time.c 30.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/*
 * Common time routines among all ppc machines.
 *
 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
 * Paul Mackerras' version and mine for PReP and Pmac.
 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
 *
 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
 * to make clock more stable (2.4.0-test5). The only thing
 * that this code assumes is that the timebases have been synchronized
 * by firmware on SMP and are never stopped (never do sleep
 * on SMP then, nap and doze are OK).
 * 
 * Speeded up do_gettimeofday by getting rid of references to
 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
 *
 * TODO (not necessarily in this file):
 * - improve precision and reproducibility of timebase frequency
 * measurement at boot time. (for iSeries, we calibrate the timebase
 * against the Titan chip's clock.)
 * - for astronomical applications: add a new function to get
 * non ambiguous timestamps even around leap seconds. This needs
 * a new timestamp format and a good name.
 *
 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/cpu.h>
#include <linux/security.h>
50 51
#include <linux/percpu.h>
#include <linux/rtc.h>
52
#include <linux/jiffies.h>
53
#include <linux/posix-timers.h>
54
#include <linux/irq.h>
L
Linus Torvalds 已提交
55 56 57 58 59 60 61 62 63

#include <asm/io.h>
#include <asm/processor.h>
#include <asm/nvram.h>
#include <asm/cache.h>
#include <asm/machdep.h>
#include <asm/uaccess.h>
#include <asm/time.h>
#include <asm/prom.h>
64 65
#include <asm/irq.h>
#include <asm/div64.h>
P
Paul Mackerras 已提交
66
#include <asm/smp.h>
67
#include <asm/vdso_datapage.h>
68
#include <asm/firmware.h>
M
Michael Neuling 已提交
69
#include <asm/cputime.h>
70
#ifdef CONFIG_PPC_ISERIES
71
#include <asm/iseries/it_lp_queue.h>
72
#include <asm/iseries/hv_call_xm.h>
73
#endif
L
Linus Torvalds 已提交
74

75 76
/* powerpc clocksource/clockevent code */

77
#include <linux/clockchips.h>
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#include <linux/clocksource.h>

static cycle_t rtc_read(void);
static struct clocksource clocksource_rtc = {
	.name         = "rtc",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.shift        = 22,
	.mult         = 0,	/* To be filled in */
	.read         = rtc_read,
};

static cycle_t timebase_read(void);
static struct clocksource clocksource_timebase = {
	.name         = "timebase",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.shift        = 22,
	.mult         = 0,	/* To be filled in */
	.read         = timebase_read,
};

102 103 104 105 106 107 108 109 110 111
#define DECREMENTER_MAX	0x7fffffff

static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev);
static void decrementer_set_mode(enum clock_event_mode mode,
				 struct clock_event_device *dev);

static struct clock_event_device decrementer_clockevent = {
       .name           = "decrementer",
       .rating         = 200,
112
       .shift          = 16,
113 114 115 116 117 118 119
       .mult           = 0,	/* To be filled in */
       .irq            = 0,
       .set_next_event = decrementer_set_next_event,
       .set_mode       = decrementer_set_mode,
       .features       = CLOCK_EVT_FEAT_ONESHOT,
};

120 121 122 123 124 125
struct decrementer_clock {
	struct clock_event_device event;
	u64 next_tb;
};

static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
126

L
Linus Torvalds 已提交
127
#ifdef CONFIG_PPC_ISERIES
128 129
static unsigned long __initdata iSeries_recal_titan;
static signed long __initdata iSeries_recal_tb;
130 131

/* Forward declaration is only needed for iSereis compiles */
132
static void __init clocksource_init(void);
L
Linus Torvalds 已提交
133 134 135 136
#endif

#define XSEC_PER_SEC (1024*1024)

137 138 139 140 141 142 143
#ifdef CONFIG_PPC64
#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
#else
/* compute ((xsec << 12) * max) >> 32 */
#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
#endif

L
Linus Torvalds 已提交
144 145 146 147
unsigned long tb_ticks_per_jiffy;
unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
148
EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
149 150
u64 tb_to_xs;
unsigned tb_to_us;
151

152
#define TICKLEN_SCALE	NTP_SCALE_SHIFT
153 154
static u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
static u64 ticklen_to_xs;	/* 0.64 fraction */
155 156 157 158 159

/* If last_tick_len corresponds to about 1/HZ seconds, then
   last_tick_len << TICKLEN_SHIFT will be about 2^63. */
#define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)

L
Linus Torvalds 已提交
160
DEFINE_SPINLOCK(rtc_lock);
161
EXPORT_SYMBOL_GPL(rtc_lock);
L
Linus Torvalds 已提交
162

163 164 165
static u64 tb_to_ns_scale __read_mostly;
static unsigned tb_to_ns_shift __read_mostly;
static unsigned long boot_tb __read_mostly;
L
Linus Torvalds 已提交
166 167

extern struct timezone sys_tz;
168
static long timezone_offset;
L
Linus Torvalds 已提交
169

170
unsigned long ppc_proc_freq;
171
EXPORT_SYMBOL(ppc_proc_freq);
172 173
unsigned long ppc_tb_freq;

174 175
static u64 tb_last_jiffy __cacheline_aligned_in_smp;
static DEFINE_PER_CPU(u64, last_jiffy);
176

177 178 179 180 181 182 183
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
/*
 * Factors for converting from cputime_t (timebase ticks) to
 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
 * These are all stored as 0.64 fixed-point binary fractions.
 */
u64 __cputime_jiffies_factor;
184
EXPORT_SYMBOL(__cputime_jiffies_factor);
185
u64 __cputime_msec_factor;
186
EXPORT_SYMBOL(__cputime_msec_factor);
187
u64 __cputime_sec_factor;
188
EXPORT_SYMBOL(__cputime_sec_factor);
189
u64 __cputime_clockt_factor;
190
EXPORT_SYMBOL(__cputime_clockt_factor);
M
Michael Neuling 已提交
191 192
DEFINE_PER_CPU(unsigned long, cputime_last_delta);
DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

static void calc_cputime_factors(void)
{
	struct div_result res;

	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
	__cputime_jiffies_factor = res.result_low;
	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
	__cputime_msec_factor = res.result_low;
	div128_by_32(1, 0, tb_ticks_per_sec, &res);
	__cputime_sec_factor = res.result_low;
	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
	__cputime_clockt_factor = res.result_low;
}

/*
 * Read the PURR on systems that have it, otherwise the timebase.
 */
static u64 read_purr(void)
{
	if (cpu_has_feature(CPU_FTR_PURR))
		return mfspr(SPRN_PURR);
	return mftb();
}

218 219 220 221 222
/*
 * Read the SPURR on systems that have it, otherwise the purr
 */
static u64 read_spurr(u64 purr)
{
223 224 225 226 227
	/*
	 * cpus without PURR won't have a SPURR
	 * We already know the former when we use this, so tell gcc
	 */
	if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
228 229 230 231
		return mfspr(SPRN_SPURR);
	return purr;
}

232 233 234 235 236 237
/*
 * Account time for a transition between system, hard irq
 * or soft irq state.
 */
void account_system_vtime(struct task_struct *tsk)
{
238
	u64 now, nowscaled, delta, deltascaled, sys_time;
239 240 241 242
	unsigned long flags;

	local_irq_save(flags);
	now = read_purr();
243
	nowscaled = read_spurr(now);
244
	delta = now - get_paca()->startpurr;
245
	deltascaled = nowscaled - get_paca()->startspurr;
246
	get_paca()->startpurr = now;
247
	get_paca()->startspurr = nowscaled;
248
	if (!in_interrupt()) {
249 250 251
		/* deltascaled includes both user and system time.
		 * Hence scale it based on the purr ratio to estimate
		 * the system time */
252
		sys_time = get_paca()->system_time;
253
		if (get_paca()->user_time)
254 255 256
			deltascaled = deltascaled * sys_time /
			     (sys_time + get_paca()->user_time);
		delta += sys_time;
257 258
		get_paca()->system_time = 0;
	}
259 260 261 262
	if (in_irq() || idle_task(smp_processor_id()) != tsk)
		account_system_time(tsk, 0, delta, deltascaled);
	else
		account_idle_time(delta);
M
Michael Neuling 已提交
263 264
	per_cpu(cputime_last_delta, smp_processor_id()) = delta;
	per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
265 266 267 268 269 270 271 272 273
	local_irq_restore(flags);
}

/*
 * Transfer the user and system times accumulated in the paca
 * by the exception entry and exit code to the generic process
 * user and system time records.
 * Must be called with interrupts disabled.
 */
274
void account_process_tick(struct task_struct *tsk, int user_tick)
275
{
276
	cputime_t utime, utimescaled;
277 278 279

	utime = get_paca()->user_time;
	get_paca()->user_time = 0;
M
Michael Neuling 已提交
280
	utimescaled = cputime_to_scaled(utime);
281
	account_user_time(tsk, utime, utimescaled);
282 283 284 285 286 287 288 289 290
}

/*
 * Stuff for accounting stolen time.
 */
struct cpu_purr_data {
	int	initialized;			/* thread is running */
	u64	tb;			/* last TB value read */
	u64	purr;			/* last PURR value read */
291
	u64	spurr;			/* last SPURR value read */
292 293
};

294 295 296 297 298 299 300
/*
 * Each entry in the cpu_purr_data array is manipulated only by its
 * "owner" cpu -- usually in the timer interrupt but also occasionally
 * in process context for cpu online.  As long as cpus do not touch
 * each others' cpu_purr_data, disabling local interrupts is
 * sufficient to serialize accesses.
 */
301 302 303 304
static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);

static void snapshot_tb_and_purr(void *data)
{
305
	unsigned long flags;
306 307
	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);

308
	local_irq_save(flags);
309
	p->tb = get_tb_or_rtc();
310
	p->purr = mfspr(SPRN_PURR);
311 312
	wmb();
	p->initialized = 1;
313
	local_irq_restore(flags);
314 315 316 317 318 319 320 321 322
}

/*
 * Called during boot when all cpus have come up.
 */
void snapshot_timebases(void)
{
	if (!cpu_has_feature(CPU_FTR_PURR))
		return;
323
	on_each_cpu(snapshot_tb_and_purr, NULL, 1);
324 325
}

326 327 328
/*
 * Must be called with interrupts disabled.
 */
329 330
void calculate_steal_time(void)
{
331
	u64 tb, purr;
332
	s64 stolen;
333
	struct cpu_purr_data *pme;
334

335
	pme = &__get_cpu_var(cpu_purr_data);
336
	if (!pme->initialized)
337
		return;		/* !CPU_FTR_PURR or early in early boot */
338
	tb = mftb();
339 340
	purr = mfspr(SPRN_PURR);
	stolen = (tb - pme->tb) - (purr - pme->purr);
341 342 343 344 345 346
	if (stolen > 0) {
		if (idle_task(smp_processor_id()) != current)
			account_steal_time(stolen);
		else
			account_idle_time(stolen);
	}
347 348 349 350
	pme->tb = tb;
	pme->purr = purr;
}

351
#ifdef CONFIG_PPC_SPLPAR
352 353 354 355 356 357
/*
 * Must be called before the cpu is added to the online map when
 * a cpu is being brought up at runtime.
 */
static void snapshot_purr(void)
{
358
	struct cpu_purr_data *pme;
359 360 361 362
	unsigned long flags;

	if (!cpu_has_feature(CPU_FTR_PURR))
		return;
363
	local_irq_save(flags);
364
	pme = &__get_cpu_var(cpu_purr_data);
365 366
	pme->tb = mftb();
	pme->purr = mfspr(SPRN_PURR);
367
	pme->initialized = 1;
368
	local_irq_restore(flags);
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
}

#endif /* CONFIG_PPC_SPLPAR */

#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
#define calc_cputime_factors()
#define calculate_steal_time()		do { } while (0)
#endif

#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
#define snapshot_purr()			do { } while (0)
#endif

/*
 * Called when a cpu comes up after the system has finished booting,
 * i.e. as a result of a hotplug cpu action.
 */
void snapshot_timebase(void)
{
388
	__get_cpu_var(last_jiffy) = get_tb_or_rtc();
389 390 391
	snapshot_purr();
}

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
void __delay(unsigned long loops)
{
	unsigned long start;
	int diff;

	if (__USE_RTC()) {
		start = get_rtcl();
		do {
			/* the RTCL register wraps at 1000000000 */
			diff = get_rtcl() - start;
			if (diff < 0)
				diff += 1000000000;
		} while (diff < loops);
	} else {
		start = get_tbl();
		while (get_tbl() - start < loops)
			HMT_low();
		HMT_medium();
	}
}
EXPORT_SYMBOL(__delay);

void udelay(unsigned long usecs)
{
	__delay(tb_ticks_per_usec * usecs);
}
EXPORT_SYMBOL(udelay);

420
static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
421
			       u64 new_tb_to_xs)
L
Linus Torvalds 已提交
422
{
423 424 425 426 427 428 429 430
	/*
	 * tb_update_count is used to allow the userspace gettimeofday code
	 * to assure itself that it sees a consistent view of the tb_to_xs and
	 * stamp_xsec variables.  It reads the tb_update_count, then reads
	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
	 * the two values of tb_update_count match and are even then the
	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
	 * loops back and reads them again until this criteria is met.
431 432
	 * We expect the caller to have done the first increment of
	 * vdso_data->tb_update_count already.
433
	 */
434 435 436 437 438
	vdso_data->tb_orig_stamp = new_tb_stamp;
	vdso_data->stamp_xsec = new_stamp_xsec;
	vdso_data->tb_to_xs = new_tb_to_xs;
	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
439
	vdso_data->stamp_xtime = xtime;
440
	smp_wmb();
441
	++(vdso_data->tb_update_count);
442 443
}

L
Linus Torvalds 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
	unsigned long pc = instruction_pointer(regs);

	if (in_lock_functions(pc))
		return regs->link;

	return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif

#ifdef CONFIG_PPC_ISERIES

/* 
 * This function recalibrates the timebase based on the 49-bit time-of-day
 * value in the Titan chip.  The Titan is much more accurate than the value
 * returned by the service processor for the timebase frequency.  
 */

465
static int __init iSeries_tb_recal(void)
L
Linus Torvalds 已提交
466 467 468
{
	struct div_result divres;
	unsigned long titan, tb;
469 470 471 472 473

	/* Make sure we only run on iSeries */
	if (!firmware_has_feature(FW_FEATURE_ISERIES))
		return -ENODEV;

L
Linus Torvalds 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
	tb = get_tb();
	titan = HvCallXm_loadTod();
	if ( iSeries_recal_titan ) {
		unsigned long tb_ticks = tb - iSeries_recal_tb;
		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
		char sign = '+';		
		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;

		if ( tick_diff < 0 ) {
			tick_diff = -tick_diff;
			sign = '-';
		}
		if ( tick_diff ) {
			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
						new_tb_ticks_per_jiffy, sign, tick_diff );
				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
				tb_ticks_per_sec   = new_tb_ticks_per_sec;
496
				calc_cputime_factors();
L
Linus Torvalds 已提交
497 498
				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
				tb_to_xs = divres.result_low;
499 500
				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
				vdso_data->tb_to_xs = tb_to_xs;
L
Linus Torvalds 已提交
501 502 503 504 505 506 507 508 509 510 511
			}
			else {
				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
					"                   new tb_ticks_per_jiffy = %lu\n"
					"                   old tb_ticks_per_jiffy = %lu\n",
					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
			}
		}
	}
	iSeries_recal_titan = titan;
	iSeries_recal_tb = tb;
512

513 514
	/* Called here as now we know accurate values for the timebase */
	clocksource_init();
515
	return 0;
L
Linus Torvalds 已提交
516
}
517 518 519 520 521 522 523 524 525
late_initcall(iSeries_tb_recal);

/* Called from platform early init */
void __init iSeries_time_init_early(void)
{
	iSeries_recal_tb = get_tb();
	iSeries_recal_titan = HvCallXm_loadTod();
}
#endif /* CONFIG_PPC_ISERIES */
L
Linus Torvalds 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

/*
 * For iSeries shared processors, we have to let the hypervisor
 * set the hardware decrementer.  We set a virtual decrementer
 * in the lppaca and call the hypervisor if the virtual
 * decrementer is less than the current value in the hardware
 * decrementer. (almost always the new decrementer value will
 * be greater than the current hardware decementer so the hypervisor
 * call will not be needed)
 */

/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 */
541
void timer_interrupt(struct pt_regs * regs)
L
Linus Torvalds 已提交
542
{
543
	struct pt_regs *old_regs;
544 545
	struct decrementer_clock *decrementer =  &__get_cpu_var(decrementers);
	struct clock_event_device *evt = &decrementer->event;
546
	u64 now;
547 548 549 550

	/* Ensure a positive value is written to the decrementer, or else
	 * some CPUs will continuue to take decrementer exceptions */
	set_dec(DECREMENTER_MAX);
551 552 553 554 555

#ifdef CONFIG_PPC32
	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);
#endif
L
Linus Torvalds 已提交
556

557
	now = get_tb_or_rtc();
558
	if (now < decrementer->next_tb) {
559
		/* not time for this event yet */
560
		now = decrementer->next_tb - now;
561
		if (now <= DECREMENTER_MAX)
562
			set_dec((int)now);
563 564
		return;
	}
565
	old_regs = set_irq_regs(regs);
L
Linus Torvalds 已提交
566 567
	irq_enter();

568
	calculate_steal_time();
L
Linus Torvalds 已提交
569

570
#ifdef CONFIG_PPC_ISERIES
571 572
	if (firmware_has_feature(FW_FEATURE_ISERIES))
		get_lppaca()->int_dword.fields.decr_int = 0;
573 574
#endif

575 576
	if (evt->event_handler)
		evt->event_handler(evt);
L
Linus Torvalds 已提交
577 578

#ifdef CONFIG_PPC_ISERIES
579
	if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
O
Olaf Hering 已提交
580
		process_hvlpevents();
L
Linus Torvalds 已提交
581 582
#endif

583
#ifdef CONFIG_PPC64
584
	/* collect purr register values often, for accurate calculations */
585
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
L
Linus Torvalds 已提交
586 587 588
		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
		cu->current_tb = mfspr(SPRN_PURR);
	}
589
#endif
L
Linus Torvalds 已提交
590 591

	irq_exit();
592
	set_irq_regs(old_regs);
L
Linus Torvalds 已提交
593 594
}

595 596
void wakeup_decrementer(void)
{
597
	unsigned long ticks;
598 599

	/*
600 601
	 * The timebase gets saved on sleep and restored on wakeup,
	 * so all we need to do is to reset the decrementer.
602
	 */
603 604 605 606 607 608
	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
	if (ticks < tb_ticks_per_jiffy)
		ticks = tb_ticks_per_jiffy - ticks;
	else
		ticks = 1;
	set_dec(ticks);
609 610
}

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
#ifdef CONFIG_SUSPEND
void generic_suspend_disable_irqs(void)
{
	preempt_disable();

	/* Disable the decrementer, so that it doesn't interfere
	 * with suspending.
	 */

	set_dec(0x7fffffff);
	local_irq_disable();
	set_dec(0x7fffffff);
}

void generic_suspend_enable_irqs(void)
{
	wakeup_decrementer();

	local_irq_enable();
	preempt_enable();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_disable_irqs(void)
{
	if (ppc_md.suspend_disable_irqs)
		ppc_md.suspend_disable_irqs();
	generic_suspend_disable_irqs();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_enable_irqs(void)
{
	generic_suspend_enable_irqs();
	if (ppc_md.suspend_enable_irqs)
		ppc_md.suspend_enable_irqs();
}
#endif

650
#ifdef CONFIG_SMP
651 652 653
void __init smp_space_timers(unsigned int max_cpus)
{
	int i;
654
	u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
655

656 657
	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
	previous_tb -= tb_ticks_per_jiffy;
658

659
	for_each_possible_cpu(i) {
660 661
		if (i == boot_cpuid)
			continue;
662
		per_cpu(last_jiffy, i) = previous_tb;
663 664 665 666
	}
}
#endif

L
Linus Torvalds 已提交
667 668 669 670 671 672 673 674 675
/*
 * Scheduler clock - returns current time in nanosec units.
 *
 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 * are 64-bit unsigned numbers.
 */
unsigned long long sched_clock(void)
{
676 677
	if (__USE_RTC())
		return get_rtc();
678
	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
L
Linus Torvalds 已提交
679 680
}

681
static int __init get_freq(char *name, int cells, unsigned long *val)
682 683
{
	struct device_node *cpu;
684
	const unsigned int *fp;
685
	int found = 0;
686

687
	/* The cpu node should have timebase and clock frequency properties */
688 689
	cpu = of_find_node_by_type(NULL, "cpu");

690
	if (cpu) {
691
		fp = of_get_property(cpu, name, NULL);
692
		if (fp) {
693
			found = 1;
694
			*val = of_read_ulong(fp, cells);
695
		}
696 697

		of_node_put(cpu);
698
	}
699 700 701 702 703 704 705 706 707 708 709

	return found;
}

void __init generic_calibrate_decr(void)
{
	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */

	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {

710 711
		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
				"(not found)\n");
712
	}
713

714 715 716 717 718 719 720
	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */

	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {

		printk(KERN_ERR "WARNING: Estimating processor frequency "
				"(not found)\n");
721
	}
722

J
Josh Boyer 已提交
723
#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
724 725 726 727 728 729
	/* Clear any pending timer interrupts */
	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);

	/* Enable decrementer interrupt */
	mtspr(SPRN_TCR, TCR_DIE);
#endif
730 731
}

732
int update_persistent_clock(struct timespec now)
733 734 735
{
	struct rtc_time tm;

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
	if (!ppc_md.set_rtc_time)
		return 0;

	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
	tm.tm_year -= 1900;
	tm.tm_mon -= 1;

	return ppc_md.set_rtc_time(&tm);
}

unsigned long read_persistent_clock(void)
{
	struct rtc_time tm;
	static int first = 1;

	/* XXX this is a litle fragile but will work okay in the short term */
	if (first) {
		first = 0;
		if (ppc_md.time_init)
			timezone_offset = ppc_md.time_init();

		/* get_boot_time() isn't guaranteed to be safe to call late */
		if (ppc_md.get_boot_time)
			return ppc_md.get_boot_time() -timezone_offset;
	}
761 762 763 764 765 766 767
	if (!ppc_md.get_rtc_time)
		return 0;
	ppc_md.get_rtc_time(&tm);
	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
		      tm.tm_hour, tm.tm_min, tm.tm_sec);
}

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
/* clocksource code */
static cycle_t rtc_read(void)
{
	return (cycle_t)get_rtc();
}

static cycle_t timebase_read(void)
{
	return (cycle_t)get_tb();
}

void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
{
	u64 t2x, stamp_xsec;

	if (clock != &clocksource_timebase)
		return;

	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();

	/* XXX this assumes clock->shift == 22 */
	/* 4611686018 ~= 2^(20+64-22) / 1e9 */
	t2x = (u64) clock->mult * 4611686018ULL;
	stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
	do_div(stamp_xsec, 1000000000);
	stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
	update_gtod(clock->cycle_last, stamp_xsec, t2x);
}

void update_vsyscall_tz(void)
{
	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();
	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
	smp_mb();
	++vdso_data->tb_update_count;
}

810
static void __init clocksource_init(void)
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
{
	struct clocksource *clock;

	if (__USE_RTC())
		clock = &clocksource_rtc;
	else
		clock = &clocksource_timebase;

	clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);

	if (clocksource_register(clock)) {
		printk(KERN_ERR "clocksource: %s is already registered\n",
		       clock->name);
		return;
	}

	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
	       clock->name, clock->mult, clock->shift);
}

831 832 833
static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev)
{
834
	__get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
835 836 837 838 839 840 841 842 843 844 845 846 847
	set_dec(evt);
	return 0;
}

static void decrementer_set_mode(enum clock_event_mode mode,
				 struct clock_event_device *dev)
{
	if (mode != CLOCK_EVT_MODE_ONESHOT)
		decrementer_set_next_event(DECREMENTER_MAX, dev);
}

static void register_decrementer_clockevent(int cpu)
{
848
	struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
849 850

	*dec = decrementer_clockevent;
851
	dec->cpumask = cpumask_of(cpu);
852

853
	printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
854 855 856 857 858
	       dec->name, dec->mult, dec->shift, cpu);

	clockevents_register_device(dec);
}

859
static void __init init_decrementer_clockevent(void)
860 861 862 863 864 865 866
{
	int cpu = smp_processor_id();

	decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC,
					     decrementer_clockevent.shift);
	decrementer_clockevent.max_delta_ns =
		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
867 868
	decrementer_clockevent.min_delta_ns =
		clockevent_delta2ns(2, &decrementer_clockevent);
869 870 871 872 873 874 875 876 877 878 879

	register_decrementer_clockevent(cpu);
}

void secondary_cpu_time_init(void)
{
	/* FIME: Should make unrelatred change to move snapshot_timebase
	 * call here ! */
	register_decrementer_clockevent(smp_processor_id());
}

880
/* This function is only called on the boot processor */
L
Linus Torvalds 已提交
881 882 883 884
void __init time_init(void)
{
	unsigned long flags;
	struct div_result res;
885
	u64 scale, x;
886 887
	unsigned shift;

888 889 890
	if (__USE_RTC()) {
		/* 601 processor: dec counts down by 128 every 128ns */
		ppc_tb_freq = 1000000000;
891
		tb_last_jiffy = get_rtcl();
892 893 894
	} else {
		/* Normal PowerPC with timebase register */
		ppc_md.calibrate_decr();
895
		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
896
		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
897
		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
898
		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
899
		tb_last_jiffy = get_tb();
900
	}
901 902

	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
903
	tb_ticks_per_sec = ppc_tb_freq;
904 905
	tb_ticks_per_usec = ppc_tb_freq / 1000000;
	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
906
	calc_cputime_factors();
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924

	/*
	 * Calculate the length of each tick in ns.  It will not be
	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
	 * rounded up.
	 */
	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
	do_div(x, ppc_tb_freq);
	tick_nsec = x;
	last_tick_len = x << TICKLEN_SCALE;

	/*
	 * Compute ticklen_to_xs, which is a factor which gets multiplied
	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
	 * It is computed as:
	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
925 926 927 928 929 930 931
	 * which turns out to be N = 51 - SHIFT_HZ.
	 * This gives the result as a 0.64 fixed-point fraction.
	 * That value is reduced by an offset amounting to 1 xsec per
	 * 2^31 timebase ticks to avoid problems with time going backwards
	 * by 1 xsec when we do timer_recalc_offset due to losing the
	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
	 * since there are 2^20 xsec in a second.
932
	 */
933 934
	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
935 936 937 938 939
	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
	ticklen_to_xs = res.result_low;

	/* Compute tb_to_xs from tick_nsec */
	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
940

L
Linus Torvalds 已提交
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
	/*
	 * Compute scale factor for sched_clock.
	 * The calibrate_decr() function has set tb_ticks_per_sec,
	 * which is the timebase frequency.
	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
	 * the 128-bit result as a 64.64 fixed-point number.
	 * We then shift that number right until it is less than 1.0,
	 * giving us the scale factor and shift count to use in
	 * sched_clock().
	 */
	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
	scale = res.result_low;
	for (shift = 0; res.result_high != 0; ++shift) {
		scale = (scale >> 1) | (res.result_high << 63);
		res.result_high >>= 1;
	}
	tb_to_ns_scale = scale;
	tb_to_ns_shift = shift;
959
	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
960
	boot_tb = get_tb_or_rtc();
L
Linus Torvalds 已提交
961 962

	write_seqlock_irqsave(&xtime_lock, flags);
963 964 965 966 967 968 969

	/* If platform provided a timezone (pmac), we correct the time */
        if (timezone_offset) {
		sys_tz.tz_minuteswest = -timezone_offset / 60;
		sys_tz.tz_dsttime = 0;
        }

970 971 972
	vdso_data->tb_orig_stamp = tb_last_jiffy;
	vdso_data->tb_update_count = 0;
	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
973
	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
974
	vdso_data->tb_to_xs = tb_to_xs;
L
Linus Torvalds 已提交
975 976 977

	write_sequnlock_irqrestore(&xtime_lock, flags);

978 979 980 981
	/* Register the clocksource, if we're not running on iSeries */
	if (!firmware_has_feature(FW_FEATURE_ISERIES))
		clocksource_init();

982
	init_decrementer_clockevent();
L
Linus Torvalds 已提交
983 984 985 986 987 988 989
}


#define FEBRUARY	2
#define	STARTOFTIME	1970
#define SECDAY		86400L
#define SECYR		(SECDAY * 365)
990 991
#define	leapyear(year)		((year) % 4 == 0 && \
				 ((year) % 100 != 0 || (year) % 400 == 0))
L
Linus Torvalds 已提交
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
#define	days_in_month(a) 	(month_days[(a) - 1])

static int month_days[12] = {
	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

/*
 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
 */
void GregorianDay(struct rtc_time * tm)
{
	int leapsToDate;
	int lastYear;
	int day;
	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };

1009
	lastYear = tm->tm_year - 1;
L
Linus Torvalds 已提交
1010 1011 1012 1013

	/*
	 * Number of leap corrections to apply up to end of last year
	 */
1014
	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
L
Linus Torvalds 已提交
1015 1016 1017 1018 1019

	/*
	 * This year is a leap year if it is divisible by 4 except when it is
	 * divisible by 100 unless it is divisible by 400
	 *
1020
	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
L
Linus Torvalds 已提交
1021
	 */
1022
	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
L
Linus Torvalds 已提交
1023 1024 1025 1026

	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
		   tm->tm_mday;

1027
	tm->tm_wday = day % 7;
L
Linus Torvalds 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
}

void to_tm(int tim, struct rtc_time * tm)
{
	register int    i;
	register long   hms, day;

	day = tim / SECDAY;
	hms = tim % SECDAY;

	/* Hours, minutes, seconds are easy */
	tm->tm_hour = hms / 3600;
	tm->tm_min = (hms % 3600) / 60;
	tm->tm_sec = (hms % 3600) % 60;

	/* Number of years in days */
	for (i = STARTOFTIME; day >= days_in_year(i); i++)
		day -= days_in_year(i);
	tm->tm_year = i;

	/* Number of months in days left */
	if (leapyear(tm->tm_year))
		days_in_month(FEBRUARY) = 29;
	for (i = 1; day >= days_in_month(i); i++)
		day -= days_in_month(i);
	days_in_month(FEBRUARY) = 28;
	tm->tm_mon = i;

	/* Days are what is left over (+1) from all that. */
	tm->tm_mday = day + 1;

	/*
	 * Determine the day of week
	 */
	GregorianDay(tm);
}

/* Auxiliary function to compute scaling factors */
/* Actually the choice of a timebase running at 1/4 the of the bus
 * frequency giving resolution of a few tens of nanoseconds is quite nice.
 * It makes this computation very precise (27-28 bits typically) which
 * is optimistic considering the stability of most processor clock
 * oscillators and the precision with which the timebase frequency
 * is measured but does not harm.
 */
1073 1074
unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
{
L
Linus Torvalds 已提交
1075 1076 1077 1078 1079 1080
        unsigned mlt=0, tmp, err;
        /* No concern for performance, it's done once: use a stupid
         * but safe and compact method to find the multiplier.
         */
  
        for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1081 1082
                if (mulhwu(inscale, mlt|tmp) < outscale)
			mlt |= tmp;
L
Linus Torvalds 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091
        }
  
        /* We might still be off by 1 for the best approximation.
         * A side effect of this is that if outscale is too large
         * the returned value will be zero.
         * Many corner cases have been checked and seem to work,
         * some might have been forgotten in the test however.
         */
  
1092 1093 1094
        err = inscale * (mlt+1);
        if (err <= inscale/2)
		mlt++;
L
Linus Torvalds 已提交
1095
        return mlt;
1096
}
L
Linus Torvalds 已提交
1097 1098 1099 1100 1101

/*
 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
 * result.
 */
1102 1103
void div128_by_32(u64 dividend_high, u64 dividend_low,
		  unsigned divisor, struct div_result *dr)
L
Linus Torvalds 已提交
1104
{
1105 1106 1107
	unsigned long a, b, c, d;
	unsigned long w, x, y, z;
	u64 ra, rb, rc;
L
Linus Torvalds 已提交
1108 1109 1110 1111 1112 1113

	a = dividend_high >> 32;
	b = dividend_high & 0xffffffff;
	c = dividend_low >> 32;
	d = dividend_low & 0xffffffff;

1114 1115 1116 1117 1118
	w = a / divisor;
	ra = ((u64)(a - (w * divisor)) << 32) + b;

	rb = ((u64) do_div(ra, divisor) << 32) + c;
	x = ra;
L
Linus Torvalds 已提交
1119

1120 1121 1122 1123 1124
	rc = ((u64) do_div(rb, divisor) << 32) + d;
	y = rb;

	do_div(rc, divisor);
	z = rc;
L
Linus Torvalds 已提交
1125

1126 1127
	dr->result_high = ((u64)w << 32) + x;
	dr->result_low  = ((u64)y << 32) + z;
L
Linus Torvalds 已提交
1128 1129

}