time.c 26.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Common time routines among all ppc machines.
 *
 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
 * Paul Mackerras' version and mine for PReP and Pmac.
 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
 *
 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
 * to make clock more stable (2.4.0-test5). The only thing
 * that this code assumes is that the timebases have been synchronized
 * by firmware on SMP and are never stopped (never do sleep
 * on SMP then, nap and doze are OK).
 * 
 * Speeded up do_gettimeofday by getting rid of references to
 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
 *
 * TODO (not necessarily in this file):
 * - improve precision and reproducibility of timebase frequency
20
 * measurement at boot time.
L
Linus Torvalds 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34
 * - for astronomical applications: add a new function to get
 * non ambiguous timestamps even around leap seconds. This needs
 * a new timestamp format and a good name.
 *
 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
35
#include <linux/export.h>
L
Linus Torvalds 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/cpu.h>
#include <linux/security.h>
49 50
#include <linux/percpu.h>
#include <linux/rtc.h>
51
#include <linux/jiffies.h>
52
#include <linux/posix-timers.h>
53
#include <linux/irq.h>
54
#include <linux/delay.h>
55
#include <linux/irq_work.h>
56
#include <asm/trace.h>
L
Linus Torvalds 已提交
57 58 59 60 61 62 63 64 65

#include <asm/io.h>
#include <asm/processor.h>
#include <asm/nvram.h>
#include <asm/cache.h>
#include <asm/machdep.h>
#include <asm/uaccess.h>
#include <asm/time.h>
#include <asm/prom.h>
66 67
#include <asm/irq.h>
#include <asm/div64.h>
P
Paul Mackerras 已提交
68
#include <asm/smp.h>
69
#include <asm/vdso_datapage.h>
70
#include <asm/firmware.h>
M
Michael Neuling 已提交
71
#include <asm/cputime.h>
L
Linus Torvalds 已提交
72

73 74
/* powerpc clocksource/clockevent code */

75
#include <linux/clockchips.h>
76 77
#include <linux/clocksource.h>

78
static cycle_t rtc_read(struct clocksource *);
79 80 81 82 83 84 85 86
static struct clocksource clocksource_rtc = {
	.name         = "rtc",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.read         = rtc_read,
};

87
static cycle_t timebase_read(struct clocksource *);
88 89 90 91 92 93 94 95
static struct clocksource clocksource_timebase = {
	.name         = "timebase",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.read         = timebase_read,
};

96 97 98 99 100 101 102
#define DECREMENTER_MAX	0x7fffffff

static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev);
static void decrementer_set_mode(enum clock_event_mode mode,
				 struct clock_event_device *dev);

103
struct clock_event_device decrementer_clockevent = {
104 105 106 107 108 109
	.name           = "decrementer",
	.rating         = 200,
	.irq            = 0,
	.set_next_event = decrementer_set_next_event,
	.set_mode       = decrementer_set_mode,
	.features       = CLOCK_EVT_FEAT_ONESHOT,
110
};
111
EXPORT_SYMBOL(decrementer_clockevent);
112

113 114
DEFINE_PER_CPU(u64, decrementers_next_tb);
static DEFINE_PER_CPU(struct clock_event_device, decrementers);
115

L
Linus Torvalds 已提交
116 117
#define XSEC_PER_SEC (1024*1024)

118 119 120 121 122 123 124
#ifdef CONFIG_PPC64
#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
#else
/* compute ((xsec << 12) * max) >> 32 */
#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
#endif

L
Linus Torvalds 已提交
125 126 127 128
unsigned long tb_ticks_per_jiffy;
unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
129
EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
130

L
Linus Torvalds 已提交
131
DEFINE_SPINLOCK(rtc_lock);
132
EXPORT_SYMBOL_GPL(rtc_lock);
L
Linus Torvalds 已提交
133

134 135
static u64 tb_to_ns_scale __read_mostly;
static unsigned tb_to_ns_shift __read_mostly;
136
static u64 boot_tb __read_mostly;
L
Linus Torvalds 已提交
137 138

extern struct timezone sys_tz;
139
static long timezone_offset;
L
Linus Torvalds 已提交
140

141
unsigned long ppc_proc_freq;
142
EXPORT_SYMBOL_GPL(ppc_proc_freq);
143
unsigned long ppc_tb_freq;
144
EXPORT_SYMBOL_GPL(ppc_tb_freq);
145

146 147 148
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
/*
 * Factors for converting from cputime_t (timebase ticks) to
149
 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
150 151 152
 * These are all stored as 0.64 fixed-point binary fractions.
 */
u64 __cputime_jiffies_factor;
153
EXPORT_SYMBOL(__cputime_jiffies_factor);
154 155
u64 __cputime_usec_factor;
EXPORT_SYMBOL(__cputime_usec_factor);
156
u64 __cputime_sec_factor;
157
EXPORT_SYMBOL(__cputime_sec_factor);
158
u64 __cputime_clockt_factor;
159
EXPORT_SYMBOL(__cputime_clockt_factor);
M
Michael Neuling 已提交
160 161
DEFINE_PER_CPU(unsigned long, cputime_last_delta);
DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
162

163 164
cputime_t cputime_one_jiffy;

165 166
void (*dtl_consumer)(struct dtl_entry *, u64);

167 168 169 170 171 172
static void calc_cputime_factors(void)
{
	struct div_result res;

	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
	__cputime_jiffies_factor = res.result_low;
173 174
	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
	__cputime_usec_factor = res.result_low;
175 176 177 178 179 180 181
	div128_by_32(1, 0, tb_ticks_per_sec, &res);
	__cputime_sec_factor = res.result_low;
	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
	__cputime_clockt_factor = res.result_low;
}

/*
182 183
 * Read the SPURR on systems that have it, otherwise the PURR,
 * or if that doesn't exist return the timebase value passed in.
184
 */
185
static u64 read_spurr(u64 tb)
186
{
187 188
	if (cpu_has_feature(CPU_FTR_SPURR))
		return mfspr(SPRN_SPURR);
189 190
	if (cpu_has_feature(CPU_FTR_PURR))
		return mfspr(SPRN_PURR);
191
	return tb;
192 193
}

194 195
#ifdef CONFIG_PPC_SPLPAR

196
/*
197 198
 * Scan the dispatch trace log and count up the stolen time.
 * Should be called with interrupts disabled.
199
 */
200
static u64 scan_dispatch_log(u64 stop_tb)
201
{
202
	u64 i = local_paca->dtl_ridx;
203 204 205 206 207 208 209
	struct dtl_entry *dtl = local_paca->dtl_curr;
	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
	struct lppaca *vpa = local_paca->lppaca_ptr;
	u64 tb_delta;
	u64 stolen = 0;
	u64 dtb;

210 211 212
	if (!dtl)
		return 0;

213 214 215
	if (i == vpa->dtl_idx)
		return 0;
	while (i < vpa->dtl_idx) {
216 217
		if (dtl_consumer)
			dtl_consumer(dtl, i);
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
		dtb = dtl->timebase;
		tb_delta = dtl->enqueue_to_dispatch_time +
			dtl->ready_to_enqueue_time;
		barrier();
		if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
			/* buffer has overflowed */
			i = vpa->dtl_idx - N_DISPATCH_LOG;
			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
			continue;
		}
		if (dtb > stop_tb)
			break;
		stolen += tb_delta;
		++i;
		++dtl;
		if (dtl == dtl_end)
			dtl = local_paca->dispatch_log;
	}
	local_paca->dtl_ridx = i;
	local_paca->dtl_curr = dtl;
	return stolen;
239 240
}

241 242 243 244 245 246 247 248
/*
 * Accumulate stolen time by scanning the dispatch trace log.
 * Called on entry from user mode.
 */
void accumulate_stolen_time(void)
{
	u64 sst, ust;

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
	u8 save_soft_enabled = local_paca->soft_enabled;

	/* We are called early in the exception entry, before
	 * soft/hard_enabled are sync'ed to the expected state
	 * for the exception. We are hard disabled but the PACA
	 * needs to reflect that so various debug stuff doesn't
	 * complain
	 */
	local_paca->soft_enabled = 0;

	sst = scan_dispatch_log(local_paca->starttime_user);
	ust = scan_dispatch_log(local_paca->starttime);
	local_paca->system_time -= sst;
	local_paca->user_time -= ust;
	local_paca->stolen_time += ust + sst;

	local_paca->soft_enabled = save_soft_enabled;
266 267 268 269 270 271 272 273 274 275 276 277 278 279
}

static inline u64 calculate_stolen_time(u64 stop_tb)
{
	u64 stolen = 0;

	if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
		stolen = scan_dispatch_log(stop_tb);
		get_paca()->system_time -= stolen;
	}

	stolen += get_paca()->stolen_time;
	get_paca()->stolen_time = 0;
	return stolen;
280 281
}

282 283 284 285 286 287 288 289
#else /* CONFIG_PPC_SPLPAR */
static inline u64 calculate_stolen_time(u64 stop_tb)
{
	return 0;
}

#endif /* CONFIG_PPC_SPLPAR */

290 291 292 293 294 295
/*
 * Account time for a transition between system, hard irq
 * or soft irq state.
 */
void account_system_vtime(struct task_struct *tsk)
{
296
	u64 now, nowscaled, delta, deltascaled;
297
	unsigned long flags;
298
	u64 stolen, udelta, sys_scaled, user_scaled;
299 300

	local_irq_save(flags);
301
	now = mftb();
302
	nowscaled = read_spurr(now);
303 304
	get_paca()->system_time += now - get_paca()->starttime;
	get_paca()->starttime = now;
305 306
	deltascaled = nowscaled - get_paca()->startspurr;
	get_paca()->startspurr = nowscaled;
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

	stolen = calculate_stolen_time(now);

	delta = get_paca()->system_time;
	get_paca()->system_time = 0;
	udelta = get_paca()->user_time - get_paca()->utime_sspurr;
	get_paca()->utime_sspurr = get_paca()->user_time;

	/*
	 * Because we don't read the SPURR on every kernel entry/exit,
	 * deltascaled includes both user and system SPURR ticks.
	 * Apportion these ticks to system SPURR ticks and user
	 * SPURR ticks in the same ratio as the system time (delta)
	 * and user time (udelta) values obtained from the timebase
	 * over the same interval.  The system ticks get accounted here;
	 * the user ticks get saved up in paca->user_time_scaled to be
	 * used by account_process_tick.
	 */
	sys_scaled = delta;
	user_scaled = udelta;
	if (deltascaled != delta + udelta) {
		if (udelta) {
			sys_scaled = deltascaled * delta / (delta + udelta);
			user_scaled = deltascaled - sys_scaled;
		} else {
			sys_scaled = deltascaled;
		}
	}
	get_paca()->user_time_scaled += user_scaled;

337
	if (in_interrupt() || idle_task(smp_processor_id()) != tsk) {
338 339 340 341 342
		account_system_time(tsk, 0, delta, sys_scaled);
		if (stolen)
			account_steal_time(stolen);
	} else {
		account_idle_time(delta + stolen);
343 344 345
	}
	local_irq_restore(flags);
}
A
Alexander Graf 已提交
346
EXPORT_SYMBOL_GPL(account_system_vtime);
347 348 349 350 351 352

/*
 * Transfer the user and system times accumulated in the paca
 * by the exception entry and exit code to the generic process
 * user and system time records.
 * Must be called with interrupts disabled.
353 354 355
 * Assumes that account_system_vtime() has been called recently
 * (i.e. since the last entry from usermode) so that
 * get_paca()->user_time_scaled is up to date.
356
 */
357
void account_process_tick(struct task_struct *tsk, int user_tick)
358
{
359
	cputime_t utime, utimescaled;
360 361

	utime = get_paca()->user_time;
362
	utimescaled = get_paca()->user_time_scaled;
363
	get_paca()->user_time = 0;
364 365
	get_paca()->user_time_scaled = 0;
	get_paca()->utime_sspurr = 0;
366
	account_user_time(tsk, utime, utimescaled);
367 368 369 370 371 372
}

#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
#define calc_cputime_factors()
#endif

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
void __delay(unsigned long loops)
{
	unsigned long start;
	int diff;

	if (__USE_RTC()) {
		start = get_rtcl();
		do {
			/* the RTCL register wraps at 1000000000 */
			diff = get_rtcl() - start;
			if (diff < 0)
				diff += 1000000000;
		} while (diff < loops);
	} else {
		start = get_tbl();
		while (get_tbl() - start < loops)
			HMT_low();
		HMT_medium();
	}
}
EXPORT_SYMBOL(__delay);

void udelay(unsigned long usecs)
{
	__delay(tb_ticks_per_usec * usecs);
}
EXPORT_SYMBOL(udelay);

L
Linus Torvalds 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413
#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
	unsigned long pc = instruction_pointer(regs);

	if (in_lock_functions(pc))
		return regs->link;

	return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif

414
#ifdef CONFIG_IRQ_WORK
415

416 417 418 419
/*
 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 */
#ifdef CONFIG_PPC64
420
static inline unsigned long test_irq_work_pending(void)
421
{
422 423 424 425
	unsigned long x;

	asm volatile("lbz %0,%1(13)"
		: "=r" (x)
426
		: "i" (offsetof(struct paca_struct, irq_work_pending)));
427 428 429
	return x;
}

430
static inline void set_irq_work_pending_flag(void)
431 432 433
{
	asm volatile("stb %0,%1(13)" : :
		"r" (1),
434
		"i" (offsetof(struct paca_struct, irq_work_pending)));
435 436
}

437
static inline void clear_irq_work_pending(void)
438 439 440
{
	asm volatile("stb %0,%1(13)" : :
		"r" (0),
441
		"i" (offsetof(struct paca_struct, irq_work_pending)));
442 443
}

444 445
#else /* 32-bit */

446
DEFINE_PER_CPU(u8, irq_work_pending);
447

448 449 450
#define set_irq_work_pending_flag()	__get_cpu_var(irq_work_pending) = 1
#define test_irq_work_pending()		__get_cpu_var(irq_work_pending)
#define clear_irq_work_pending()	__get_cpu_var(irq_work_pending) = 0
451

452 453
#endif /* 32 vs 64 bit */

454
void arch_irq_work_raise(void)
455 456
{
	preempt_disable();
457
	set_irq_work_pending_flag();
458 459 460 461
	set_dec(1);
	preempt_enable();
}

462
#else  /* CONFIG_IRQ_WORK */
463

464 465
#define test_irq_work_pending()	0
#define clear_irq_work_pending()
466

467
#endif /* CONFIG_IRQ_WORK */
468

L
Linus Torvalds 已提交
469 470 471 472
/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 */
473
void timer_interrupt(struct pt_regs * regs)
L
Linus Torvalds 已提交
474
{
475
	struct pt_regs *old_regs;
476 477
	u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
	struct clock_event_device *evt = &__get_cpu_var(decrementers);
478

479 480 481 482 483 484 485 486 487 488 489
	/* Ensure a positive value is written to the decrementer, or else
	 * some CPUs will continue to take decrementer exceptions.
	 */
	set_dec(DECREMENTER_MAX);

	/* Some implementations of hotplug will get timer interrupts while
	 * offline, just ignore these
	 */
	if (!cpu_online(smp_processor_id()))
		return;

490 491 492 493 494
	/* Conditionally hard-enable interrupts now that the DEC has been
	 * bumped to its maximum value
	 */
	may_hard_irq_enable();

495 496
	trace_timer_interrupt_entry(regs);

497 498
	__get_cpu_var(irq_stat).timer_irqs++;

499
#if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
500 501 502
	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);
#endif
L
Linus Torvalds 已提交
503

504
	old_regs = set_irq_regs(regs);
L
Linus Torvalds 已提交
505 506
	irq_enter();

507 508 509
	if (test_irq_work_pending()) {
		clear_irq_work_pending();
		irq_work_run();
510 511
	}

512
	*next_tb = ~(u64)0;
513 514
	if (evt->event_handler)
		evt->event_handler(evt);
L
Linus Torvalds 已提交
515

516
#ifdef CONFIG_PPC64
517
	/* collect purr register values often, for accurate calculations */
518
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
L
Linus Torvalds 已提交
519 520 521
		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
		cu->current_tb = mfspr(SPRN_PURR);
	}
522
#endif
L
Linus Torvalds 已提交
523 524

	irq_exit();
525
	set_irq_regs(old_regs);
526 527

	trace_timer_interrupt_exit(regs);
L
Linus Torvalds 已提交
528 529
}

530
#ifdef CONFIG_SUSPEND
531
static void generic_suspend_disable_irqs(void)
532 533 534 535 536
{
	/* Disable the decrementer, so that it doesn't interfere
	 * with suspending.
	 */

537
	set_dec(DECREMENTER_MAX);
538
	local_irq_disable();
539
	set_dec(DECREMENTER_MAX);
540 541
}

542
static void generic_suspend_enable_irqs(void)
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
{
	local_irq_enable();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_disable_irqs(void)
{
	if (ppc_md.suspend_disable_irqs)
		ppc_md.suspend_disable_irqs();
	generic_suspend_disable_irqs();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_enable_irqs(void)
{
	generic_suspend_enable_irqs();
	if (ppc_md.suspend_enable_irqs)
		ppc_md.suspend_enable_irqs();
}
#endif

L
Linus Torvalds 已提交
564 565 566 567 568 569 570 571 572
/*
 * Scheduler clock - returns current time in nanosec units.
 *
 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 * are 64-bit unsigned numbers.
 */
unsigned long long sched_clock(void)
{
573 574
	if (__USE_RTC())
		return get_rtc();
575
	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
L
Linus Torvalds 已提交
576 577
}

578
static int __init get_freq(char *name, int cells, unsigned long *val)
579 580
{
	struct device_node *cpu;
581
	const unsigned int *fp;
582
	int found = 0;
583

584
	/* The cpu node should have timebase and clock frequency properties */
585 586
	cpu = of_find_node_by_type(NULL, "cpu");

587
	if (cpu) {
588
		fp = of_get_property(cpu, name, NULL);
589
		if (fp) {
590
			found = 1;
591
			*val = of_read_ulong(fp, cells);
592
		}
593 594

		of_node_put(cpu);
595
	}
596 597 598 599

	return found;
}

600 601 602 603 604 605 606 607 608 609 610 611
/* should become __cpuinit when secondary_cpu_time_init also is */
void start_cpu_decrementer(void)
{
#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
	/* Clear any pending timer interrupts */
	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);

	/* Enable decrementer interrupt */
	mtspr(SPRN_TCR, TCR_DIE);
#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
}

612 613 614 615 616 617 618
void __init generic_calibrate_decr(void)
{
	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */

	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {

619 620
		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
				"(not found)\n");
621
	}
622

623 624 625 626 627 628 629
	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */

	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {

		printk(KERN_ERR "WARNING: Estimating processor frequency "
				"(not found)\n");
630 631 632
	}
}

633
int update_persistent_clock(struct timespec now)
634 635 636
{
	struct rtc_time tm;

637 638 639 640 641 642 643 644 645 646
	if (!ppc_md.set_rtc_time)
		return 0;

	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
	tm.tm_year -= 1900;
	tm.tm_mon -= 1;

	return ppc_md.set_rtc_time(&tm);
}

647
static void __read_persistent_clock(struct timespec *ts)
648 649 650 651
{
	struct rtc_time tm;
	static int first = 1;

652
	ts->tv_nsec = 0;
653 654 655 656 657 658 659
	/* XXX this is a litle fragile but will work okay in the short term */
	if (first) {
		first = 0;
		if (ppc_md.time_init)
			timezone_offset = ppc_md.time_init();

		/* get_boot_time() isn't guaranteed to be safe to call late */
660 661 662 663 664 665 666 667
		if (ppc_md.get_boot_time) {
			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
			return;
		}
	}
	if (!ppc_md.get_rtc_time) {
		ts->tv_sec = 0;
		return;
668
	}
669
	ppc_md.get_rtc_time(&tm);
670

671 672
	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
			    tm.tm_hour, tm.tm_min, tm.tm_sec);
673 674
}

675 676 677 678 679 680 681 682 683 684 685 686
void read_persistent_clock(struct timespec *ts)
{
	__read_persistent_clock(ts);

	/* Sanitize it in case real time clock is set below EPOCH */
	if (ts->tv_sec < 0) {
		ts->tv_sec = 0;
		ts->tv_nsec = 0;
	}
		
}

687
/* clocksource code */
688
static cycle_t rtc_read(struct clocksource *cs)
689 690 691 692
{
	return (cycle_t)get_rtc();
}

693
static cycle_t timebase_read(struct clocksource *cs)
694 695 696 697
{
	return (cycle_t)get_tb();
}

698 699
void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
			struct clocksource *clock, u32 mult)
700
{
J
John Stultz 已提交
701
	u64 new_tb_to_xs, new_stamp_xsec;
702
	u32 frac_sec;
703 704 705 706 707 708 709 710

	if (clock != &clocksource_timebase)
		return;

	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();

711 712
	/* 19342813113834067 ~= 2^(20+64) / 1e9 */
	new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
J
John Stultz 已提交
713
	new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
J
John Stultz 已提交
714
	do_div(new_stamp_xsec, 1000000000);
J
John Stultz 已提交
715
	new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
J
John Stultz 已提交
716

717 718 719 720
	BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
	/* this is tv_nsec / 1e9 as a 0.32 fraction */
	frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;

J
John Stultz 已提交
721 722 723 724 725 726 727 728 729 730 731 732 733 734
	/*
	 * tb_update_count is used to allow the userspace gettimeofday code
	 * to assure itself that it sees a consistent view of the tb_to_xs and
	 * stamp_xsec variables.  It reads the tb_update_count, then reads
	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
	 * the two values of tb_update_count match and are even then the
	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
	 * loops back and reads them again until this criteria is met.
	 * We expect the caller to have done the first increment of
	 * vdso_data->tb_update_count already.
	 */
	vdso_data->tb_orig_stamp = clock->cycle_last;
	vdso_data->stamp_xsec = new_stamp_xsec;
	vdso_data->tb_to_xs = new_tb_to_xs;
735 736
	vdso_data->wtom_clock_sec = wtm->tv_sec;
	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
J
John Stultz 已提交
737
	vdso_data->stamp_xtime = *wall_time;
738
	vdso_data->stamp_sec_fraction = frac_sec;
J
John Stultz 已提交
739 740
	smp_wmb();
	++(vdso_data->tb_update_count);
741 742 743 744 745 746 747 748 749 750 751 752 753
}

void update_vsyscall_tz(void)
{
	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();
	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
	smp_mb();
	++vdso_data->tb_update_count;
}

754
static void __init clocksource_init(void)
755 756 757 758 759 760 761 762
{
	struct clocksource *clock;

	if (__USE_RTC())
		clock = &clocksource_rtc;
	else
		clock = &clocksource_timebase;

763
	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
764 765 766 767 768 769 770 771 772
		printk(KERN_ERR "clocksource: %s is already registered\n",
		       clock->name);
		return;
	}

	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
	       clock->name, clock->mult, clock->shift);
}

773 774 775
static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev)
{
776
	__get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt;
777 778 779 780 781 782 783 784 785 786 787 788 789
	set_dec(evt);
	return 0;
}

static void decrementer_set_mode(enum clock_event_mode mode,
				 struct clock_event_device *dev)
{
	if (mode != CLOCK_EVT_MODE_ONESHOT)
		decrementer_set_next_event(DECREMENTER_MAX, dev);
}

static void register_decrementer_clockevent(int cpu)
{
790
	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
791 792

	*dec = decrementer_clockevent;
793
	dec->cpumask = cpumask_of(cpu);
794

795 796
	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
		    dec->name, dec->mult, dec->shift, cpu);
797 798 799 800

	clockevents_register_device(dec);
}

801
static void __init init_decrementer_clockevent(void)
802 803 804
{
	int cpu = smp_processor_id();

805 806
	clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);

807 808
	decrementer_clockevent.max_delta_ns =
		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
809 810
	decrementer_clockevent.min_delta_ns =
		clockevent_delta2ns(2, &decrementer_clockevent);
811 812 813 814 815 816

	register_decrementer_clockevent(cpu);
}

void secondary_cpu_time_init(void)
{
817 818 819 820 821
	/* Start the decrementer on CPUs that have manual control
	 * such as BookE
	 */
	start_cpu_decrementer();

822 823 824 825 826
	/* FIME: Should make unrelatred change to move snapshot_timebase
	 * call here ! */
	register_decrementer_clockevent(smp_processor_id());
}

827
/* This function is only called on the boot processor */
L
Linus Torvalds 已提交
828 829 830
void __init time_init(void)
{
	struct div_result res;
831
	u64 scale;
832 833
	unsigned shift;

834 835 836 837 838 839
	if (__USE_RTC()) {
		/* 601 processor: dec counts down by 128 every 128ns */
		ppc_tb_freq = 1000000000;
	} else {
		/* Normal PowerPC with timebase register */
		ppc_md.calibrate_decr();
840
		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
841
		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
842
		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
843 844
		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
	}
845 846

	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
847
	tb_ticks_per_sec = ppc_tb_freq;
848
	tb_ticks_per_usec = ppc_tb_freq / 1000000;
849
	calc_cputime_factors();
850
	setup_cputime_one_jiffy();
851

L
Linus Torvalds 已提交
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
	/*
	 * Compute scale factor for sched_clock.
	 * The calibrate_decr() function has set tb_ticks_per_sec,
	 * which is the timebase frequency.
	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
	 * the 128-bit result as a 64.64 fixed-point number.
	 * We then shift that number right until it is less than 1.0,
	 * giving us the scale factor and shift count to use in
	 * sched_clock().
	 */
	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
	scale = res.result_low;
	for (shift = 0; res.result_high != 0; ++shift) {
		scale = (scale >> 1) | (res.result_high << 63);
		res.result_high >>= 1;
	}
	tb_to_ns_scale = scale;
	tb_to_ns_shift = shift;
870
	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
871
	boot_tb = get_tb_or_rtc();
L
Linus Torvalds 已提交
872

873
	/* If platform provided a timezone (pmac), we correct the time */
874
	if (timezone_offset) {
875 876
		sys_tz.tz_minuteswest = -timezone_offset / 60;
		sys_tz.tz_dsttime = 0;
877
	}
878

879 880
	vdso_data->tb_update_count = 0;
	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
L
Linus Torvalds 已提交
881

882 883 884 885 886
	/* Start the decrementer on CPUs that have manual control
	 * such as BookE
	 */
	start_cpu_decrementer();

887 888
	/* Register the clocksource */
	clocksource_init();
889

890
	init_decrementer_clockevent();
L
Linus Torvalds 已提交
891 892 893 894 895 896 897
}


#define FEBRUARY	2
#define	STARTOFTIME	1970
#define SECDAY		86400L
#define SECYR		(SECDAY * 365)
898 899
#define	leapyear(year)		((year) % 4 == 0 && \
				 ((year) % 100 != 0 || (year) % 400 == 0))
L
Linus Torvalds 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
#define	days_in_month(a) 	(month_days[(a) - 1])

static int month_days[12] = {
	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

/*
 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
 */
void GregorianDay(struct rtc_time * tm)
{
	int leapsToDate;
	int lastYear;
	int day;
	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };

917
	lastYear = tm->tm_year - 1;
L
Linus Torvalds 已提交
918 919 920 921

	/*
	 * Number of leap corrections to apply up to end of last year
	 */
922
	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
L
Linus Torvalds 已提交
923 924 925 926 927

	/*
	 * This year is a leap year if it is divisible by 4 except when it is
	 * divisible by 100 unless it is divisible by 400
	 *
928
	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
L
Linus Torvalds 已提交
929
	 */
930
	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
L
Linus Torvalds 已提交
931 932 933 934

	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
		   tm->tm_mday;

935
	tm->tm_wday = day % 7;
L
Linus Torvalds 已提交
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
}

void to_tm(int tim, struct rtc_time * tm)
{
	register int    i;
	register long   hms, day;

	day = tim / SECDAY;
	hms = tim % SECDAY;

	/* Hours, minutes, seconds are easy */
	tm->tm_hour = hms / 3600;
	tm->tm_min = (hms % 3600) / 60;
	tm->tm_sec = (hms % 3600) % 60;

	/* Number of years in days */
	for (i = STARTOFTIME; day >= days_in_year(i); i++)
		day -= days_in_year(i);
	tm->tm_year = i;

	/* Number of months in days left */
	if (leapyear(tm->tm_year))
		days_in_month(FEBRUARY) = 29;
	for (i = 1; day >= days_in_month(i); i++)
		day -= days_in_month(i);
	days_in_month(FEBRUARY) = 28;
	tm->tm_mon = i;

	/* Days are what is left over (+1) from all that. */
	tm->tm_mday = day + 1;

	/*
	 * Determine the day of week
	 */
	GregorianDay(tm);
}

/*
 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
 * result.
 */
977 978
void div128_by_32(u64 dividend_high, u64 dividend_low,
		  unsigned divisor, struct div_result *dr)
L
Linus Torvalds 已提交
979
{
980 981 982
	unsigned long a, b, c, d;
	unsigned long w, x, y, z;
	u64 ra, rb, rc;
L
Linus Torvalds 已提交
983 984 985 986 987 988

	a = dividend_high >> 32;
	b = dividend_high & 0xffffffff;
	c = dividend_low >> 32;
	d = dividend_low & 0xffffffff;

989 990 991 992 993
	w = a / divisor;
	ra = ((u64)(a - (w * divisor)) << 32) + b;

	rb = ((u64) do_div(ra, divisor) << 32) + c;
	x = ra;
L
Linus Torvalds 已提交
994

995 996 997 998 999
	rc = ((u64) do_div(rb, divisor) << 32) + d;
	y = rb;

	do_div(rc, divisor);
	z = rc;
L
Linus Torvalds 已提交
1000

1001 1002
	dr->result_high = ((u64)w << 32) + x;
	dr->result_low  = ((u64)y << 32) + z;
L
Linus Torvalds 已提交
1003 1004

}
1005

1006 1007 1008 1009 1010 1011 1012 1013 1014
/* We don't need to calibrate delay, we use the CPU timebase for that */
void calibrate_delay(void)
{
	/* Some generic code (such as spinlock debug) use loops_per_jiffy
	 * as the number of __delay(1) in a jiffy, so make it so
	 */
	loops_per_jiffy = tb_ticks_per_jiffy;
}

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
static int __init rtc_init(void)
{
	struct platform_device *pdev;

	if (!ppc_md.get_rtc_time)
		return -ENODEV;

	pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
	if (IS_ERR(pdev))
		return PTR_ERR(pdev);

	return 0;
}

module_init(rtc_init);