test_jit_save_load.py 26.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import os
18
import pickle
19 20
import unittest
import numpy as np
L
Leo Chen 已提交
21
import paddle
22
from paddle.static import InputSpec
23
import paddle.fluid as fluid
24
from paddle.fluid.layers.utils import flatten
25
from paddle.fluid.dygraph import Linear
26
from paddle.fluid.dygraph import declarative, ProgramTranslator
27
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX, INFER_PARAMS_INFO_SUFFIX
28 29

BATCH_SIZE = 32
30
BATCH_NUM = 10
31 32 33
SEED = 10


34 35
def random_batch_reader(input_size, label_size):
    def _get_random_inputs_and_labels(input_size, label_size):
36
        np.random.seed(SEED)
37 38 39
        input = np.random.random(size=input_size).astype('float32')
        label = np.random.random(size=label_size).astype('int64')
        return input, label
40 41 42

    def __reader__():
        for _ in range(BATCH_NUM):
43 44 45
            batch_input, batch_label = _get_random_inputs_and_labels(
                [BATCH_SIZE, input_size], [BATCH_SIZE, label_size])
            yield batch_input, batch_label
46 47 48 49 50 51 52 53 54 55 56 57 58 59

    return __reader__


class LinearNet(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNet, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        return self._linear(x)


60 61 62 63 64 65 66 67 68 69
class LinearNetWithInputSpec(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithInputSpec, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
    def forward(self, x):
        return self._linear(x)


70 71 72 73 74 75 76 77 78
class LinearNetNotDeclarative(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetNotDeclarative, self).__init__()
        self._linear = Linear(in_size, out_size)

    def forward(self, x):
        return self._linear(x)


79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
class LinerNetWithLabel(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
        super(LinerNetWithLabel, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[
        InputSpec(
            shape=[None, 784], dtype='float32', name="image"), InputSpec(
                shape=[None, 1], dtype='int64', name="label")
    ])
    def forward(self, x, label):
        out = self._linear(x)
        loss = fluid.layers.cross_entropy(out, label)
        avg_loss = fluid.layers.mean(loss)
        return out, avg_loss


96 97 98 99 100 101 102 103 104 105 106 107 108
class LinearNetReturnLoss(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetReturnLoss, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear(x)
        z = self._linear(y)
        loss = fluid.layers.mean(z)
        return z, loss


109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
class LinearNetMultiInput(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetMultiInput, self).__init__()
        self._linear1 = Linear(in_size, out_size)
        self._linear2 = Linear(in_size, out_size)

    @declarative(input_spec=[
        InputSpec(
            [None, 8], dtype='float32'), InputSpec(
                [None, 8], dtype='float32')
    ])
    def forward(self, x, y):
        x_out = self._linear1(x)
        y_out = self._linear2(y)
        loss = fluid.layers.mean(x_out + y_out)
        return x_out, y_out, loss


class MultiLoadingLinearNet(fluid.dygraph.Layer):
    def __init__(self, size, model_path):
        super(MultiLoadingLinearNet, self).__init__()
        self._linear = Linear(size, size)
131 132
        self._load_linear1 = paddle.jit.load(model_path)
        self._load_linear2 = paddle.jit.load(model_path)
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

    @declarative
    def forward(self, x):
        tmp1 = self._linear(x)
        tmp2 = self._load_linear1(tmp1)
        tmp3 = self._load_linear2(tmp2)
        y = self._linear(tmp3)
        return y


class LinearNetReturnHidden(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetReturnHidden, self).__init__()
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
        loss = fluid.layers.mean(z)
        return y, loss


157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
class LinearNetWithNestOut(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithNestOut, self).__init__()
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
        out = y + z
        loss = fluid.layers.mean(out)
        return y, [(z, loss), out]


172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
class EmptyLayer(paddle.nn.Layer):
    def __init__(self):
        super(EmptyLayer, self).__init__()

    @paddle.jit.to_static
    def forward(self, x):
        return x


class NoParamLayer(paddle.nn.Layer):
    def __init__(self):
        super(NoParamLayer, self).__init__()

    @paddle.jit.to_static
    def forward(self, x, y):
        return x + y


190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
class LinearNetWithMultiStaticFunc(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithMultiStaticFunc, self).__init__()
        self._linear_0 = Linear(in_size, out_size)
        self._linear_1 = Linear(in_size, out_size)
        self._scale = paddle.to_tensor(9.9)

    @paddle.jit.to_static
    def forward(self, x):
        return self._linear_0(x)

    @paddle.jit.to_static
    def forward_no_param(self, x):
        return x

    @paddle.jit.to_static
    def forward_general(self, x):
        return self._linear_0(x) + self._linear_1(x) * self._scale


210
def train(layer, input_size=784, label_size=1):
211
    # create optimizer
L
Leo Chen 已提交
212
    sgd = fluid.optimizer.SGDOptimizer(
213
        learning_rate=0.01, parameter_list=layer.parameters())
214 215
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
216 217
    train_loader.set_batch_generator(
        random_batch_reader(input_size, label_size))
218 219 220 221 222 223 224 225 226 227 228
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        cost = layer(img)

        loss = fluid.layers.cross_entropy(cost, label)
        avg_loss = fluid.layers.mean(loss)

        avg_loss.backward()
L
Leo Chen 已提交
229
        sgd.minimize(avg_loss)
230 231 232 233
        layer.clear_gradients()
    return [img], layer, avg_loss


234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
def train_with_label(layer, input_size=784, label_size=1):
    # create optimizer
    sgd = fluid.optimizer.SGDOptimizer(
        learning_rate=0.01, parameter_list=layer.parameters())
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
    train_loader.set_batch_generator(
        random_batch_reader(input_size, label_size))
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        out, avg_loss = layer(img, label)

        avg_loss.backward()
        sgd.minimize(avg_loss)
        layer.clear_gradients()
    return out


255 256
class TestJitSaveLoad(unittest.TestCase):
    def setUp(self):
257
        self.model_path = "test_jit_save_load/model"
258 259 260
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
261
        paddle.seed(SEED)
L
Leo Chen 已提交
262
        paddle.framework.random._manual_program_seed(SEED)
263

264
    def train_and_save_model(self, model_path=None):
265 266
        layer = LinearNet(784, 1)
        example_inputs, layer, _ = train(layer)
267
        final_model_path = model_path if model_path else self.model_path
268
        orig_input_types = [type(x) for x in example_inputs]
269 270
        paddle.jit.save(
            layer=layer, path=final_model_path, input_spec=example_inputs)
271 272
        new_input_types = [type(x) for x in example_inputs]
        self.assertEqual(orig_input_types, new_input_types)
273 274
        return layer

275
    def test_save_load(self):
276 277 278
        # train and save model
        train_layer = self.train_and_save_model()
        # load model
279
        loaded_layer = paddle.jit.load(self.model_path)
280 281 282 283 284
        self.load_and_inference(train_layer, loaded_layer)
        self.load_dygraph_state_dict(train_layer)
        self.load_and_finetune(train_layer, loaded_layer)

    def load_and_inference(self, train_layer, infer_layer):
285
        train_layer.eval()
286
        infer_layer.eval()
287 288 289 290 291 292
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), infer_layer(x).numpy()))

293 294
    def load_and_finetune(self, train_layer, load_train_layer):
        train_layer.train()
295 296
        load_train_layer.train()
        # train & compare
L
Leo Chen 已提交
297 298
        img0, _, train_loss = train(train_layer)
        img1, _, load_train_loss = train(load_train_layer)
299 300 301
        self.assertTrue(
            np.array_equal(train_loss.numpy(), load_train_loss.numpy()))

302 303
    def load_dygraph_state_dict(self, train_layer):
        train_layer.eval()
304
        # construct new model
305
        new_layer = LinearNet(784, 1)
306
        orig_state_dict = new_layer.state_dict()
307
        load_state_dict = paddle.load(self.model_path)
308 309 310
        for structured_name in orig_state_dict:
            self.assertTrue(structured_name in load_state_dict)
        new_layer.set_state_dict(load_state_dict)
311 312 313 314 315 316 317
        new_layer.eval()
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), new_layer(x).numpy()))

318
    def test_load_dygraph_no_path(self):
319
        model_path = "test_jit_save_load.no_path/model_path"
320 321 322
        with self.assertRaises(ValueError):
            model_dict, _ = fluid.dygraph.load_dygraph(model_path)

323
    def test_jit_load_model_incomplete(self):
324 325 326 327
        model_path = "test_jit_save_load.remove_variables/model"
        self.train_and_save_model(model_path)
        # remove `.pdiparams`	
        var_path = model_path + INFER_PARAMS_SUFFIX
328 329 330 331
        os.remove(var_path)
        with self.assertRaises(ValueError):
            paddle.jit.load(model_path)

332 333 334 335 336
    def test_jit_load_no_path(self):
        path = "test_jit_save_load.no_path/model_path"
        with self.assertRaises(ValueError):
            loaded_layer = paddle.jit.load(path)

337

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
class TestSaveLoadWithNestOut(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()

    def test_nest_output(self):
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))

        net = LinearNetWithNestOut(8, 8)
        dy_outs = flatten(net(x))
        net = declarative(net, input_spec=[InputSpec([None, 8], name='x')])

        model_path = "net_with_nest_out/model"
        paddle.jit.save(net, model_path)

        load_net = paddle.jit.load(model_path)
        load_outs = flatten(load_net(x))

        self.assertTrue(len(dy_outs) == 4)
        for dy_out, load_out in zip(dy_outs, load_outs):
            self.assertTrue(np.allclose(dy_out.numpy(), load_out.numpy()))


362 363 364 365 366 367 368 369 370 371 372 373
class TestSaveLoadWithInputSpec(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()

    def test_with_input_spec(self):
        net = LinearNetReturnLoss(8, 8)
        # set x.shape = [None, 8]
        net.forward = declarative(
            net.forward, input_spec=[InputSpec(
                [None, 8], name='x')])

374
        model_path = "input_spec.output_spec/model"
375 376 377 378 379 380 381
        # check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 1)
        input_x = net.forward.inputs[0]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_x.name == 'x')

        # 1. prune loss
382 383
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, output_spec=output_spec)
384 385

        # 2. load to infer
386
        infer_layer = paddle.jit.load(model_path)
387 388 389 390 391 392 393
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        pred = infer_layer(x)

    def test_multi_in_out(self):
        net = LinearNetMultiInput(8, 8)

394
        model_path = "multi_inout.output_spec1/model"
395 396 397 398 399 400 401 402
        # 1. check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 2)
        input_x = net.forward.inputs[0]
        input_y = net.forward.inputs[1]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_y.shape == (-1, 8))

        # 2. prune loss
403 404
        output_spec = net.forward.outputs[:2]
        paddle.jit.save(net, model_path, output_spec=output_spec)
405 406

        # 3. load to infer
407
        infer_layer = paddle.jit.load(model_path)
408 409 410 411 412 413 414 415
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        y = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        # 4. predict
        pred_x, pred_y = infer_layer(x, y)

        # 1. prune y and loss
416 417 418
        model_path = "multi_inout.output_spec2/model"
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, [input_x], output_spec=output_spec)
419
        # 2. load again
420
        infer_layer2 = paddle.jit.load(model_path)
421 422 423 424 425 426 427
        # 3. predict
        pred_xx = infer_layer2(x)

        # 4. assert pred_x == pred_xx
        self.assertTrue(np.allclose(pred_x.numpy(), pred_xx.numpy()))


428 429 430 431 432
class TestJitSaveLoadConfig(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
433
        paddle.seed(SEED)
L
Leo Chen 已提交
434
        paddle.framework.random._manual_program_seed(SEED)
435 436 437 438 439 440 441 442 443 444 445 446 447

    def test_output_spec(self):
        train_layer = LinearNetReturnLoss(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            out, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

448 449 450
        model_path = "save_load_config.output_spec"
        output_spec = [out]
        paddle.jit.save(
451
            layer=train_layer,
452
            path=model_path,
453
            input_spec=[x],
454
            output_spec=output_spec)
455 456

        train_layer.eval()
457
        infer_layer = paddle.jit.load(model_path)
458 459 460 461 462
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
    def test_save_no_support_config_error(self):
        layer = LinearNet(784, 1)
        path = "no_support_config_test"
        with self.assertRaises(ValueError):
            paddle.jit.save(layer=layer, path=path, model_filename="")

    def test_load_empty_model_filename_error(self):
        path = "error_model_filename_test"
        with self.assertRaises(ValueError):
            paddle.jit.load(path, model_filename="")

    def test_load_empty_params_filename_error(self):
        path = "error_params_filename_test"
        with self.assertRaises(ValueError):
            paddle.jit.load(path, params_filename="")

    def test_load_with_no_support_config(self):
        path = "no_support_config_test"
        with self.assertRaises(ValueError):
            paddle.jit.load(path, separate_params=True)

484

485 486 487
class TestJitMultipleLoading(unittest.TestCase):
    def setUp(self):
        self.linear_size = 4
488
        self.model_path = "jit_multi_load/model"
489 490 491
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
492
        paddle.seed(SEED)
L
Leo Chen 已提交
493
        paddle.framework.random._manual_program_seed(SEED)
494 495 496 497 498 499
        # train and save base model
        self.train_and_save_orig_model()

    def train_and_save_orig_model(self):
        layer = LinearNet(self.linear_size, self.linear_size)
        example_inputs, layer, _ = train(layer, self.linear_size, 1)
500 501
        paddle.jit.save(
            layer=layer, path=self.model_path, input_spec=example_inputs)
502 503 504 505 506 507 508 509 510 511 512

    def test_load_model_retransform_inference(self):
        multi_loaded_layer = MultiLoadingLinearNet(self.linear_size,
                                                   self.model_path)
        state_dict = multi_loaded_layer.state_dict()
        name_set = set()
        for _, var in state_dict.items():
            self.assertTrue(var.name not in name_set)
            name_set.add(var.name)


513 514 515
class TestJitPruneModelAndLoad(unittest.TestCase):
    def setUp(self):
        self.linear_size = 4
516
        self.model_path = "jit_prune_model_and_load/model"
517 518 519
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
520
        paddle.seed(SEED)
L
Leo Chen 已提交
521
        paddle.framework.random._manual_program_seed(SEED)
522 523 524 525 526 527 528 529 530 531 532 533 534

    def train_and_save(self):
        train_layer = LinearNetReturnHidden(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            hidden, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

535 536
        output_spec = [hidden]
        paddle.jit.save(
537
            layer=train_layer,
538
            path=self.model_path,
539
            input_spec=[x],
540
            output_spec=output_spec)
541 542 543 544 545 546 547

        return train_layer

    def test_load_pruned_model(self):
        train_layer = self.train_and_save()
        train_layer.eval()

548
        infer_layer = paddle.jit.load(self.model_path)
549 550 551 552 553 554 555 556 557 558

        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))

    def test_load_var_not_in_extra_var_info(self):
        self.train_and_save()

        # chage extra var info
559
        var_info_path = self.model_path + INFER_PARAMS_INFO_SUFFIX
560 561 562 563 564 565 566
        with open(var_info_path, 'rb') as f:
            extra_var_info = pickle.load(f)
            extra_var_info.clear()
        with open(var_info_path, 'wb') as f:
            pickle.dump(extra_var_info, f, protocol=2)

        with self.assertRaises(RuntimeError):
567
            paddle.jit.load(self.model_path)
568 569


570 571 572 573 574
class TestJitSaveMultiCases(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
575
        paddle.seed(SEED)
576 577 578 579 580 581 582
        paddle.framework.random._manual_program_seed(SEED)

    def verify_inference_correctness(self, layer, model_path, with_label=False):
        layer.eval()
        loaded_layer = paddle.jit.load(model_path)
        loaded_layer.eval()
        # inference & compare
Z
Zhou Wei 已提交
583
        x = paddle.to_tensor(np.random.random((1, 784)).astype('float32'))
584
        if with_label:
Z
Zhou Wei 已提交
585
            y = paddle.to_tensor(np.random.random((1, 1)).astype('int64'))
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
            pred, _ = layer(x, y)
            pred = pred.numpy()
        else:
            pred = layer(x).numpy()
        loaded_pred = loaded_layer(x).numpy()
        self.assertTrue(
            np.array_equal(pred, loaded_pred),
            msg="Result diff when load and inference:\nlayer result:\n{}\n" \
                "loaded layer result:\n{}".format(pred, loaded_pred))

    def test_no_prune_to_static_after_train(self):
        layer = LinearNet(784, 1)

        train(layer)

601
        model_path = "test_no_prune_to_static_after_train/model"
602 603 604 605 606 607 608
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_to_static_no_train(self):
        layer = LinearNetWithInputSpec(784, 1)

609
        model_path = "test_no_prune_to_static_no_train/model"
610 611 612 613 614 615 616 617 618
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train(self):
        layer = LinearNetNotDeclarative(784, 1)

        train(layer)

619
        model_path = "test_no_prune_no_to_static_after_train/model"
620 621 622 623 624 625 626 627 628 629 630 631 632
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train_with_examples(self):
        layer = LinearNetNotDeclarative(784, 1)

        example_inputs, _, _ = train(layer)

633 634
        model_path = "test_no_prune_no_to_static_after_train_with_examples/model"
        paddle.jit.save(layer=layer, path=model_path, input_spec=example_inputs)
635 636 637 638 639 640

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_no_train(self):
        layer = LinearNetNotDeclarative(784, 1)

641
        model_path = "test_no_prune_no_to_static_no_train/model"
642 643 644 645 646 647 648 649 650 651 652 653 654
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])

        self.verify_inference_correctness(layer, model_path)

    def test_prune_to_static_after_train(self):
        layer = LinerNetWithLabel(784, 1)

        out = train_with_label(layer)

655
        model_path = "test_prune_to_static_after_train/model"
656 657 658 659 660 661 662
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name="image")
            ],
663
            output_spec=[out])
664 665 666 667 668 669

        self.verify_inference_correctness(layer, model_path, True)

    def test_prune_to_static_no_train(self):
        layer = LinerNetWithLabel(784, 1)

670
        model_path = "test_prune_to_static_no_train/model"
671 672
        # TODO: no train, cannot get output_spec var here
        # now only can use index
673
        output_spec = layer.forward.outputs[:1]
674 675 676 677 678 679 680
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name="image")
            ],
681
            output_spec=output_spec)
682 683 684 685 686 687 688 689

        self.verify_inference_correctness(layer, model_path, True)

    def test_no_prune_input_spec_name_warning(self):
        layer = LinearNetWithInputSpec(784, 1)

        train(layer)

690
        model_path = "test_no_prune_input_spec_name_warning/model"
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name='feed_input')
            ])

        self.verify_inference_correctness(layer, model_path)

    def test_not_prune_output_spec_name_warning(self):
        layer = LinearNet(784, 1)

        train(layer)

711
        model_path = "test_not_prune_output_spec_name_warning/model"
Z
Zhou Wei 已提交
712
        out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
713
        paddle.jit.save(layer, model_path, output_spec=[out])
714 715 716 717 718 719

        self.verify_inference_correctness(layer, model_path)

    def test_prune_input_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

720
        model_path = "test_prune_input_spec_name_error/model"
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[InputSpec(
                    shape=[None, 784], dtype='float32')])
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[
                    InputSpec(
                        shape=[None, 784], dtype='float32', name='feed_input')
                ])

    def test_prune_output_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

        train_with_label(layer)

741
        model_path = "test_prune_to_static_after_train/model"
Z
Zhou Wei 已提交
742
        out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
743 744 745 746 747 748 749 750
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[
                    InputSpec(
                        shape=[None, 784], dtype='float32', name="image")
                ],
751
                output_spec=[out])
752 753


754 755
class TestJitSaveLoadEmptyLayer(unittest.TestCase):
    def setUp(self):
756
        self.model_path = "jit_save_load_empty_layer/model"
757 758 759 760 761
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_empty_layer(self):
        layer = EmptyLayer()
Z
Zhou Wei 已提交
762
        x = paddle.to_tensor(np.random.random((10)).astype('float32'))
763 764 765 766 767 768 769 770 771
        out = layer(x)
        paddle.jit.save(layer, self.model_path)
        load_layer = paddle.jit.load(self.model_path)
        load_out = load_layer(x)
        self.assertTrue(np.array_equal(out, load_out))


class TestJitSaveLoadNoParamLayer(unittest.TestCase):
    def setUp(self):
772
        self.model_path = "jit_save_load_no_param_layer/model"
773 774 775 776 777
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_no_param_layer(self):
        layer = NoParamLayer()
Z
Zhou Wei 已提交
778 779
        x = paddle.to_tensor(np.random.random((5)).astype('float32'))
        y = paddle.to_tensor(np.random.random((5)).astype('float32'))
780 781 782 783 784 785 786
        out = layer(x, y)
        paddle.jit.save(layer, self.model_path)
        load_layer = paddle.jit.load(self.model_path)
        load_out = load_layer(x, y)
        self.assertTrue(np.array_equal(out, load_out))


787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
class TestJitSaveLoadMultiMethods(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()

    def test_jit_save_load_inference(self):
        model_path_inference = "jit_save_load_multi_methods/model"
        IMAGE_SIZE = 224
        layer = LinearNetWithMultiStaticFunc(IMAGE_SIZE, 10)
        inps = paddle.randn([1, IMAGE_SIZE])
        result_origin = {}
        for func in dir(layer):
            if func.startswith('forward'):
                result_origin[func] = getattr(layer, func, None)(inps)
        paddle.jit.save(layer, model_path_inference)
        load_net = paddle.jit.load(model_path_inference)
        for func, result in result_origin.items():
            self.assertTrue(
                float((result - getattr(load_net, func, None)(inps)).abs().max(
                )) < 1e-5)

    def test_jit_save_load_multi_methods_inputspec(self):
        model_path = 'jit_save_load_multi_methods/model'
        layer = LinearNetWithMultiStaticFunc(784, 1)
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer, model_path, input_spec=[InputSpec(shape=[None, 784])])


816 817
if __name__ == '__main__':
    unittest.main()