parallel_executor.cc 18.3 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
C
chengduoZH 已提交
17
#include <string>
18
#include <tuple>
Q
qiaolongfei 已提交
19
#include <vector>
C
chengduo 已提交
20
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
21

X
clean  
Xin Pan 已提交
22
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
23

Y
yuyang18 已提交
24
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
25
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
S
sneaxiy 已提交
27
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
Y
yuyang18 已提交
28
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
29
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
30
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
31

Y
Yu Yang 已提交
32
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
33
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
34
#endif
Y
Yu Yang 已提交
35
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
36 37
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
38
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
39
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
40

Y
Yang Yang 已提交
41
namespace paddle {
Y
Yu Yang 已提交
42 43
namespace framework {

Y
Yu Yang 已提交
44
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
45
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
46
static bool gProfileStarted = false;
Y
Yu Yang 已提交
47
#endif
Y
Yu Yang 已提交
48 49 50
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
51
      : places_(places) {
Y
Yu Yang 已提交
52
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
53 54
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
55
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
56 57 58
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
Y
Yu Yang 已提交
59
                        "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
60 61 62 63
#endif
      });
    }
  }
Y
Yu Yang 已提交
64

65 66 67 68 69 70 71 72 73 74 75
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
76

S
sneaxiy 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90
  std::unique_ptr<ir::Graph> PrepareGCAndRefCnts(
      std::unique_ptr<ir::Graph> graph, size_t max_memory_size);

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

  void ResetRuntimeReferenceCount(const std::vector<std::string> &fetch_tensors,
                                  const std::string &fetched_var_name) {
    for (size_t i = 0; i < runtime_ref_cnts_.size(); ++i) {
      for (auto &pair : global_ref_cnts_[i]) {
        runtime_ref_cnts_[i][pair.first] = pair.second;
      }

      for (auto &fetch_name : fetch_tensors) {
        runtime_ref_cnts_[i].erase(fetch_name);
S
sneaxiy 已提交
91
      }
S
sneaxiy 已提交
92
      runtime_ref_cnts_[i].erase(fetched_var_name);
S
sneaxiy 已提交
93 94 95
    }
  }

D
dzhwinter 已提交
96
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
97 98
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
99
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
100
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
101

P
peizhilin 已提交
102
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
103
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
104
#endif
C
chengduoZH 已提交
105 106
  bool own_local_scope_;
  bool use_cuda_;
107
  bool use_all_reduce_;
108
  size_t nranks_;
S
sneaxiy 已提交
109

S
sneaxiy 已提交
110 111 112 113 114 115
  // global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
  // then keeps unchanged
  // Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
  std::vector<details::ReferenceCountMap> global_ref_cnts_;
  std::vector<details::AtomicReferenceCountMap> runtime_ref_cnts_;
  details::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
116 117
};

S
sneaxiy 已提交
118 119 120 121 122 123 124
std::unique_ptr<ir::Graph> ParallelExecutorPrivate::PrepareGCAndRefCnts(
    std::unique_ptr<ir::Graph> graph, size_t max_memory_size) {
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
125
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
126
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
127 128
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
129 130
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
131
      } else {
S
sneaxiy 已提交
132 133
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
134 135
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
136
    } else {
S
sneaxiy 已提交
137
#endif
S
sneaxiy 已提交
138 139 140 141 142 143 144
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
145 146 147 148
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
149
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
150 151
  }

S
sneaxiy 已提交
152
  if (!gcs_.empty()) {
S
sneaxiy 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    std::vector<details::LastLiveOpsOfVars> last_live_ops_of_vars;

    auto ref_cnt_pass =
        ir::PassRegistry::Instance().Get("reference_count_pass");
    ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount,
                              &global_ref_cnts_);
    ref_cnt_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                              &last_live_ops_of_vars);
    graph = ref_cnt_pass->Apply(std::move(graph));
    VLOG(10) << "ReferenceCountPass Applied";

    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
    eager_deletion_pass->SetNotOwned(details::kRuntimeReferenceCount,
                                     &runtime_ref_cnts_);
    eager_deletion_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                                     &last_live_ops_of_vars);
    eager_deletion_pass->SetNotOwned(details::kAllPlaces, &places_);
    graph = eager_deletion_pass->Apply(std::move(graph));
    VLOG(10) << "EagerDeletionPass Applied";
  }

  return graph;
}

179 180 181 182
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
183
ParallelExecutor::ParallelExecutor(
184
    const std::vector<platform::Place> &places,
185 186
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
187
    Scope *scope, const std::vector<Scope *> &local_scopes,
188
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy)
Y
Yu Yang 已提交
189
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
190
  member_->global_scope_ = scope;
191
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
192
  member_->build_strategy_ = build_strategy;
193 194
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
195
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
196 197 198 199 200

  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
Y
Yancey1989 已提交
201 202
  }

203
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
204
  // Create local scopes
205
  if (local_scopes.empty()) {
C
chengduoZH 已提交
206
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
207 208
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
209
      member_->local_scopes_.emplace_back(&scope->NewScope());
210 211
    }
  } else {
C
chengduoZH 已提交
212
    member_->own_local_scope_ = false;
213 214
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
215
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
216
    }
Y
Yu Yang 已提交
217 218
  }

Y
Yancey1989 已提交
219 220 221 222 223 224 225 226 227
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
  build_strategy.enable_parallel_graph_ =
      EnableParallelGraphExecution(main_program, exec_strategy, build_strategy);

  VLOG(1) << "Enable ParallelGraph Execution: "
          << build_strategy.enable_parallel_graph_;

C
chengduoZH 已提交
228
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
229
// Bcast Parameters to all GPUs
P
peizhilin 已提交
230
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
231 232 233
    ncclUniqueId *nccl_id = nullptr;
    // gen_nccl_id operator can broadcast the ncclUniqueId for nccl2 collective
    // distributed training
C
chengduoZH 已提交
234
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
Y
Yancey1989 已提交
235
    if (nccl_id_var != nullptr) {
Y
Yancey1989 已提交
236
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
Y
Yancey1989 已提交
237
    }
238
    if (build_strategy.enable_parallel_graph_ && member_->nranks_ > 1UL) {
Y
Yancey1989 已提交
239 240 241 242
      if (nccl_id == nullptr) {
        local_nccl_id_.reset(new ncclUniqueId());
        platform::dynload::ncclGetUniqueId(local_nccl_id_.get());
        nccl_id = local_nccl_id_.get();
Y
Yancey1989 已提交
243
      }
C
chengduoZH 已提交
244
    }
Y
Yancey1989 已提交
245

C
chengduoZH 已提交
246
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
247 248
        member_->places_, nccl_id, build_strategy.num_trainers_,
        build_strategy.trainer_id_));
C
chengduoZH 已提交
249 250
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
251
#endif
C
chengduoZH 已提交
252 253
  }
  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
Y
Yancey1989 已提交
254
    BCastParamsToDevices(bcast_vars);
Y
Yu Yang 已提交
255
  }
Y
Yancey1989 已提交
256
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
257

Y
Yancey1989 已提交
258 259 260
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<std::unique_ptr<ir::Graph>> graphs;
P
peizhilin 已提交
261
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
262
  if (build_strategy.enable_parallel_graph_) {
Y
Yancey1989 已提交
263
    for (size_t i = 0; i < member_->places_.size(); ++i) {
Y
Yancey1989 已提交
264 265
      std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
          main_program, {member_->places_[i]}, loss_var_name,
266 267
          {member_->local_scopes_[i]}, member_->nranks_, member_->use_cuda_,
          member_->nccl_ctxs_.get());
Y
Yancey1989 已提交
268 269 270 271
      graphs.push_back(std::move(graph));
    }
  } else {
    std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
272
        main_program, member_->places_, loss_var_name, member_->local_scopes_,
273
        member_->nranks_, member_->use_cuda_, member_->nccl_ctxs_.get());
Y
Yancey1989 已提交
274 275
    graphs.push_back(std::move(graph));
  }
C
chengduoZH 已提交
276
#else
Y
Yancey1989 已提交
277 278
  std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
      main_program, member_->places_, loss_var_name, member_->local_scopes_,
279
      member_->nranks_, member_->use_cuda_);
Y
Yancey1989 已提交
280
  graphs.push_back(std::move(graph));
Y
Yu Yang 已提交
281
#endif
Y
Yancey1989 已提交
282
  auto max_memory_size = GetEagerDeletionThreshold();
D
dzhwinter 已提交
283 284
  VLOG(10) << "Eager Deletion Threshold "
           << static_cast<float>(max_memory_size) / (1 << 30);
Y
Yancey1989 已提交
285 286 287 288 289
  if (max_memory_size >= 0) {
    for (size_t i = 0; i < graphs.size(); ++i) {
      graphs[i] = member_->PrepareGCAndRefCnts(
          std::move(graphs[i]), static_cast<size_t>(max_memory_size));
    }
Y
Yancey1989 已提交
290 291
  }

292 293
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
294 295 296 297 298 299 300 301 302 303 304
  std::vector<details::VariableInfo> var_infos;
  for (auto &graph : graphs) {
    for (auto &node : graph->Nodes()) {
      if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
        var_infos.emplace_back();
        var_infos.back().name_ = node->Var()->Name();
        var_infos.back().type_ = node->Var()->GetType();
        var_infos.back().persistable_ = node->Var()->Persistable();
      }
    }
  }
Y
Yancey1989 已提交
305

W
Wu Yi 已提交
306 307
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Y
Yancey1989 已提交
308
    size_t graph_num = ir::GraphNum(*graphs[0]);
C
chengduo 已提交
309 310 311 312
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Y
Yancey1989 已提交
313
          << ir::GraphNum(*graphs[0])
C
chengduo 已提交
314 315 316 317 318
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
319 320
  }

Y
Yancey1989 已提交
321
  if (build_strategy.enable_parallel_graph_) {
Y
Yancey1989 已提交
322
    member_->executor_.reset(new details::ParallelSSAGraphExecutor(
Y
Yancey1989 已提交
323 324
        exec_strategy, member_->local_scopes_, member_->places_,
        std::move(graphs)));
Y
yuyang18 已提交
325
  } else {
Y
Yancey1989 已提交
326 327 328 329 330 331 332 333 334
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_,
          std::move(graphs[0])));
    } else {
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_,
          std::move(graphs[0])));
    }
C
chengduoZH 已提交
335
  }
Y
yuyang18 已提交
336 337

  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
Y
Yancey1989 已提交
338
      exec_strategy, member_->local_scopes_, std::move(var_infos),
Y
yuyang18 已提交
339
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
340 341
}

Y
Yancey1989 已提交
342
void ParallelExecutor::BCastParamsToDevices(
343
    const std::unordered_set<std::string> &vars) const {
X
Xin Pan 已提交
344
  // the initializing bcast, all vars would be bcast from device(0).
345
  for (auto &var : vars) {
X
Xin Pan 已提交
346
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
347
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
348 349 350 351
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
352
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
353
      VLOG(3) << "one in var not inited, return!";
354 355
      continue;
    }
356 357
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
358
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
359
      std::vector<void *> buffers;
C
chengduo 已提交
360
      buffers.reserve(member_->places_.size());
361 362 363 364 365
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
366

X
Xin Pan 已提交
367
        if (i == 0) {
368 369
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
370
          auto local_scope = member_->local_scopes_[i];
371
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
372
          t->Resize(dims);
373
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
374
        }
375
        buffers.push_back(buffer);
376
      }
377

378 379 380 381 382 383
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
384 385
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
386
        }
387
        member_->nccl_ctxs_->WaitAll();
388
      }
C
chengduoZH 已提交
389 390 391
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
392 393
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
394
      for (size_t i = 1; i < member_->places_.size(); ++i) {
395 396
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
397 398 399 400

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->use_all_reduce_ || member_->use_cuda_ ||
            var == "@LR_DECAY_COUNTER@") {
401 402 403 404 405 406
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
        } else {
          t->ShareDataWith(main_tensor);
        }
Y
Yu Yang 已提交
407
      }
Y
Stash  
Yu Yang 已提交
408 409
    }
  }
Y
Yu Yang 已提交
410
}
Y
Yu Yang 已提交
411

Y
Yu Yang 已提交
412 413
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
Y
Yu Yang 已提交
414 415 416
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
417 418
  }
#endif
Y
Yu Yang 已提交
419

X
Xin Pan 已提交
420
  platform::RecordBlock b(0);
S
sneaxiy 已提交
421 422
  if (member_->HasGarbageCollectors()) {
    member_->ResetRuntimeReferenceCount(fetch_tensors, fetched_var_name);
S
sneaxiy 已提交
423
  }
S
sneaxiy 已提交
424 425 426
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
427
}
Y
Yu Yang 已提交
428

Y
Yu Yang 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
448 449 450 451 452
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
453 454
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
455
      auto t =
Y
Yu Yang 已提交
456
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
457 458
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
459 460 461 462
    }
  }
}

463 464 465
bool ParallelExecutor::EnableParallelGraphExecution(
    const ProgramDesc &main_program, const ExecutionStrategy &exec_strategy,
    const BuildStrategy &build_strategy) const {
Y
Yancey1989 已提交
466
  if (!FLAGS_enable_parallel_graph) return false;
467

Y
Yancey1989 已提交
468
  bool enable_parallel_graph = true;
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
  // TODO(Yancey1989): support sparse update in ParallelGraph mode.
  for (auto &var_desc : main_program.Block(0).AllVars()) {
    if (var_desc->GetType() == proto::VarType::SELECTED_ROWS) {
      enable_parallel_graph = false;
    }
  }

  // TODO(Yancey1989): support pserver mode
  for (auto &op_desc : main_program.Block(0).AllOps()) {
    if (op_desc->Type() == "send" || op_desc->Type() == "recv") {
      enable_parallel_graph = false;
      break;
    }
  }

  if (!member_->use_all_reduce_ || !member_->use_cuda_)
    enable_parallel_graph = false;

  if (build_strategy.enable_sequential_execution_ ||
      exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental)
    enable_parallel_graph = false;
Y
Yancey1989 已提交
490
  return enable_parallel_graph;
491 492
}

493
ParallelExecutor::~ParallelExecutor() {
494 495
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
C
chengduozh 已提交
496
  }
S
sneaxiy 已提交
497
  delete member_;
498 499
}

Y
Yu Yang 已提交
500
}  // namespace framework
Y
Yang Yang 已提交
501
}  // namespace paddle
S
sneaxiy 已提交
502

S
sneaxiy 已提交
503
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
504
USE_PASS(eager_deletion_pass);