor_forward(inps)

1502 1503
        func = paddle.jit.to_static(layer.anothor_forward,
                                    [paddle.static.InputSpec(shape=[-1, 5])])
1504 1505 1506
        path = os.path.join(
            self.temp_dir.name,
            'test_jit_save_load_function_with_params_case1/func')
1507 1508 1509 1510
        paddle.jit.save(func, path)
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)
1511
        np.testing.assert_array_equal(load_result.numpy(), origin.numpy())
1512 1513 1514


class TestJitSaveLoadFunctionWithParamCase2(unittest.TestCase):
1515

1516 1517
    def setUp(self):
        paddle.disable_static()
1518 1519 1520 1521
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1522 1523

    def test_jit_save_load_function(self):
1524

1525
        class LinearNet(paddle.nn.Layer):
1526

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
            def __init__(self):
                super(LinearNet, self).__init__()
                self._linear = paddle.nn.Linear(5, 6)

            def forward(self, x):
                return paddle.tanh(x)

            @paddle.jit.to_static(input_spec=[InputSpec(shape=[-1, 5])])
            def anothor_forward(self, x):
                return self._linear(x)

        layer = LinearNet()

        inps = paddle.rand([3, 5])

1542 1543 1544
        path = os.path.join(
            self.temp_dir.name,
            'test_jit_save_load_function_with_params_case2/func')
1545 1546 1547 1548 1549 1550
        paddle.jit.save(layer.anothor_forward, path)
        origin_result = layer.anothor_forward(inps)
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)

1551 1552
        np.testing.assert_array_equal(origin_result.numpy(),
                                      load_result.numpy())
1553 1554 1555


class TestJitSaveLoadFunctionWithParamCase3(unittest.TestCase):
1556

1557 1558
    def setUp(self):
        paddle.disable_static()
1559 1560 1561 1562
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1563 1564

    def test_jit_save_load_function(self):
1565

1566
        class LinearNet(paddle.nn.Layer):
1567

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
            def __init__(self):
                super(LinearNet, self).__init__()
                self._linear = paddle.nn.Linear(5, 6)

            def forward(self, x):
                return paddle.tanh(x)

            @paddle.jit.to_static
            def anothor_forward(self, x):
                return self._linear(x)

        layer = LinearNet()

        inps = paddle.rand([3, 5])
        origin = layer.anothor_forward(inps)

1584 1585 1586
        path = os.path.join(
            self.temp_dir.name,
            'test_jit_save_load_function_with_params_case3/func')
1587 1588 1589 1590
        paddle.jit.save(layer.anothor_forward, path)
        load_func = paddle.jit.load(path)

        load_result = load_func(inps)
1591
        np.testing.assert_array_equal(load_result.numpy(), origin.numpy())
1592 1593


1594
class TestJitSaveLoadDataParallel(unittest.TestCase):
1595

1596 1597 1598 1599 1600 1601
    def setUp(self):
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

1602 1603 1604 1605 1606 1607 1608 1609
    def verify_inference_correctness(self, layer, path):
        layer.eval()
        loaded_layer = paddle.jit.load(path)
        loaded_layer.eval()
        # inference & compare
        x = paddle.to_tensor(np.random.random((1, 784)).astype('float32'))
        pred = layer(x).numpy()
        loaded_pred = loaded_layer(x).numpy()
1610 1611 1612 1613 1614 1615
        np.testing.assert_array_equal(
            pred,
            loaded_pred,
            err_msg=
            'Result diff when load and inference:\nlayer result:\n{}\nloaded layer result:\n{}'
            .format(pred, loaded_pred))
1616 1617 1618 1619

    def test_jit_save_data_parallel_with_inputspec(self):
        layer = LinearNetNotDeclarative(784, 1)
        layer = paddle.DataParallel(layer)
1620 1621
        path = os.path.join(self.temp_dir.name,
                            "jit_save_data_parallel_with_inputspec/model")
1622 1623 1624
        paddle.jit.save(layer=layer,
                        path=path,
                        input_spec=[InputSpec(shape=[None, 784])])
1625 1626 1627 1628 1629 1630 1631

        self.verify_inference_correctness(layer, path)

    def test_jit_save_data_parallel_with_to_static(self):
        layer = LinearNetWithInputSpec(784, 1)
        layer = paddle.DataParallel(layer)

1632 1633
        path = os.path.join(self.temp_dir.name,
                            "jit_save_data_parallel_with_to_static/model")
1634 1635 1636 1637 1638
        paddle.jit.save(layer, path)

        self.verify_inference_correctness(layer, path)


1639 1640 1641 1642 1643 1644
class InputSepcLayer(paddle.nn.Layer):
    '''
    A layer with InputSpec to test InputSpec compatibility
    '''

    @paddle.jit.to_static(input_spec=[
1645 1646
        InputSpec(shape=[None, 8], dtype='float32', name='x'),
        InputSpec(shape=[None, 1], dtype='float64', name='y')
1647 1648 1649 1650 1651 1652
    ])
    def forward(self, x, y):
        return x, y


class TestInputSpecCompatibility(unittest.TestCase):
1653

1654 1655 1656 1657 1658 1659
    def setUp(self):
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
    def _assert_input_spec_layer_return(self, expect_layer, test_layer):
        input_x = paddle.uniform([8, 8], dtype='float32')
        input_y = paddle.uniform([8, 1], dtype='float64')
        expected_result = expect_layer(input_x, input_y)
        test_result = test_layer(input_x, input_y)
        np.testing.assert_allclose(expected_result[0].numpy(),
                                   test_result[0].numpy())
        np.testing.assert_allclose(expected_result[1].numpy(),
                                   test_result[1].numpy())

    def test_jit_save_compatible_input_sepc(self):
        layer = InputSepcLayer()
1672 1673
        save_dir = os.path.join(self.temp_dir.name,
                                "jit_save_compatible_input_spec")
1674 1675 1676 1677 1678 1679 1680
        path = save_dir + "/model"

        paddle.jit.save(layer=layer, path=path)
        no_input_spec_layer = paddle.jit.load(path)
        self._assert_input_spec_layer_return(layer, no_input_spec_layer)
        shutil.rmtree(save_dir)

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
        paddle.jit.save(layer=layer,
                        path=path,
                        input_spec=[
                            InputSpec(shape=[None, 8],
                                      dtype='float32',
                                      name='x'),
                            InputSpec(shape=[None, 1],
                                      dtype='float64',
                                      name='y')
                        ])
1691 1692 1693 1694
        same_input_spec_layer = paddle.jit.load(path)
        self._assert_input_spec_layer_return(layer, same_input_spec_layer)
        shutil.rmtree(save_dir)

1695 1696 1697 1698 1699 1700
        paddle.jit.save(layer=layer,
                        path=path,
                        input_spec=[
                            InputSpec(shape=[8, 8], dtype='float32'),
                            InputSpec(shape=[8, -1], dtype='float64')
                        ])
1701 1702 1703 1704 1705 1706
        compatible_input_spec_layer = paddle.jit.load(path)
        self._assert_input_spec_layer_return(layer, compatible_input_spec_layer)
        shutil.rmtree(save_dir)

    def test_jit_save_incompatible_input_sepc(self):
        layer = InputSepcLayer()
1707 1708
        save_dir = os.path.join(self.temp_dir.name,
                                "jit_save_compatible_input_spec")
1709 1710 1711 1712
        path = save_dir + "/model"

        with self.assertRaises(ValueError):
            # type mismatch
1713 1714 1715 1716 1717 1718
            paddle.jit.save(layer=layer,
                            path=path,
                            input_spec=[
                                InputSpec(shape=[None, 8], dtype='float64'),
                                InputSpec(shape=[None, 1], dtype='float64')
                            ])
1719 1720 1721

        with self.assertRaises(ValueError):
            # shape len mismatch
1722 1723 1724 1725 1726 1727
            paddle.jit.save(layer=layer,
                            path=path,
                            input_spec=[
                                InputSpec(shape=[None, 8, 1], dtype='float32'),
                                InputSpec(shape=[None, 1], dtype='float64')
                            ])
1728 1729 1730

        with self.assertRaises(ValueError):
            # shape mismatch
1731 1732 1733 1734 1735 1736
            paddle.jit.save(layer=layer,
                            path=path,
                            input_spec=[
                                InputSpec(shape=[None, 8], dtype='float32'),
                                InputSpec(shape=[None, 2], dtype='float64')
                            ])
1737 1738 1739 1740
        if os.path.exists(save_dir):
            shutil.rmtree(save_dir)


H
Hui Zhang 已提交
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
class NotJitForward(paddle.nn.Layer):

    def __init__(self):
        super(NotJitForward, self).__init__()

    def forward(self, x, y):
        return x + y


class TestNotJitForward(unittest.TestCase):

    def setUp(self):
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

    def test_jit_not_save_forward(self):
        layer = NotJitForward()

        save_dir = os.path.join(self.temp_dir.name, "jit_not_save_forward")
        path = save_dir + "/model"

        paddle.jit.save(layer=layer, path=path, skip_forward=True)

        self.assertTrue(not os.path.exists(path + ".pdmodel"))
        self.assertTrue(not os.path.exists(path + ".pdparam"))

        with self.assertRaises(ValueError):
            paddle.jit.load(path=path)

        shutil.rmtree(save_dir)


1775
if __name__ == '__main__':
1776 1777
    with fluid.framework._test_eager_guard():
        unittest.main()