__init__.py 19.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import logging

import paddle.fluid as fluid
import paddle.fluid.io as io
import paddle.fluid.transpiler.distribute_transpiler as dist_transpiler
19 20 21 22
from paddle.fluid.executor import Executor
from paddle.fluid.parallel_executor import ParallelExecutor
from paddle.fluid.compiler import CompiledProgram
from paddle.fluid.framework import Program
23

T
tangwei12 已提交
24 25 26
from paddle.fluid.incubate.fleet.base.fleet_base import Fleet
from paddle.fluid.incubate.fleet.base.fleet_base import Mode
from paddle.fluid.incubate.fleet.base.fleet_base import DistributedOptimizer
27

28
from paddle.fluid import compiler
29
from paddle.fluid.incubate.checkpoint.checkpoint_saver import PaddleModel, CheckpointSaver
30

M
MRXLT 已提交
31 32
import paddle

33 34
import os
import sys
35 36 37
import json
import re
import shutil
38 39 40


class LambConfig(object):
41

42
    def __init__(self):
43 44 45 46
        pass


class DistFCConfig(object):
47

48
    def __init__(self):
49
        pass
50 51


52
class Collective(Fleet):
53

54 55
    def __init__(self):
        super(Collective, self).__init__(Mode.COLLECTIVE)
T
tangwei12 已提交
56
        self._local_ip = 0
57

58 59
        self.startup_program = None
        self._origin_program = None
60
        self._transpiled_program = None
61
        self.main_program = None
G
gongweibao 已提交
62
        self._checkpoint_prefix = "__paddle_fleet_checkpoint__"
63
        self._param_file_name = "_paddle_fleet_param__"
64

T
tangwei12 已提交
65
    def init_worker(self):
66 67 68
        logging.warn(
            "You should not call 'init_worker' method for collective mode.")

T
tangwei12 已提交
69
    def run_worker(self, main_programs=None, scopes=None):
70 71 72
        logging.warn(
            "You should not call 'run_worker' method for collective mode.")

T
tangwei12 已提交
73
    def init_server(self, model_dir=None):
74 75 76
        logging.warn(
            "You should not call 'init_server' method for collective mode.")

T
tangwei12 已提交
77
    def run_server(self):
78 79 80 81 82 83 84 85
        logging.warn(
            "You should not call 'run_server' method for collective mode.")

    def stop_worker(self):
        logging.warn(
            "You should not call 'stop_worker' method for collective mode.")

    def distributed_optimizer(self, optimizer, strategy=None):
86
        self._optimizer = \
87
            CollectiveOptimizer(optimizer, strategy)
T
tangwei12 已提交
88
        return self._optimizer
89 90

    def save_inference_model(self,
91
                             executor,
92 93 94 95 96
                             dirname,
                             feeded_var_names=None,
                             target_vars=None,
                             main_program=None,
                             export_for_deployment=True):
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
        """
        Prune the given `main_program` to build a new program especially for
        inference, and then save it and all related parameters to given
        `dirname` by the `executor`.
        """
        assert isinstance(executor, Executor), \
            "In fleet.save_inference_model() function, executor must be as" \
            " Executor type."

        if main_program is None:
            main_program = self._origin_program
        assert isinstance(main_program, Program), \
            "In fleet.save_inference_model() function, main_program " \
            "must be as Program type."

112
        io.save_inference_model(dirname, feeded_var_names, target_vars,
113
                                executor, main_program, None, None,
114 115
                                export_for_deployment)

116 117 118 119 120
    def save_persistables(self,
                          executor,
                          dirname,
                          main_program=None,
                          filename=None):
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        """
        This function filters out all variables with `persistable==True` from
        the give `main_program` and then saves these variables to the folder
        `dirname` or file `filename`.

        The `dirname` is used to specify the folder where persistable variables
        are going to be saved. If you would like to save variables in separate
        files, set `filename` None; if you would like to save all variables in a
        single file, use `filename` to specify the file name.
        """
        assert isinstance(executor, Executor), \
            "In fleet.save_inference_model() function, executor must be as" \
            " Executor type."

        if main_program is None:
            main_program = self._origin_program

        assert isinstance(main_program, Program), \
            "In fleet.save_inference_model() function, main_program " \
            "must be as Program type."

142 143
        io.save_persistables(executor, dirname, main_program, filename=filename)

G
gongweibao 已提交
144 145 146
    def save_checkpoint(self,
                        executor,
                        path,
147
                        trainer_id,
G
gongweibao 已提交
148
                        train_status,
G
gongweibao 已提交
149
                        fs,
G
gongweibao 已提交
150 151 152
                        main_program=None,
                        local_cache_path=".cache",
                        remain_all_checkpoint=True):
153 154 155 156 157 158
        """
        This function save persistables and current epoch num to path.
        """
        if main_program == None:
            main_program = self._transpiled_program

159 160 161 162 163 164 165 166
        m = PaddleModel(executor, main_program)
        t = train_status
        c = CheckpointSaver(fs)
        real_path, checkpoint_no = c.save_checkpoint(
            path=path,
            slists=[m, t],
            trainer_id=trainer_id,
            local_cache_path=local_cache_path)
167 168

        if not remain_all_checkpoint:
169 170 171
            c.clean_redundant_checkpoints(path)

        return real_path, checkpoint_no
G
gongweibao 已提交
172 173 174 175 176

    def load_checkpoint(self,
                        executor,
                        path,
                        trainer_id,
177
                        train_status,
G
gongweibao 已提交
178
                        fs,
G
gongweibao 已提交
179 180 181
                        main_program=None,
                        local_cache_path=".cache",
                        ignore_empty=True):
182 183 184 185 186 187 188
        """
        This function load persistables and current epoch num from path.
        """

        if main_program == None:
            main_program = self._transpiled_program

189 190
        m = PaddleModel(executor, main_program)
        c = CheckpointSaver(fs)
191 192 193 194
        return c.load_checkpoint(path, [m, train_status],
                                 trainer_id=trainer_id,
                                 ignore_empty=ignore_empty,
                                 local_cache_path=local_cache_path)
195

196 197 198 199

fleet = Collective()


200 201 202 203 204 205 206 207 208 209 210 211 212
class DistributedStrategy(fluid.BuildStrategy):
    """
    Init function of DistributedStrategy
    """

    def __init__(self):
        super(DistributedStrategy, self).__init__()
        self.use_local_sgd = False
        self.use_dist_fc = False

        self.dist_fc_config = None  # DistFCConfig
        self.mode = "nccl2"  # or collective
        self.collective_mode = None  # local_sgd or grad_allreduce
G
gongweibao 已提交
213
        self.nccl_comm_num = 1
M
mapingshuo 已提交
214
        self.forward_recompute = False  # use RecomputeOptimizer
M
mapingshuo 已提交
215
        self.recompute_checkpoints = []
M
mapingshuo 已提交
216 217
        self.use_amp = False  # use mixed precision optimizer
        self.amp_loss_scaling = 2**15
218 219 220

        self.exec_strategy = fluid.ExecutionStrategy()

221 222 223
        # configurations below are used for unit test
        self._ut4grad_allreduce = False

224

225 226
class CollectiveOpBasedOptimizer(DistributedOptimizer):
    """
227 228
    Collective Operator Base Class For Distributed Optimizer
    The class is invisible to a user
229 230 231
    """

    def __init__(self, optimizer, strategy=None):
232 233 234
        assert isinstance(
            strategy,
            DistributedStrategy), "strategy must be DistributedStrategy"
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
        super(CollectiveOpBasedOptimizer, self).__init__(optimizer, strategy)

    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        return self._optimizer.backward(loss, startup_program, parameter_list,
                                        no_grad_set, callbacks)

    def apply_gradients(self, params_grads):
        return self._optimizer.apply_gradients(params_grads)


250 251 252 253 254 255 256 257 258 259 260
class CollectiveOptimizer(DistributedOptimizer):
    """
    DistributedOptimizer is a wrapper for paddle.fluid.optimizer
    A user should pass a paddle.fluid.optimizer to DistributedOptimizer
    minimize() function is implemented.
    DistributedOptimizer is the starting point for a user who wants to
    run distributed training. The optimized information will be stored in
    Fleet() instance who holds the global information about current distributed
    training.
    """

261
    def __init__(self, optimizer, strategy=DistributedStrategy()):
262 263
        if strategy is None:
            strategy = DistributedStrategy()
264
        super(CollectiveOptimizer, self).__init__(optimizer, strategy)
M
mapingshuo 已提交
265 266 267 268 269 270 271
        self._forward_recompute = strategy.forward_recompute
        if (not isinstance(strategy.recompute_checkpoints, list)):
            raise ValueError("DistStrategy.recompute_checkpoints should"
                             "be a List")
        self._recompute_checkpoints = strategy.recompute_checkpoints
        self._use_amp = strategy.use_amp
        self._amp_loss_scaling = strategy.amp_loss_scaling
272
        self.print_config = False
273 274 275 276 277 278 279 280 281 282 283 284 285

    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        return self._optimizer.backward(loss, startup_program, parameter_list,
                                        no_grad_set, callbacks)

    def apply_gradients(self, params_grads):
        return self._optimizer.apply_gradients(params_grads)

286
    def _check_condition(self, name, **kwargs):
287
        for k, v in kwargs.items():
288 289 290 291 292
            if v is True:
                assert False, "you can't use %s and %s together" % (name, k)

    def _check_collective_mode(self, main_program, optimizer, strategy):
        """
T
tianshuo78520a 已提交
293
        Check the conflict conditions.
294 295
        """
        if strategy.use_local_sgd:
296 297
            strategy.mode = "collective"
            strategy.collective_mode = "local_sgd"
298 299 300 301
            self._check_condition("use_local_sgd",
                                  use_dgc=main_program._enable_dgc,
                                  use_dist_fc=strategy.use_dist_fc,
                                  use_lamb=main_program._use_lamb)
302 303

        if strategy.use_dist_fc:
304 305 306 307
            self._check_condition("use_dist_fc",
                                  use_dgc=main_program._enable_dgc,
                                  use_local_sgd=strategy.use_local_sgd,
                                  use_lamb=main_program._use_lamb)
308 309
            assert strategy.dist_fc_config is not None, "DistributedStrategy.dist_fc_config should be set"

310 311 312
        if strategy._ut4grad_allreduce:
            strategy.mode = "collective"
            strategy.collective_mode = "grad_allreduce"
313 314 315
            self._check_condition("_ut4grad_allreduce",
                                  use_dgc=main_program._enable_dgc,
                                  use_lamb=main_program._use_lamb)
316

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
        if self._strategy.collective_mode=="local_sgd" \
                or self._strategy.collective_mode == "grad_allreduce":
            assert self._strategy.mode == "collective", \
                "local_sgd and grad_allreduce can be used under collective mode"

    def _transpile(self, startup_program, main_program):
        """
        Transpile the programs to distributed programs. And add the variables.
        """
        worker_endpoints = fleet.worker_endpoints()
        trainer_id = fleet.worker_index()
        current_endpoint = fleet.worker_endpoints()[trainer_id]
        worker_endpoints_env = ','.join(worker_endpoints)
        trainers_num = fleet.worker_num()

        if self.print_config:
            print("worker_endpoints:{} trainers_num:{} current_endpoint:{} \
                  trainer_id:{}".format(worker_endpoints, trainers_num,
                                        current_endpoint, trainer_id))

        # call transpiler
        config = dist_transpiler.DistributeTranspilerConfig()
        config.mode = self._strategy.mode
        config.collective_mode = self._strategy.collective_mode

        config.nccl_comm_num = self._strategy.nccl_comm_num
        config.use_hierarchical_allreduce = self._strategy.use_hierarchical_allreduce
        config.hierarchical_allreduce_inter_nranks = self._strategy.hierarchical_allreduce_inter_nranks

        t = dist_transpiler.DistributeTranspiler(config=config)
347 348 349 350 351
        t.transpile(trainer_id=trainer_id,
                    trainers=worker_endpoints_env,
                    startup_program=startup_program,
                    program=main_program,
                    current_endpoint=current_endpoint)
352

G
gongweibao 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
    def _get_node_ips_from_endpoints(self, endpoints):
        ss = set()
        ips = []
        for ep in endpoints:
            ip = ep.split(":")[0].strip()
            if ip not in ss:
                ss.add(ip)
                ips.append(ip)
            else:
                continue

        return ips

    def _node_num(self):
        worker_endpoints = fleet.worker_endpoints()
        current_endpoint = fleet.worker_endpoints()[fleet.worker_index()]
        worker_endpoints_env = ','.join(worker_endpoints)

        node_ips = self._get_node_ips_from_endpoints(worker_endpoints)
        node_ip = current_endpoint.split(":")[0].strip()

        node_num = len(node_ips)

        return node_num

378
    def _try_to_compile(self, startup_program, main_program):
G
gongweibao 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
        node_num = self._node_num()
        assert node_num >= 1, "nccl2 node_num must >= 1, now:{}" % node_num

        exec_strategy = self._strategy.exec_strategy

        if node_num <= 1:
            if self._strategy.nccl_comm_num > 1:
                logging.warn("set nccl_comm_num=1 since you only have 1 node.")
            self._strategy.nccl_comm_num = 1

            if self._strategy.use_hierarchical_allreduce:
                logging.warn(
                    "set use_hierarchical_allreduce=False since you only have 1 node."
                )
            self._strategy.use_hierarchical_allreduce = False

        sync_allreduce = os.getenv("FLAGS_sync_nccl_allreduce")
        if sync_allreduce is None or sync_allreduce == "1":
            exec_strategy.num_threads = self._strategy.nccl_comm_num + 1
            if self._strategy.use_hierarchical_allreduce:
                exec_strategy.num_threads = 2 * self._strategy.nccl_comm_num + 1
            if exec_strategy.num_threads > 4:
                logging.warn(
                    "if you use use_hierarchical_allreduce or "
                    "with multi nccl comm, please export FLAGS_sync_nccl_allreduce = 0"
                )

406 407 408 409 410 411 412 413 414 415 416
        # NOTE. open sync_batch_norm will hang when use multi num_threads
        sync_batch_norm = self._strategy.sync_batch_norm
        if sync_batch_norm is not None and sync_batch_norm is True:
            self._strategy.nccl_comm_num = 1
            self._strategy.use_hierarchical_allreduce = False
            exec_strategy.num_threads = 1
            logging.warn(
                "use sync_batch_norm will hang when set num_threads > 1, so "
                "set num_threads=1, nccl_comm_num=1, use_hierarchical_allreduce=False."
            )

G
gongweibao 已提交
417 418 419 420 421 422 423
        if self.print_config:
            print("node_num:", node_num, "num_threads:",
                  exec_strategy.num_threads, "use_hierarchical_allreduce:",
                  self._strategy.use_hierarchical_allreduce, "nccl_comm_num:",
                  self._strategy.nccl_comm_num, "FLAGS_sync_nccl_allreduce:",
                  sync_allreduce)

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
        self._transpile(startup_program, main_program)

        if self._strategy.mode == "collective":
            return main_program

        self._strategy.num_trainers = fleet.worker_num()
        self._strategy.trainer_id = fleet.worker_index()
        self._strategy.trainers_endpoints = fleet.worker_endpoints()
        self._strategy.enable_backward_optimizer_op_deps = True

        self._compiled_program = compiler.CompiledProgram(main_program)

        self._compiled_program.with_data_parallel(
            loss_name=self._loss.name,
            build_strategy=self._strategy,
            exec_strategy=self._strategy.exec_strategy,
            share_vars_from=None)

        return self._compiled_program

M
mapingshuo 已提交
444 445 446 447
    def raiseOptimizeError(self, strategy_name, optimize_name):
        raise ValueError("can not use {0} when you set DistStrategy.{1} "
                         "as True".format(optimize_name, strategy_name))

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        minimize a program through loss
        Args:
            loss (Variable|Variable List): loss variable or loss variable list to run optimization.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
        Returns:
            tuple: (optimize_ops, params_grads) which are, list of operators appended;
            and list of (param, grad) Variables pair for optimization.
        Note that in parameter server mode, a worker will not get anything about optimize_os
T
tianshuo78520a 已提交
465
        Because optimizer algorithms run on pserver side. We will make this usable in pserver
466 467 468
        process, but currently the optimization part is written into Fleet(). A user does not
        need to care about how to startup a pserver node.
        """
M
mapingshuo 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495

        # check optimizer conflicts
        if self._forward_recompute:
            if self._recompute_checkpoints == []:
                raise ValueError("please set strategy.recompute_checkpoints"
                                 "when set strategy.forward_recompute as True")
            if self._optimizer.__class__.__name__ in [
                    "RecomputeOptimizer", "OptimizerWithMixedPrecision"
            ]:
                self.raiseOptimizeError("forward_recompute",
                                        self._optimizer.__class__.__name__)

            self._optimizer = \
                fluid.optimizer.RecomputeOptimizer(self._optimizer)
            self._optimizer._set_checkpoints(self._recompute_checkpoints)

        if self._use_amp:
            if self._optimizer.__class__.__name__ in [
                    "OptimizerWithMixedPrecision", "DGCMomentumOptimizer"
            ]:
                self.raiseOptimizeError("mixed_precision",
                                        self._optimizer.__class__.__name__)
            self._optimizer = fluid.contrib.mixed_precision.decorate(
                self._optimizer,
                init_loss_scaling=self._amp_loss_scaling,
                use_dynamic_loss_scaling=True)

496 497 498 499
        main_program = loss.block.program
        if startup_program is None:
            startup_program = fluid.default_startup_program()
        fleet.startup_program = startup_program
500

501
        self._loss = loss
502

503 504
        self._check_collective_mode(main_program, self._optimizer,
                                    self._strategy)
505

506
        optimize_ops, param_grads = self._optimizer.minimize(
M
MRXLT 已提交
507
            loss, startup_program, parameter_list, no_grad_set=no_grad_set)
508

509 510
        fleet._origin_program = main_program.clone(for_test=False)
        fleet._transpiled_program = main_program
511
        fleet.main_program = self._try_to_compile(startup_program, main_program)
512 513

        return optimize_ops, param_grads