lod_reset_op.cc 8.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lod_reset_op.h"
S
sneaxiy 已提交
16
#include <memory>
17 18 19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

class LoDResetOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of LoDResetOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of LoDResetOp should not be null.");
30 31

    if (!ctx->HasInput("Y")) {
32
      auto level0 = ctx->Attrs().Get<std::vector<int>>("target_lod");
33
      PADDLE_ENFORCE_GT(level0.size(), 0,
Y
yangyaming 已提交
34
                        "If Input(Y) not provided, the target lod should be "
35
                        "specified by attribute `target_lod`.");
36
    } else if (ctx->IsRuntime()) {
H
Hongyu Liu 已提交
37
      ctx->ShareLoD("Y", "Out");
P
phlrain 已提交
38
    }
39 40 41 42
    auto append = ctx->Attrs().Get<bool>("append");
    if (append) {
      ctx->ShareLoD("X", /*->*/ "Out");
    }
43 44 45 46
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
  }

 protected:
47
  framework::OpKernelType GetExpectedKernelType(
48
      const framework::ExecutionContext &ctx) const override {
49 50 51
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
52 53 54
  }
};

55 56 57 58 59
class LoDResetOpVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x_var_name = ctx->Input("X").front();
    auto out_var_name = ctx->Output("Out").front();
60
    bool append = boost::get<bool>(ctx->GetAttr("append"));
61 62 63 64
    if (ctx->HasInput("Y")) {
      auto y_var_name = ctx->Input("Y").front();
      auto y_lod_level = std::max(ctx->GetLoDLevel(y_var_name), 1);
      ctx->SetLoDLevel(out_var_name, y_lod_level);
65 66 67
    } else if (append) {
      auto x_lod_level = std::max(ctx->GetLoDLevel(x_var_name), 1);
      ctx->SetLoDLevel(out_var_name, x_lod_level);
68 69 70 71 72 73 74 75
    } else {
      ctx->SetLoDLevel(out_var_name, 1);
    }
    ctx->SetDataType(out_var_name, ctx->GetDataType(x_var_name));
    ctx->SetType(out_var_name, paddle::framework::proto::VarType::LOD_TENSOR);
  }
};

76 77
class LoDResetOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
78
  void Make() override {
79 80 81 82 83
    AddInput("X",
             "(Tensor, LoDTensor) Input variable of LoDResetOp which "
             "could be a Tensor or LoDTensor, where the data of output "
             "variable inherits from.");
    AddInput("Y",
Y
yangyaming 已提交
84 85 86 87
             "(Tensor, LoDTensor, optional) If provided and Y is LoDTensor, "
             "lod of Input(Y) would be considered as the target lod first, "
             "otherwise data of Input(Y) would be considered as the "
             "target lod.")
88
        .AsDispensable();
89 90 91
    AddOutput("Out",
              "(LoDTensor) Output variable of LoDResetOp which should be a "
              "LoDTensor.");
92 93 94
    AddAttr<std::vector<int>>("target_lod",
                              "The target level 0 LoD from Attr().")
        .SetDefault(std::vector<int>{});
95
    AddAttr<bool>("append", "Append data to lod vector.").SetDefault(false);
96 97
    AddComment(R"DOC(LoDReset operator

98
Set LoD of `X` to a new one specified by `Y` or attribute `target_lod`. When `Y`
Y
yangyaming 已提交
99 100 101 102 103
provided and `Y` is a LoDTensor, `Y.lod` would be considered as target LoD
first, otherwise `Y.data` would be considered as target LoD. If `Y` is not
provided, target LoD should be specified by attribute `target_lod`.
If target LoD is specified by `Y.data` or `target_lod`, only one level LoD
is supported.
104

Y
yangyaming 已提交
105
Example 1:
106

Y
yangyaming 已提交
107 108
Given a 1-level LoDTensor input(X):
    X.lod =  [[ 0,     2,                   5      6 ]]
109 110
    X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    X.dims = [6, 1]
111

Y
yangyaming 已提交
112
attr(target_lod): [0, 4, 6]
113

Y
yangyaming 已提交
114
then we get a 1-level LoDTensor:
115 116 117
    Out.lod =  [[ 0,                   4,            6 ]]
    Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    Out.dims = [6, 1]
118

Y
yangyaming 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
Example 2:

Given a 1-level LoDTensor input(X):
    X.lod =  [[ 0,     2,                   5      6 ]]
    X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    X.dims = [6, 1]

input(Y) is a Tensor:
    Y.data = [[0, 2, 6]]
    Y.dims = [1, 3]

then we get a 1-level LoDTensor:
    Out.lod =  [[ 0,     2,                          6 ]]
    Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    Out.dims = [6, 1]

Example 3:

Given a 1-level LoDTensor input(X):
    X.lod =  [[ 0,      2,                   5     6 ]]
    X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    X.dims = [6, 1]

input(Y) is a 2-level LoDTensor:
    Y.lod =  [[0, 2, 4], [0, 2, 5, 6]]
    Y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
    Y.dims = [6, 1]

then we get a 2-level LoDTensor:
    Out.lod =  [[0, 2, 4], [0, 2, 5, 6]]
    Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    Out.dims = [6, 1]

152 153 154 155 156 157 158 159 160
)DOC");
  }
};

class LoDResetGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
161 162
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of LoDResetGradOp should not be null.");
163
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
164 165 166 167 168 169 170
                   "Input(Out@Grad) of LoDResetGradOp should not be null.");

    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
      ctx->ShareLoD("X", /*->*/ x_grad_name);
    }
171 172 173
  }

 protected:
174
  framework::OpKernelType GetExpectedKernelType(
175
      const framework::ExecutionContext &ctx) const override {
176 177 178
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
179 180 181
  }
};

H
hong 已提交
182 183
template <typename T>
class LoDResetGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
184
 public:
H
hong 已提交
185
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
186 187

 protected:
H
hong 已提交
188 189
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
S
sneaxiy 已提交
190
    op->SetType("lod_reset_grad");
H
hong 已提交
191 192 193 194
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("X", this->Input("X"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
195 196 197 198 199 200 201
    return op;
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(LoDResetGradNoNeedBufferVarInference,
                                      "X");

202 203 204 205
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
206
REGISTER_OPERATOR(lod_reset, ops::LoDResetOp, ops::LoDResetOpMaker,
H
hong 已提交
207 208 209
                  ops::LoDResetGradMaker<paddle::framework::OpDesc>,
                  ops::LoDResetGradMaker<paddle::imperative::OpBase>,
                  ops::LoDResetOpVarTypeInference);
S
sneaxiy 已提交
210 211
REGISTER_OPERATOR(lod_reset_grad, ops::LoDResetGradOp,
                  ops::LoDResetGradNoNeedBufferVarInference);
212

213 214 215 216 217
REGISTER_OP_CPU_KERNEL(
    lod_reset, ops::LoDResetKernel<paddle::platform::CPUPlace, float>,
    ops::LoDResetKernel<paddle::platform::CPUPlace, double>,
    ops::LoDResetKernel<paddle::platform::CPUPlace, int>,
    ops::LoDResetKernel<paddle::platform::CPUPlace, int64_t>);
218 219
REGISTER_OP_CPU_KERNEL(
    lod_reset_grad, ops::LoDResetGradKernel<paddle::platform::CPUPlace, float>,
220 221 222
    ops::LoDResetGradKernel<paddle::platform::CPUPlace, double>,
    ops::LoDResetGradKernel<paddle::platform::CPUPlace, int>,
    ops::LoDResetGradKernel<paddle::platform::CPUPlace, int64_t>);