lod_reset_op.cc 6.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lod_reset_op.h"
16 17 18 19 20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

class LoDResetOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of LoDResetOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of LoDResetOp should not be null.");
29 30

    if (!ctx->HasInput("Y")) {
31
      auto level0 = ctx->Attrs().Get<std::vector<int>>("target_lod");
32
      PADDLE_ENFORCE_GT(level0.size(), 1,
Y
yangyaming 已提交
33
                        "If Input(Y) not provided, the target lod should be "
34
                        "specified by attribute `target_lod`.");
35 36 37 38 39
    }
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
  }

 protected:
40
  framework::OpKernelType GetExpectedKernelType(
41
      const framework::ExecutionContext &ctx) const override {
Y
Yu Yang 已提交
42 43
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
44 45 46 47 48
  }
};

class LoDResetOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
49
  void Make() override {
50 51 52 53 54
    AddInput("X",
             "(Tensor, LoDTensor) Input variable of LoDResetOp which "
             "could be a Tensor or LoDTensor, where the data of output "
             "variable inherits from.");
    AddInput("Y",
Y
yangyaming 已提交
55 56 57 58
             "(Tensor, LoDTensor, optional) If provided and Y is LoDTensor, "
             "lod of Input(Y) would be considered as the target lod first, "
             "otherwise data of Input(Y) would be considered as the "
             "target lod.")
59
        .AsDispensable();
60 61 62
    AddOutput("Out",
              "(LoDTensor) Output variable of LoDResetOp which should be a "
              "LoDTensor.");
63 64 65 66 67
    AddAttr<std::vector<int>>("target_lod",
                              "The target level 0 LoD from Attr().")
        .SetDefault(std::vector<int>{});
    AddComment(R"DOC(LoDReset operator

68
Set LoD of `X` to a new one specified by `Y` or attribute `target_lod`. When `Y`
Y
yangyaming 已提交
69 70 71 72 73
provided and `Y` is a LoDTensor, `Y.lod` would be considered as target LoD
first, otherwise `Y.data` would be considered as target LoD. If `Y` is not
provided, target LoD should be specified by attribute `target_lod`.
If target LoD is specified by `Y.data` or `target_lod`, only one level LoD
is supported.
74

Y
yangyaming 已提交
75
Example 1:
76

Y
yangyaming 已提交
77 78
Given a 1-level LoDTensor input(X):
    X.lod =  [[ 0,     2,                   5      6 ]]
79 80
    X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    X.dims = [6, 1]
81

Y
yangyaming 已提交
82
attr(target_lod): [0, 4, 6]
83

Y
yangyaming 已提交
84
then we get a 1-level LoDTensor:
85 86 87
    Out.lod =  [[ 0,                   4,            6 ]]
    Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    Out.dims = [6, 1]
88

Y
yangyaming 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
Example 2:

Given a 1-level LoDTensor input(X):
    X.lod =  [[ 0,     2,                   5      6 ]]
    X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    X.dims = [6, 1]

input(Y) is a Tensor:
    Y.data = [[0, 2, 6]]
    Y.dims = [1, 3]

then we get a 1-level LoDTensor:
    Out.lod =  [[ 0,     2,                          6 ]]
    Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    Out.dims = [6, 1]

Example 3:

Given a 1-level LoDTensor input(X):
    X.lod =  [[ 0,      2,                   5     6 ]]
    X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    X.dims = [6, 1]

input(Y) is a 2-level LoDTensor:
    Y.lod =  [[0, 2, 4], [0, 2, 5, 6]]
    Y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
    Y.dims = [6, 1]

then we get a 2-level LoDTensor:
    Out.lod =  [[0, 2, 4], [0, 2, 5, 6]]
    Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    Out.dims = [6, 1]

122 123 124 125 126 127 128 129 130
)DOC");
  }
};

class LoDResetGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
131 132
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of LoDResetGradOp should not be null.");
133
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
134 135 136 137 138 139 140
                   "Input(Out@Grad) of LoDResetGradOp should not be null.");

    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
      ctx->ShareLoD("X", /*->*/ x_grad_name);
    }
141 142 143
  }

 protected:
144
  framework::OpKernelType GetExpectedKernelType(
145
      const framework::ExecutionContext &ctx) const override {
Y
Yu Yang 已提交
146 147
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
148 149 150 151 152 153 154
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
155
REGISTER_OPERATOR(lod_reset, ops::LoDResetOp, ops::LoDResetOpMaker,
156 157
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(lod_reset_grad, ops::LoDResetGradOp);
158 159 160 161 162
REGISTER_OP_CPU_KERNEL(
    lod_reset, ops::LoDResetKernel<paddle::platform::CPUPlace, float>,
    ops::LoDResetKernel<paddle::platform::CPUPlace, double>,
    ops::LoDResetKernel<paddle::platform::CPUPlace, int>,
    ops::LoDResetKernel<paddle::platform::CPUPlace, int64_t>);
163 164
REGISTER_OP_CPU_KERNEL(
    lod_reset_grad, ops::LoDResetGradKernel<paddle::platform::CPUPlace, float>,
165 166 167
    ops::LoDResetGradKernel<paddle::platform::CPUPlace, double>,
    ops::LoDResetGradKernel<paddle::platform::CPUPlace, int>,
    ops::LoDResetGradKernel<paddle::platform::CPUPlace, int64_t>);