lod_reset_op.cc 6.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lod_reset_op.h"
S
sneaxiy 已提交
16
#include <memory>
17 18 19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

class LoDResetOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of LoDResetOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of LoDResetOp should not be null.");
30 31

    if (!ctx->HasInput("Y")) {
32
      auto level0 = ctx->Attrs().Get<std::vector<int>>("target_lod");
33
      PADDLE_ENFORCE_GT(level0.size(), 1,
Y
yangyaming 已提交
34
                        "If Input(Y) not provided, the target lod should be "
35
                        "specified by attribute `target_lod`.");
H
Hongyu Liu 已提交
36
    } else {
H
Hongyu Liu 已提交
37
      ctx->ShareLoD("Y", "Out");
P
phlrain 已提交
38 39
    }

40 41 42 43
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
  }

 protected:
44
  framework::OpKernelType GetExpectedKernelType(
45
      const framework::ExecutionContext &ctx) const override {
Y
Yu Yang 已提交
46 47
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
48 49 50 51 52
  }
};

class LoDResetOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
53
  void Make() override {
54 55 56 57 58
    AddInput("X",
             "(Tensor, LoDTensor) Input variable of LoDResetOp which "
             "could be a Tensor or LoDTensor, where the data of output "
             "variable inherits from.");
    AddInput("Y",
Y
yangyaming 已提交
59 60 61 62
             "(Tensor, LoDTensor, optional) If provided and Y is LoDTensor, "
             "lod of Input(Y) would be considered as the target lod first, "
             "otherwise data of Input(Y) would be considered as the "
             "target lod.")
63
        .AsDispensable();
64 65 66
    AddOutput("Out",
              "(LoDTensor) Output variable of LoDResetOp which should be a "
              "LoDTensor.");
67 68 69 70 71
    AddAttr<std::vector<int>>("target_lod",
                              "The target level 0 LoD from Attr().")
        .SetDefault(std::vector<int>{});
    AddComment(R"DOC(LoDReset operator

72
Set LoD of `X` to a new one specified by `Y` or attribute `target_lod`. When `Y`
Y
yangyaming 已提交
73 74 75 76 77
provided and `Y` is a LoDTensor, `Y.lod` would be considered as target LoD
first, otherwise `Y.data` would be considered as target LoD. If `Y` is not
provided, target LoD should be specified by attribute `target_lod`.
If target LoD is specified by `Y.data` or `target_lod`, only one level LoD
is supported.
78

Y
yangyaming 已提交
79
Example 1:
80

Y
yangyaming 已提交
81 82
Given a 1-level LoDTensor input(X):
    X.lod =  [[ 0,     2,                   5      6 ]]
83 84
    X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    X.dims = [6, 1]
85

Y
yangyaming 已提交
86
attr(target_lod): [0, 4, 6]
87

Y
yangyaming 已提交
88
then we get a 1-level LoDTensor:
89 90 91
    Out.lod =  [[ 0,                   4,            6 ]]
    Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    Out.dims = [6, 1]
92

Y
yangyaming 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
Example 2:

Given a 1-level LoDTensor input(X):
    X.lod =  [[ 0,     2,                   5      6 ]]
    X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    X.dims = [6, 1]

input(Y) is a Tensor:
    Y.data = [[0, 2, 6]]
    Y.dims = [1, 3]

then we get a 1-level LoDTensor:
    Out.lod =  [[ 0,     2,                          6 ]]
    Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    Out.dims = [6, 1]

Example 3:

Given a 1-level LoDTensor input(X):
    X.lod =  [[ 0,      2,                   5     6 ]]
    X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    X.dims = [6, 1]

input(Y) is a 2-level LoDTensor:
    Y.lod =  [[0, 2, 4], [0, 2, 5, 6]]
    Y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
    Y.dims = [6, 1]

then we get a 2-level LoDTensor:
    Out.lod =  [[0, 2, 4], [0, 2, 5, 6]]
    Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    Out.dims = [6, 1]

126 127 128 129 130 131 132 133 134
)DOC");
  }
};

class LoDResetGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
135 136
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of LoDResetGradOp should not be null.");
137
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
138 139 140 141 142 143 144
                   "Input(Out@Grad) of LoDResetGradOp should not be null.");

    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
      ctx->ShareLoD("X", /*->*/ x_grad_name);
    }
145 146 147
  }

 protected:
148
  framework::OpKernelType GetExpectedKernelType(
149
      const framework::ExecutionContext &ctx) const override {
S
sneaxiy 已提交
150 151 152
    return framework::OpKernelType(
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"))->type(),
        ctx.device_context());
153 154 155
  }
};

S
sneaxiy 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
class LoDResetGradDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("lod_reset_grad");
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetInput("X", Input("X"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetAttrMap(Attrs());
    return op;
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(LoDResetGradNoNeedBufferVarInference,
                                      "X");

175 176 177 178
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
179
REGISTER_OPERATOR(lod_reset, ops::LoDResetOp, ops::LoDResetOpMaker,
S
sneaxiy 已提交
180 181 182
                  ops::LoDResetGradDescMaker);
REGISTER_OPERATOR(lod_reset_grad, ops::LoDResetGradOp,
                  ops::LoDResetGradNoNeedBufferVarInference);
183 184 185 186 187
REGISTER_OP_CPU_KERNEL(
    lod_reset, ops::LoDResetKernel<paddle::platform::CPUPlace, float>,
    ops::LoDResetKernel<paddle::platform::CPUPlace, double>,
    ops::LoDResetKernel<paddle::platform::CPUPlace, int>,
    ops::LoDResetKernel<paddle::platform::CPUPlace, int64_t>);
188 189
REGISTER_OP_CPU_KERNEL(
    lod_reset_grad, ops::LoDResetGradKernel<paddle::platform::CPUPlace, float>,
190 191 192
    ops::LoDResetGradKernel<paddle::platform::CPUPlace, double>,
    ops::LoDResetGradKernel<paddle::platform::CPUPlace, int>,
    ops::LoDResetGradKernel<paddle::platform::CPUPlace, int64_t>);