device_context.cc 30.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3
Copyright (c) 2022 NVIDIA Corporation. All rights reserved.

Q
qijun 已提交
4 5 6 7
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
8

Q
qijun 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
14
#include "paddle/fluid/platform/device_context.h"
W
Wilber 已提交
15
#include <functional>
16
#include <memory>
17
#include <set>
W
Wilber 已提交
18 19
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/stream/cuda_stream.h"
20 21
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/allocator.h"
22

23
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
24
#include "paddle/fluid/memory/allocation/cuda_device_context_allocator.h"
S
sneaxiy 已提交
25
#include "paddle/fluid/platform/cuda_device_guard.h"
26
#endif
F
fwenguang 已提交
27 28 29 30
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/device_context.h"
#include "paddle/fluid/platform/device/mlu/device_context_allocator.h"
#endif
31
#include "glog/logging.h"
32
#include "paddle/fluid/framework/expect.h"
W
Wilber 已提交
33
#include "paddle/fluid/framework/generator.h"
34
#include "paddle/fluid/memory/allocation/allocator_facade.h"
35
#include "paddle/fluid/platform/device/device_wrapper.h"
36
#include "paddle/fluid/platform/profiler.h"
37
#include "paddle/fluid/platform/profiler/event_tracing.h"
38

39 40 41 42 43
namespace paddle {
namespace memory {

AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) {
  auto place = dev_ctx.GetPlace();
44
  if (size == 0) {
45 46
    return Alloc(place, size);
  }
47 48

  if (platform::is_gpu_place(place)) {
49
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    auto* default_dev_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto& desired_dev_ctx =
        static_cast<const platform::CUDADeviceContext&>(dev_ctx);
    if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
      return Alloc(place, size);
    } else {
      return allocation::CUDADeviceContextAllocatorPool::Instance().Alloc(
          desired_dev_ctx, size);
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use CUDA device since it's not compiled with CUDA,"
        "Please recompile or reinstall Paddle with GPU support."));
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
    // TODO(liuyuhui): Consider xpu stream later
68 69
    return Alloc(place, size);
#else
70 71 72
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use XPU device since it's not compiled with XPU,"
        "Please recompile or reinstall Paddle with XPU support."));
F
fwenguang 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
#endif
  } else if (platform::is_mlu_place(place)) {
#ifdef PADDLE_WITH_MLU
    auto* default_dev_ctx = static_cast<platform::MLUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto& desired_dev_ctx =
        static_cast<const platform::MLUDeviceContext&>(dev_ctx);
    if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
      return Alloc(place, size);
    } else {
      return allocation::MLUDeviceContextAllocatorPool::Instance().Alloc(
          desired_dev_ctx, size);
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use MLU device since it's not compiled with MLU,"
        "Please recompile or reinstall Paddle with MLU support."));
90
#endif
91 92 93
  } else {
    return Alloc(place, size);
  }
94 95 96 97 98
}

}  // namespace memory
}  // namespace paddle

Q
qijun 已提交
99 100 101
namespace paddle {
namespace platform {

102
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
103 104 105
bool allow_tf32_cublas = true;
void SetAllowTF32Cublas(bool active) { allow_tf32_cublas = active; }
bool AllowTF32Cublas() { return allow_tf32_cublas; }
A
AshburnLee 已提交
106 107 108 109

bool allow_tf32_cudnn = true;
void SetAllowTF32Cudnn(bool active) { allow_tf32_cudnn = active; }
bool AllowTF32Cudnn() { return allow_tf32_cudnn; }
110 111
#endif  // PADDLE_WITH_CUDA

112 113 114 115 116 117 118
DeviceType Place2DeviceType(const platform::Place& place) {
  if (platform::is_cpu_place(place)) {
    return platform::DeviceType::CPU;
  } else if (platform::is_gpu_place(place)) {
    return platform::DeviceType::CUDA;
  } else if (platform::is_xpu_place(place)) {
    return platform::DeviceType::XPU;
F
fwenguang 已提交
119 120
  } else if (platform::is_mlu_place(place)) {
    return platform::DeviceType::MLU;
121 122 123 124 125 126
  } else {
    PADDLE_THROW(platform::errors::Unavailable(
        "Unsupported place %s to convert into platform::DeviceType.", place));
  }
}

D
dzhwinter 已提交
127 128
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
129
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
130
  VLOG(6) << "DeviceContextPool Get: " << place;
D
dzhwinter 已提交
131 132
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
G
GaoWei8 已提交
133 134
    PADDLE_THROW(platform::errors::Unimplemented(
        "Place %s is not supported. Please check that your paddle compiles "
F
fwenguang 已提交
135 136
        "with WITH_GPU, WITH_XPU, WITH_IPU, WITH_MLU or WITH_ASCEND_CL option "
        "or check "
J
jianghaicheng 已提交
137 138
        "that your train process set the correct device id if you use "
        "Executor.",
G
GaoWei8 已提交
139
        place));
D
dzhwinter 已提交
140
  }
141
  return it->second.get().get();
D
dzhwinter 已提交
142 143
}

W
Wilber 已提交
144
template <typename DevCtx>
145 146 147 148 149
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
150 151 152 153 154 155 156 157 158 159 160 161
  map_ptr->emplace(
      p, std::async(std::launch::deferred, [=] {
        // lazy evaluation. i.e., only create device context at
        // first `Get`
        auto* dev_ctx = new DevCtx(p);
        if (is_gpu_place(p)) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
          auto* cuda_ctx = dynamic_cast<CUDADeviceContext*>(dev_ctx);
          PADDLE_ENFORCE_NOT_NULL(
              cuda_ctx,
              platform::errors::InvalidArgument(
                  "Failed to dynamic_cast dev_ctx into CUDADeviceContext."));
W
Wilber 已提交
162
          dev_ctx->SetAllocator(memory::allocation::AllocatorFacade::Instance()
163
                                    .GetAllocator(p)
W
Wilber 已提交
164 165
                                    .get());
          cuda_ctx->PartialInitWithAllocator();
W
Wilber 已提交
166 167
          dev_ctx->SetGenerator(
              framework::GetDefaultCUDAGenerator(p.GetDeviceId()).get());
168 169
#endif
        } else {
W
Wilber 已提交
170 171 172
          dev_ctx->SetAllocator(memory::allocation::AllocatorFacade::Instance()
                                    .GetAllocator(p)
                                    .get());
W
Wilber 已提交
173
          dev_ctx->SetGenerator(framework::DefaultCPUGenerator().get());
174
        }
L
Leo Chen 已提交
175
        dev_ctx->SetHostGenerator(framework::DefaultCPUGenerator().get());
176 177 178 179 180 181 182 183 184 185
        dev_ctx->SetHostAllocator(
            memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(platform::CPUPlace())
                .get());
        dev_ctx->SetZeroAllocator(
            memory::allocation::AllocatorFacade::Instance()
                .GetZeroAllocator(p)
                .get());
        return PtrType(dev_ctx);
      }));
C
chengduozh 已提交
186 187
}

D
dzhwinter 已提交
188 189
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
G
GaoWei8 已提交
190 191 192 193 194
  PADDLE_ENFORCE_GT(
      places.size(), 0,
      platform::errors::InvalidArgument("The number of platform places should "
                                        "be larger than 0. But received %d.",
                                        places.size()));
195
  std::set<Place> set;
Y
Yu Yang 已提交
196 197 198 199 200
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
201
#ifdef PADDLE_WITH_MKLDNN
W
Wilber 已提交
202
      EmplaceDeviceContext<MKLDNNDeviceContext>(&device_contexts_, p);
203
#else
W
Wilber 已提交
204
      EmplaceDeviceContext<CPUDeviceContext>(&device_contexts_, p);
205
#endif
Y
Yu Yang 已提交
206
    } else if (platform::is_gpu_place(p)) {
207
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
W
Wilber 已提交
208
      EmplaceDeviceContext<CUDADeviceContext>(&device_contexts_, p);
D
dzhwinter 已提交
209
#else
G
GaoWei8 已提交
210 211 212
      PADDLE_THROW(
          platform::errors::Unimplemented("CUDAPlace is not supported. Please "
                                          "re-compile with WITH_GPU option."));
C
chengduoZH 已提交
213 214
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
215
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
W
Wilber 已提交
216
      EmplaceDeviceContext<CUDAPinnedDeviceContext>(&device_contexts_, p);
C
chengduoZH 已提交
217
#else
G
GaoWei8 已提交
218
      PADDLE_THROW(platform::errors::Unimplemented(
G
GaoWei8 已提交
219 220
          "CUDAPlace is not supported. Please re-compile with WITH_GPU "
          "option."));
221 222 223
#endif
    } else if (platform::is_xpu_place(p)) {
#ifdef PADDLE_WITH_XPU
W
Wilber 已提交
224
      EmplaceDeviceContext<XPUDeviceContext>(&device_contexts_, p);
225 226 227 228
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("XPUPlace is not supported. Please "
                                          "re-compile with WITH_XPU option."));
F
fwenguang 已提交
229 230 231
#endif
    } else if (platform::is_mlu_place(p)) {
#ifdef PADDLE_WITH_MLU
W
Wilber 已提交
232
      EmplaceDeviceContext<MLUDeviceContext>(&device_contexts_, p);
F
fwenguang 已提交
233 234 235 236
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("MLUPlace is not supported. Please "
                                          "re-compile with WITH_MLU option."));
J
jianghaicheng 已提交
237 238 239
#endif
    } else if (platform::is_ipu_place(p)) {
#ifdef PADDLE_WITH_IPU
W
Wilber 已提交
240
      EmplaceDeviceContext<IPUDeviceContext>(&device_contexts_, p);
J
jianghaicheng 已提交
241 242 243 244
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("IPUPlace is not supported. Please "
                                          "re-compile with WITH_IPU option."));
245 246 247
#endif
    } else if (platform::is_npu_place(p)) {
#ifdef PADDLE_WITH_ASCEND_CL
W
Wilber 已提交
248
      EmplaceDeviceContext<NPUDeviceContext>(&device_contexts_, p);
249 250 251 252
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPlace is not supported. Please "
          "re-compile with WITH_ASCEND_CL option."));
253 254 255
#endif
    } else if (platform::is_npu_pinned_place(p)) {
#ifdef PADDLE_WITH_ASCEND_CL
W
Wilber 已提交
256
      EmplaceDeviceContext<NPUPinnedDeviceContext>(&device_contexts_, p);
257 258 259 260 261
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPinnedPlace is not supported. Please re-compile with "
          "WITH_ASCEND_CL "
          "option."));
262 263 264 265 266 267 268 269 270
#endif
    } else if (platform::is_custom_place(p)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
      EmplaceDeviceContext<CustomDeviceContext>(&device_contexts_, p);
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "CustomPlace is not supported. Please re-compile with "
          "WITH_CUSTOM_DEVICE "
          "option."));
D
dzhwinter 已提交
271 272 273 274 275
#endif
    }
  }
}

276 277
CPUDeviceContext::CPUDeviceContext() : phi::CPUContext() {
  phi::CPUContext::Init();
W
Wilber 已提交
278
}
279

280 281
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : phi::CPUContext(place) {
  phi::CPUContext::Init();
W
Wilber 已提交
282
}
283

J
jianghaicheng 已提交
284
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
285
IPUDeviceContext::IPUDeviceContext(IPUPlace place) : place_(place) {}
J
jianghaicheng 已提交
286

W
Wilber 已提交
287
const Place& IPUDeviceContext::GetPlace() const { return place_; }
A
Allen Guo 已提交
288

J
jianghaicheng 已提交
289 290 291 292 293 294 295
void IPUDeviceContext::Wait() const {
  /*! \brief  Wait for all operations completion in the stream. */
}

IPUDeviceContext::~IPUDeviceContext() {}

#endif
296
#ifdef PADDLE_WITH_XPU
297 298
XPUDeviceContext::XPUDeviceContext() : phi::XPUContext() {
  phi::XPUContext::Init();
W
Wilber 已提交
299
}
300

301
XPUDeviceContext::~XPUDeviceContext() {}
302

303 304
XPUDeviceContext::XPUDeviceContext(XPUPlace place) : phi::XPUContext(place) {
  phi::XPUContext::Init();
305
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: xpu device: "
W
Wilber 已提交
306
                          << static_cast<int>(place.device);
307 308 309
}
#endif

310 311 312 313 314 315 316
#ifdef PADDLE_WITH_ASCEND_CL
NPUDeviceContext::NPUDeviceContext(NPUPlace place) : place_(place) {
  NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtCreateContext(&context_, place_.device));
  // NOTE(zhiqiu): Usually, no need to create context explicitly,
  // ACL creates a default context which contains 1 default stream
  // and 1 sync strean after aclrtSetDevice.
317
  platform::GetCurrentNPUContext(&context_);
318 319 320 321 322 323 324
  stream_.reset(new stream::NPUStream(place));
}

NPUDeviceContext::~NPUDeviceContext() {
  // NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtDestroyContext(context_));
}
325

326
void NPUDeviceContext::Wait() const {
327 328
  platform::RecordEvent record_event("NPUDeviceContext/wait",
                                     platform::TracerEventType::UserDefined, 2);
329 330
  VLOG(4) << "NPU context(" << this << ")  Wait";
  stream_->Wait();
331 332 333 334
}

aclrtStream NPUDeviceContext::stream() const { return stream_->raw_stream(); }

W
Wilber 已提交
335
const Place& NPUDeviceContext::GetPlace() const { return place_; }
336 337

aclrtContext NPUDeviceContext::context() const { return context_; }
338 339 340 341 342 343 344 345 346 347 348 349 350 351

NPUPinnedDeviceContext::NPUPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

NPUPinnedDeviceContext::NPUPinnedDeviceContext(NPUPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* NPUPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

W
Wilber 已提交
352
const Place& NPUPinnedDeviceContext::GetPlace() const { return place_; }
353

354 355 356
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
init  
qijun 已提交
357 358 359 360 361 362 363
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

364
  void Reinitialize(const gpuStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
365 366 367 368 369
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

370
  const gpuStream_t& stream() const override { return *stream_; }
Q
init  
qijun 已提交
371

372 373 374
#ifdef PADDLE_WITH_HIP
  const hipDeviceProp_t& deviceProperties() const override {
#else
Q
init  
qijun 已提交
375
  const cudaDeviceProp& deviceProperties() const override {
376
#endif
Q
init  
qijun 已提交
377 378 379 380
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
381 382 383
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
384 385 386
    auto buf = memory::Alloc(place_, num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << ", size" << buf->size()
            << " requested " << num_bytes;
387
    void* retv = buf->ptr();
S
sneaxiy 已提交
388 389 390 391
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
392
    return retv;
Q
init  
qijun 已提交
393 394
  }

S
sneaxiy 已提交
395 396 397 398 399 400
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
401 402 403

  void* scratchpad() const override {
    if (scratch_ == NULL) {
Z
Zhang Ting 已提交
404
      scratch_ = allocate(Eigen::kGpuScratchSize + sizeof(unsigned int));
Q
init  
qijun 已提交
405 406 407 408 409 410
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
Z
Zhang Ting 已提交
411
      char* scratch = static_cast<char*>(scratchpad()) + Eigen::kGpuScratchSize;
Q
init  
qijun 已提交
412
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
413
#ifdef PADDLE_WITH_HIP
414
      PADDLE_ENFORCE_GPU_SUCCESS(
415 416
          hipMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
#else
417
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
init  
qijun 已提交
418
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
419
#endif
Q
init  
qijun 已提交
420 421 422 423 424
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
425
  CUDAPlace place_;
426 427 428 429
  const gpuStream_t* stream_;  // not owned;
#ifdef PADDLE_WITH_HIP
  const hipDeviceProp_t* device_prop_;
#else
Q
init  
qijun 已提交
430
  const cudaDeviceProp* device_prop_;  // not owned;
431
#endif
Q
qijun 已提交
432
  mutable void* scratch_;
Q
init  
qijun 已提交
433
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
434
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
435
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
436 437
};

438 439 440 441 442 443 444 445 446
void CudnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
  if (required_workspace_bytes <= WorkspaceSize()) {
    return;
  }
  // reset allocation first before re-allocate to save memory
  allocation_.reset();
  allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
}

447 448 449 450 451 452 453 454 455 456 457 458
thread_local std::unordered_map<const CUDADeviceContext*,
                                std::shared_ptr<CUDAContext>>
    CUDADeviceContext::thread_ctx_;
thread_local std::mutex CUDADeviceContext::ctx_mtx_;

void CUDAContext::InitEigenContext() {
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&RawStream(), place_);
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
}

CUDAContext::CUDAContext(const CUDAPlace& place,
459 460
                         const stream::Priority& priority,
                         const stream::StreamFlag& flag) {
461 462
  place_ = place;
  CUDADeviceGuard guard(place_.device);
463
  stream_.reset(new stream::CUDAStream(place, priority, flag));
464 465 466
  InitEigenContext();
  InitCuBlasContext();
  InitCuDNNContext();
467
#ifndef PADDLE_WITH_HIP
468 469 470
#if CUDA_VERSION >= 11060
  InitCuBlasLtContext();
#endif
Z
zhangkaihuo 已提交
471
  InitCuSparseContext();
G
Guo Sheng 已提交
472
  InitCuSolverContext();
473
#endif
474 475
}

W
Wilber 已提交
476 477 478 479 480 481
void CUDAContext::SetStream(gpuStream_t stream) {
  if (stream_->raw_stream() != stream) {
    CUDADeviceGuard guard(place_.device);
    DestoryCuDNNContext();
    DestoryCuBlasContext();
#ifndef PADDLE_WITH_HIP
482 483 484
#if CUDA_VERSION >= 11060
    DestoryCuBlasLtContext();
#endif
W
Wilber 已提交
485 486 487 488 489 490 491 492 493
    DestoryCuSolverContext();
#endif

    stream_->SetStream(stream);

    InitEigenContext();
    InitCuBlasContext();
    InitCuDNNContext();
#ifndef PADDLE_WITH_HIP
494 495 496
#if CUDA_VERSION >= 11060
    InitCuBlasLtContext();
#endif
W
Wilber 已提交
497 498 499 500 501
    InitCuSolverContext();
#endif
  }
}

502 503 504 505
CUDAContext::~CUDAContext() {
  CUDADeviceGuard guard(place_.device);
  DestoryCuDNNContext();
  DestoryCuBlasContext();
506
#ifndef PADDLE_WITH_HIP
507 508 509
#if CUDA_VERSION >= 11060
  InitCuBlasLtContext();
#endif
Z
zhangkaihuo 已提交
510
  DestoryCuSparseContext();
G
Guo Sheng 已提交
511
  DestoryCuSolverContext();
512
#endif
513 514
}

515 516 517
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : phi::GPUContext(place) {
  phi::GPUContext::PartialInitWithoutAllocator();
  cuda_stream_.reset(new stream::CUDAStream(phi::GPUContext::stream(), place));
518 519 520 521
  auto& instance = memory::allocation::AllocatorFacade::Instance();
  instance.SetDefaultStream(place, phi::GPUContext::stream());
  workspace_.reset(
      new phi::DnnWorkspaceHandle(instance.GetAllocator(place).get()));
522 523
}

W
Wilber 已提交
524
CUDADeviceContext::~CUDADeviceContext() = default;
525

526
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
W
Wilber 已提交
527 528 529
  if (thread_ctx_.count(this)) {
    return context()->EigenDevice().get();
  }
530
  return phi::GPUContext::eigen_device();
S
sneaxiy 已提交
531 532
}

W
Wilber 已提交
533
void CUDADeviceContext::Wait() const {
534
  VLOG(4) << "CUDA context(" << this << ")  Wait";
W
Wilber 已提交
535 536 537 538
  if (thread_ctx_.count(this)) {
    context()->Stream()->Wait();
    return;
  }
539
  phi::GPUContext::Wait();
540 541
}

542 543 544
#ifdef PADDLE_WITH_HIP
miopenHandle_t CUDADeviceContext::cudnn_handle() const {
#else
545
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
546
#endif
W
Wilber 已提交
547 548 549
  if (thread_ctx_.count(this)) {
    return context()->CudnnHandle();
  }
550
  return phi::GPUContext::cudnn_handle();
551
}
552

553 554
#ifdef PADDLE_WITH_HIP
rocblas_handle CUDADeviceContext::cublas_handle() const {
W
Wilber 已提交
555 556 557
  if (thread_ctx_.count(this)) {
    return context()->CublasHandle()->GetCublasHandle();
  }
558
  return phi::GPUContext::cublas_handle();
559 560
}
#else
561
cublasHandle_t CUDADeviceContext::cublas_handle() const {
W
Wilber 已提交
562 563 564
  if (thread_ctx_.count(this)) {
    return context()->CublasHandle()->GetCublasHandle();
  }
565
  return phi::GPUContext::cublas_handle();
566
}
567 568 569 570 571 572 573 574
#if CUDA_VERSION >= 11060
cublasLtHandle_t CUDADeviceContext::cublaslt_handle() const {
  if (thread_ctx_.count(this)) {
    return context()->CublasLtHandle()->GetCublasLtHandle();
  }
  return phi::GPUContext::cublaslt_handle();
}
#endif
Z
zhangkaihuo 已提交
575
cusparseHandle_t CUDADeviceContext::cusparse_handle() const {
W
Wilber 已提交
576 577 578
  if (thread_ctx_.count(this)) {
    return context()->CusparseHandle()->GetCusparseHandle();
  }
579
  return phi::GPUContext::cusparse_handle();
W
Wilber 已提交
580 581 582 583 584
}
cusolverDnHandle_t CUDADeviceContext::cusolver_dn_handle() const {
  if (thread_ctx_.count(this)) {
    return context()->CusolverDnHandle();
  }
585
  return phi::GPUContext::cusolver_dn_handle();
Z
zhangkaihuo 已提交
586
}
587
#endif
588

W
Wilber 已提交
589 590 591 592 593 594
void CUDADeviceContext::RecordEvent(
    gpuEvent_t ev, const std::function<void()>& callback) const {
  if (thread_ctx_.count(this)) {
    context()->Stream()->RecordEvent(ev, callback);
    return;
  }
595
  phi::GPUContext::RecordEvent(ev, callback);
W
Wilber 已提交
596 597 598 599 600 601 602 603
}

void CUDADeviceContext::AddStreamCallback(
    const std::function<void()>& callback) const {
  if (thread_ctx_.count(this)) {
    context()->Stream()->AddCallback(callback);
    return;
  }
604
  phi::GPUContext::AddStreamCallback(callback);
W
Wilber 已提交
605 606 607 608 609 610 611
}

void CUDADeviceContext::WaitStreamCallback() const {
  if (thread_ctx_.count(this)) {
    context()->Stream()->WaitCallback();
    return;
  }
612
  phi::GPUContext::WaitStreamCallback();
W
Wilber 已提交
613 614
}

615
phi::DnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
W
Wilber 已提交
616 617
  if (thread_ctx_.count(this)) {
    // return workspace_.get();
618
    return phi::DnnWorkspaceHandle(
W
Wilber 已提交
619
        memory::allocation::AllocatorFacade::Instance()
620
            .GetAllocator(GetPlace())
W
Wilber 已提交
621 622
            .get());
  }
623
  return phi::GPUContext::cudnn_workspace_handle();
624
}
625

W
Wilber 已提交
626 627 628 629
gpuStream_t CUDADeviceContext::stream() const {
  if (thread_ctx_.count(this)) {
    return context()->RawStream();
  }
630
  return phi::GPUContext::stream();
G
Guo Sheng 已提交
631 632
}

W
Wilber 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
std::shared_ptr<CUDAContext> CUDADeviceContext::context() const {
  if (!thread_ctx_.count(this)) {
    PADDLE_THROW(platform::errors::PermissionDenied(
        "CUDADeviceContext call context() failed, make sure in the "
        "thread_local semantic."));
  }
  return thread_ctx_.at(this);
}

stream::CUDAStream* CUDADeviceContext::GetCudaStream() const {
  return cuda_stream_.get();
}

stream::CUDAStream* CUDADeviceContext::SetCudaStream(
    stream::CUDAStream* new_stream_ptr) {
  auto* old_stream_ptr = cuda_stream_.release();
  cuda_stream_.reset(new_stream_ptr);
  return old_stream_ptr;
}
Q
qijun 已提交
652

C
chengduoZH 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

W
Wilber 已提交
666
const Place& CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
667
#endif
Q
qijun 已提交
668

T
tensor-tang 已提交
669 670
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
671
    : CPUDeviceContext(place), p_blobmap_() {
672
  p_blobmap_.reset(new BlobMap());
673
  p_exec_items_.reset(new ExecShape());
674
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
675 676
}

677
MKLDNNDeviceContextThreadLocals::Body::Body()
678
    : cur_engine(dnnl::engine::kind::cpu, 0), cur_stream(cur_engine) {
679 680 681 682 683 684
  cur_mkldnn_session_id = kMKLDNNSessionID_Default;
  cur_input_shape_str = "";
  cur_input_shape_cache_capacity = 1;
  cur_paddle_data_layout = paddle::framework::DataLayout::kNCHW;
}

685 686 687 688 689 690 691 692 693 694 695 696
// When Thread finish we clear oneDNN cache
// This is needed when we have one executor used by many threads
// e.g. test_analyzer_detect. Thread ID is not part of caching key
// (for naive executor) so we need to clear cache when one thread finish
// and other is to start inference
// TODO(jczaja): Ideally it would be good to clear only part of cache
// related to thread that is to be terminated
MKLDNNDeviceContextThreadLocals::Body::~Body() {
  auto cpu_place = paddle::platform::CPUPlace();
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  platform::MKLDNNDeviceContext* dev_ctx =
      (platform::MKLDNNDeviceContext*)pool.Get(cpu_place);
697
  dev_ctx->ResetBlobMap(exec_ptr_);
698 699
}

700 701 702 703 704 705 706 707 708 709
void MKLDNNDeviceContextThreadLocals::Body::set_cur_mkldnn_session_id(
    size_t sid) {
  cur_mkldnn_session_id = sid;
}
size_t MKLDNNDeviceContextThreadLocals::Body::get_cur_mkldnn_session_id(void) {
  return cur_mkldnn_session_id;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_str(
    std::string input_shape_str) {
710 711
  cur_input_shape_str = input_shape_str;
}
712 713
void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_cache_capacity(
    int input_shape_cache_capacity) {
714 715
  cur_input_shape_cache_capacity = input_shape_cache_capacity;
}
S
Sylwester Fraczek 已提交
716

717 718
void MKLDNNDeviceContextThreadLocals::Body::set_cur_paddle_data_layout(
    framework::DataLayout dl) {
719 720 721
  cur_paddle_data_layout = dl;
}

722 723
framework::DataLayout
MKLDNNDeviceContextThreadLocals::Body::get_cur_paddle_data_layout(void) {
724 725 726
  return cur_paddle_data_layout;
}

727 728 729 730 731 732 733 734 735
void MKLDNNDeviceContextThreadLocals::Body::log_lib_version(void) {
  if (!said_once) {
    said_once = true;
    auto dv = dnnl::version();
    LOG(INFO) << "oneDNN v" << dv->major << "." << dv->minor << "."
              << dv->patch;
  }
}

736
const dnnl::engine& MKLDNNDeviceContextThreadLocals::Body::get_engine(void) {
737 738 739
  return cur_engine;
}

740
dnnl::stream& MKLDNNDeviceContextThreadLocals::Body::get_stream(void) {
741 742 743
  return cur_stream;
}

744
void MKLDNNDeviceContext::ResetBlobMap(void* ptr) {
L
Leo Chen 已提交
745
  VLOG(4) << tls().get_curr_exec() << " " << ptr;
746 747 748
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  if (!block_next_cache_clearing_) {
    VLOG(3) << "Clearing DNNL cache.";
749 750 751 752 753 754
    // If no specific executor pointer then clear
    // everything. For executor pointer then clear only
    // objects allocated when using given executor
    if (ptr == nullptr) {
      p_blobmap_->clear();
    } else {
755 756 757 758 759
      // Iterate through all shapes and release
      // for each shape and active executor all entries
      // of this executor
      for (auto& s : *p_exec_items_) {
        for (auto& v : (*s.second)[ptr]) {
760
          (v.first)->erase(v.second);
761 762
        }
        s.second->erase(ptr);
763 764
      }
    }
765 766 767 768 769 770
  } else {
    VLOG(3) << "Prevented Clearing DNNL cache.";
    block_next_cache_clearing_ = false;
  }
}

771 772
void MKLDNNDeviceContext::RemoveShapeEntriesWithExecutor(void) const {
  p_exec_items_->erase(p_exec_items_->begin());
773 774
}

775 776
void MKLDNNDeviceContext::LinkEntryWithExecutor(BlobPtr_t<KeyBlob> pblob,
                                                KeyBlob::iterator it) const {
777
  // Take current input shape from TLS
778 779
  // Take current executor addess from TLS
  // and for this executor's items add the one defined with arguments
780 781 782 783 784 785 786 787 788
  auto key_it = p_exec_items_
                    ->insert(std::make_pair(tls().cur_input_shape_str,
                                            std::make_shared<ExecMap>()))
                    .first;
  (*key_it->second)[tls().get_curr_exec()].push_back(std::make_pair(pblob, it));

  VLOG(3) << "LinkEntryWithExecutor, shapes: " << p_exec_items_->size()
          << " curr exec size: "
          << (*key_it->second)[tls().get_curr_exec()].size() << "\n";
789 790
}

791 792 793 794
void MKLDNNDeviceContext::BlockNextCacheClearing() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  VLOG(3) << "Next DNNL cache clearing has been blocked.";
  block_next_cache_clearing_ = true;
795
}
796

797
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
798
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
799
  BlobMap* pMap = p_blobmap_.get();
800
  auto map_it = pMap->find(tls().cur_mkldnn_session_id);
801
  if (map_it == pMap->end()) {
802 803 804
    PADDLE_THROW(platform::errors::NotFound(
        "MKLDNNDeviceContext don't find cur_mkldnn_session_id: %d.",
        tls().cur_mkldnn_session_id));
805 806 807 808
  }
  return map_it->second->size();
}

809
void MKLDNNDeviceContext::SetBlob(const std::string& name,
810
                                  BlobPtr_t<void> data) const {
811
  BlobMap* pMap = p_blobmap_.get();
812
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
813
  BlobPtr_t<KeyBlob> pBlob = nullptr;
814

815
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
816

817
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
T
tensor-tang 已提交
818

819 820
  // Find ShapeBlob for current mkldnn session id.
  auto map_it = pMap->find(sid);
821 822 823

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
824
    sBlob = std::make_shared<ShapeBlob>();
825 826
    (*pMap)[sid] = sBlob;
    VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
827
  } else {
828
    sBlob = map_it->second;
829
  }
T
tensor-tang 已提交
830

831
  // Find KeyBlob for current input shape
832
  auto key_it = sBlob->find(tls().cur_input_shape_str);
833

834
  if (key_it == sBlob->end()) {
835 836
    // In cache clearing mode, cur_input_shape_cache_capacity defines
    // max pblob capacity
837 838
    if ((static_cast<size_t>(sid) ==
         MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_CacheClearing) &&
839
        sBlob->size() &&
840
        (sBlob->size() >=
841
         static_cast<size_t>(tls().cur_input_shape_cache_capacity))) {
842 843 844 845
      VLOG(2) << "sid=" << sid
              << ", remove all blobs of shape: " << sBlob->begin()->first;
      sBlob->erase(sBlob->begin()->first);
      RemoveShapeEntriesWithExecutor();
846
    }
847
    pBlob = std::make_shared<KeyBlob>();
848
    (*sBlob)[tls().cur_input_shape_str] = pBlob;
849
  } else {
850
    pBlob = key_it->second;
851 852
  }

853
  // Find Blob via name
854 855 856 857
  auto blob_it = pBlob->find(name);
  if (blob_it == pBlob->end()) {
    auto el =
        pBlob->insert(std::make_pair(name, data));  //  (*pBlob)[name] = data;
858 859 860
    // Register new element in per executor map
    // to have easily erased when executor terminated
    LinkEntryWithExecutor(pBlob, el.first);
861 862 863
  } else {
    blob_it->second = data;  // set data to existing blob
  }
864
  VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
865
  // lock will be automatically released when out of scope
866
  return;
T
tensor-tang 已提交
867 868
}

869
unsigned int MKLDNNDeviceContext::GetCachedObjectsNumber(void) const {
870 871 872
  unsigned int num_entries = 0;
  for (auto const& l3 : *p_blobmap_) {
    for (auto const& l2 : *(l3.second)) {
873
      num_entries += (l2.second)->size();
874 875 876 877 878
    }
  }
  return num_entries;
}

879
MKLDNNDeviceContext::BlobPtr_t<void> MKLDNNDeviceContext::GetBlob(
880
    const std::string& name) const {
881
  BlobMap* pMap = p_blobmap_.get();
882
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
883
  BlobPtr_t<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
884

885
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
886

887
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
888

889 890
  // Find ShapeBlob for current mkldnn session id firstly
  auto map_it = pMap->find(sid);
891 892 893 894
  // (jczaja): After first iteration of model's execution we
  // should have all elements cached (mostly) so failures are unlikely (less
  // likely for dynamic shapes)
  if (unlikely(map_it == pMap->end())) {
895
    VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
896 897 898 899 900
    return nullptr;
  }
  sBlob = map_it->second;

  // Find KeyBlob for current input shape secondly
901
  auto sBlob_it = sBlob->find(tls().cur_input_shape_str);
902
  if (unlikely(sBlob_it == sBlob->end())) {
903
    VLOG(2) << "GetBlob: sid=" << tls().cur_input_shape_str
904 905 906 907
            << ", miss input_shape_str\n";
    return nullptr;
  }
  pBlob = sBlob_it->second;
908 909

  // Find Blob via name
910
  auto key_it = pBlob->find(name);
911

912
  if (unlikely(key_it == pBlob->end())) {
913
    VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
914 915
    return nullptr;
  }
916

917
  VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
918 919
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
920 921
}

922 923 924
#endif

#ifdef PADDLE_WITH_CUSTOM_DEVICE
925 926 927
CustomDeviceContext::CustomDeviceContext(CustomPlace place)
    : phi::CustomContext(place) {
  Init();
928
  stream_.reset(new phi::stream::Stream(place, stream()));
929 930 931
}

CustomDeviceContext::~CustomDeviceContext() {}
T
tensor-tang 已提交
932
#endif
Q
qijun 已提交
933
}  // namespace platform
Q
qijun 已提交
934
}  // namespace paddle