lod_reset_op.cc 9.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lod_reset_op.h"
S
sneaxiy 已提交
16
#include <memory>
17
#include <string>
18 19 20 21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

class LoDResetOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of LoDResetOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of LoDResetOp should not be null.");
31 32

    if (!ctx->HasInput("Y")) {
33
      auto level0 = ctx->Attrs().Get<std::vector<int>>("target_lod");
34
      PADDLE_ENFORCE_GT(level0.size(), 0,
Y
yangyaming 已提交
35
                        "If Input(Y) not provided, the target lod should be "
36
                        "specified by attribute `target_lod`.");
37
    } else if (ctx->IsRuntime()) {
H
Hongyu Liu 已提交
38
      ctx->ShareLoD("Y", "Out");
P
phlrain 已提交
39
    }
40 41 42 43
    auto append = ctx->Attrs().Get<bool>("append");
    if (append) {
      ctx->ShareLoD("X", /*->*/ "Out");
    }
44 45 46 47 48 49 50 51 52 53 54 55 56 57

    if (ctx->HasInput("Y")) {
      if (!ctx->IsRuntime()) {
        ctx->SetLoDLevel("Out", std::max(ctx->GetLoDLevel("Y"), 1));
      }
    } else if (append) {
      if (!ctx->IsRuntime()) {
        ctx->SetLoDLevel("Out", std::max(ctx->GetLoDLevel("X") + 1, 1));
      }
    } else {
      if (!ctx->IsRuntime()) {
        ctx->SetLoDLevel("Out", 1);
      }
    }
58 59 60 61
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
  }

 protected:
62
  framework::OpKernelType GetExpectedKernelType(
63
      const framework::ExecutionContext &ctx) const override {
64 65 66
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
67
  }
68 69 70 71 72 73 74 75

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   expected_kernel_type.place_,
                                   tensor.layout());
  }
76 77
};

78 79 80 81 82
class LoDResetOpVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x_var_name = ctx->Input("X").front();
    auto out_var_name = ctx->Output("Out").front();
83
    bool append = boost::get<bool>(ctx->GetAttr("append"));
84 85 86 87
    if (ctx->HasInput("Y")) {
      auto y_var_name = ctx->Input("Y").front();
      auto y_lod_level = std::max(ctx->GetLoDLevel(y_var_name), 1);
      ctx->SetLoDLevel(out_var_name, y_lod_level);
88 89 90
    } else if (append) {
      auto x_lod_level = std::max(ctx->GetLoDLevel(x_var_name), 1);
      ctx->SetLoDLevel(out_var_name, x_lod_level);
91 92 93 94 95 96 97 98
    } else {
      ctx->SetLoDLevel(out_var_name, 1);
    }
    ctx->SetDataType(out_var_name, ctx->GetDataType(x_var_name));
    ctx->SetType(out_var_name, paddle::framework::proto::VarType::LOD_TENSOR);
  }
};

99 100
class LoDResetOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
101
  void Make() override {
102 103 104 105 106
    AddInput("X",
             "(Tensor, LoDTensor) Input variable of LoDResetOp which "
             "could be a Tensor or LoDTensor, where the data of output "
             "variable inherits from.");
    AddInput("Y",
Y
yangyaming 已提交
107 108 109 110
             "(Tensor, LoDTensor, optional) If provided and Y is LoDTensor, "
             "lod of Input(Y) would be considered as the target lod first, "
             "otherwise data of Input(Y) would be considered as the "
             "target lod.")
111
        .AsDispensable();
112 113 114
    AddOutput("Out",
              "(LoDTensor) Output variable of LoDResetOp which should be a "
              "LoDTensor.");
115 116 117
    AddAttr<std::vector<int>>("target_lod",
                              "The target level 0 LoD from Attr().")
        .SetDefault(std::vector<int>{});
118
    AddAttr<bool>("append", "Append data to lod vector.").SetDefault(false);
119 120
    AddComment(R"DOC(LoDReset operator

121
Set LoD of `X` to a new one specified by `Y` or attribute `target_lod`. When `Y`
Y
yangyaming 已提交
122 123 124 125 126
provided and `Y` is a LoDTensor, `Y.lod` would be considered as target LoD
first, otherwise `Y.data` would be considered as target LoD. If `Y` is not
provided, target LoD should be specified by attribute `target_lod`.
If target LoD is specified by `Y.data` or `target_lod`, only one level LoD
is supported.
127

Y
yangyaming 已提交
128
Example 1:
129

Y
yangyaming 已提交
130 131
Given a 1-level LoDTensor input(X):
    X.lod =  [[ 0,     2,                   5      6 ]]
132 133
    X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    X.dims = [6, 1]
134

Y
yangyaming 已提交
135
attr(target_lod): [0, 4, 6]
136

Y
yangyaming 已提交
137
then we get a 1-level LoDTensor:
138 139 140
    Out.lod =  [[ 0,                   4,            6 ]]
    Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    Out.dims = [6, 1]
141

Y
yangyaming 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
Example 2:

Given a 1-level LoDTensor input(X):
    X.lod =  [[ 0,     2,                   5      6 ]]
    X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    X.dims = [6, 1]

input(Y) is a Tensor:
    Y.data = [[0, 2, 6]]
    Y.dims = [1, 3]

then we get a 1-level LoDTensor:
    Out.lod =  [[ 0,     2,                          6 ]]
    Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    Out.dims = [6, 1]

Example 3:

Given a 1-level LoDTensor input(X):
    X.lod =  [[ 0,      2,                   5     6 ]]
    X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    X.dims = [6, 1]

input(Y) is a 2-level LoDTensor:
    Y.lod =  [[0, 2, 4], [0, 2, 5, 6]]
    Y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
    Y.dims = [6, 1]

then we get a 2-level LoDTensor:
    Out.lod =  [[0, 2, 4], [0, 2, 5, 6]]
    Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    Out.dims = [6, 1]

175 176 177 178 179 180 181 182 183
)DOC");
  }
};

class LoDResetGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
184 185
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of LoDResetGradOp should not be null.");
186
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
187 188 189 190 191 192 193
                   "Input(Out@Grad) of LoDResetGradOp should not be null.");

    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
      ctx->ShareLoD("X", /*->*/ x_grad_name);
    }
194 195 196
  }

 protected:
197
  framework::OpKernelType GetExpectedKernelType(
198
      const framework::ExecutionContext &ctx) const override {
199 200 201
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
202 203 204
  }
};

H
hong 已提交
205 206
template <typename T>
class LoDResetGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
207
 public:
H
hong 已提交
208
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
209 210

 protected:
211
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
212
    op->SetType("lod_reset_grad");
H
hong 已提交
213 214 215 216
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("X", this->Input("X"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
217 218 219
  }
};

220 221
DECLARE_INPLACE_OP_INFERER(LoDResetInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(LoDResetGradInplaceInferer,
222 223 224
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});

S
sneaxiy 已提交
225 226 227
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(LoDResetGradNoNeedBufferVarInference,
                                      "X");

228 229 230 231
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
232
REGISTER_OPERATOR(lod_reset, ops::LoDResetOp, ops::LoDResetOpMaker,
H
hong 已提交
233 234
                  ops::LoDResetGradMaker<paddle::framework::OpDesc>,
                  ops::LoDResetGradMaker<paddle::imperative::OpBase>,
235
                  ops::LoDResetOpVarTypeInference, ops::LoDResetInplaceInferer);
S
sneaxiy 已提交
236
REGISTER_OPERATOR(lod_reset_grad, ops::LoDResetGradOp,
237
                  ops::LoDResetGradNoNeedBufferVarInference,
238
                  ops::LoDResetGradInplaceInferer);
239

240 241 242 243 244
REGISTER_OP_CPU_KERNEL(
    lod_reset, ops::LoDResetKernel<paddle::platform::CPUPlace, float>,
    ops::LoDResetKernel<paddle::platform::CPUPlace, double>,
    ops::LoDResetKernel<paddle::platform::CPUPlace, int>,
    ops::LoDResetKernel<paddle::platform::CPUPlace, int64_t>);
245 246
REGISTER_OP_CPU_KERNEL(
    lod_reset_grad, ops::LoDResetGradKernel<paddle::platform::CPUPlace, float>,
247 248 249
    ops::LoDResetGradKernel<paddle::platform::CPUPlace, double>,
    ops::LoDResetGradKernel<paddle::platform::CPUPlace, int>,
    ops::LoDResetGradKernel<paddle::platform::CPUPlace, int64_t>);