time.c 33.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/*
 * Common time routines among all ppc machines.
 *
 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
 * Paul Mackerras' version and mine for PReP and Pmac.
 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
 *
 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
 * to make clock more stable (2.4.0-test5). The only thing
 * that this code assumes is that the timebases have been synchronized
 * by firmware on SMP and are never stopped (never do sleep
 * on SMP then, nap and doze are OK).
 * 
 * Speeded up do_gettimeofday by getting rid of references to
 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
 *
 * TODO (not necessarily in this file):
 * - improve precision and reproducibility of timebase frequency
 * measurement at boot time. (for iSeries, we calibrate the timebase
 * against the Titan chip's clock.)
 * - for astronomical applications: add a new function to get
 * non ambiguous timestamps even around leap seconds. This needs
 * a new timestamp format and a good name.
 *
 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/cpu.h>
#include <linux/security.h>
50 51
#include <linux/percpu.h>
#include <linux/rtc.h>
52
#include <linux/jiffies.h>
53
#include <linux/posix-timers.h>
54
#include <linux/irq.h>
55
#include <linux/delay.h>
56
#include <linux/perf_event.h>
57
#include <asm/trace.h>
L
Linus Torvalds 已提交
58 59 60 61 62 63 64 65 66

#include <asm/io.h>
#include <asm/processor.h>
#include <asm/nvram.h>
#include <asm/cache.h>
#include <asm/machdep.h>
#include <asm/uaccess.h>
#include <asm/time.h>
#include <asm/prom.h>
67 68
#include <asm/irq.h>
#include <asm/div64.h>
P
Paul Mackerras 已提交
69
#include <asm/smp.h>
70
#include <asm/vdso_datapage.h>
71
#include <asm/firmware.h>
M
Michael Neuling 已提交
72
#include <asm/cputime.h>
73
#ifdef CONFIG_PPC_ISERIES
74
#include <asm/iseries/it_lp_queue.h>
75
#include <asm/iseries/hv_call_xm.h>
76
#endif
L
Linus Torvalds 已提交
77

78 79
/* powerpc clocksource/clockevent code */

80
#include <linux/clockchips.h>
81 82
#include <linux/clocksource.h>

83
static cycle_t rtc_read(struct clocksource *);
84 85 86 87 88 89 90 91 92 93
static struct clocksource clocksource_rtc = {
	.name         = "rtc",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.shift        = 22,
	.mult         = 0,	/* To be filled in */
	.read         = rtc_read,
};

94
static cycle_t timebase_read(struct clocksource *);
95 96 97 98 99 100 101 102 103 104
static struct clocksource clocksource_timebase = {
	.name         = "timebase",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.shift        = 22,
	.mult         = 0,	/* To be filled in */
	.read         = timebase_read,
};

105 106 107 108 109 110 111 112 113 114
#define DECREMENTER_MAX	0x7fffffff

static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev);
static void decrementer_set_mode(enum clock_event_mode mode,
				 struct clock_event_device *dev);

static struct clock_event_device decrementer_clockevent = {
       .name           = "decrementer",
       .rating         = 200,
115
       .shift          = 0,	/* To be filled in */
116 117 118 119 120 121 122
       .mult           = 0,	/* To be filled in */
       .irq            = 0,
       .set_next_event = decrementer_set_next_event,
       .set_mode       = decrementer_set_mode,
       .features       = CLOCK_EVT_FEAT_ONESHOT,
};

123 124 125 126 127 128
struct decrementer_clock {
	struct clock_event_device event;
	u64 next_tb;
};

static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
129

L
Linus Torvalds 已提交
130
#ifdef CONFIG_PPC_ISERIES
131 132
static unsigned long __initdata iSeries_recal_titan;
static signed long __initdata iSeries_recal_tb;
133 134

/* Forward declaration is only needed for iSereis compiles */
135
static void __init clocksource_init(void);
L
Linus Torvalds 已提交
136 137 138 139
#endif

#define XSEC_PER_SEC (1024*1024)

140 141 142 143 144 145 146
#ifdef CONFIG_PPC64
#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
#else
/* compute ((xsec << 12) * max) >> 32 */
#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
#endif

L
Linus Torvalds 已提交
147 148 149 150
unsigned long tb_ticks_per_jiffy;
unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
151
EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
152 153
u64 tb_to_xs;
unsigned tb_to_us;
154

155
#define TICKLEN_SCALE	NTP_SCALE_SHIFT
156 157
static u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
static u64 ticklen_to_xs;	/* 0.64 fraction */
158 159 160 161 162

/* If last_tick_len corresponds to about 1/HZ seconds, then
   last_tick_len << TICKLEN_SHIFT will be about 2^63. */
#define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)

L
Linus Torvalds 已提交
163
DEFINE_SPINLOCK(rtc_lock);
164
EXPORT_SYMBOL_GPL(rtc_lock);
L
Linus Torvalds 已提交
165

166 167 168
static u64 tb_to_ns_scale __read_mostly;
static unsigned tb_to_ns_shift __read_mostly;
static unsigned long boot_tb __read_mostly;
L
Linus Torvalds 已提交
169 170

extern struct timezone sys_tz;
171
static long timezone_offset;
L
Linus Torvalds 已提交
172

173
unsigned long ppc_proc_freq;
174
EXPORT_SYMBOL(ppc_proc_freq);
175 176
unsigned long ppc_tb_freq;

177 178
static u64 tb_last_jiffy __cacheline_aligned_in_smp;
static DEFINE_PER_CPU(u64, last_jiffy);
179

180 181 182 183 184 185 186
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
/*
 * Factors for converting from cputime_t (timebase ticks) to
 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
 * These are all stored as 0.64 fixed-point binary fractions.
 */
u64 __cputime_jiffies_factor;
187
EXPORT_SYMBOL(__cputime_jiffies_factor);
188
u64 __cputime_msec_factor;
189
EXPORT_SYMBOL(__cputime_msec_factor);
190
u64 __cputime_sec_factor;
191
EXPORT_SYMBOL(__cputime_sec_factor);
192
u64 __cputime_clockt_factor;
193
EXPORT_SYMBOL(__cputime_clockt_factor);
M
Michael Neuling 已提交
194 195
DEFINE_PER_CPU(unsigned long, cputime_last_delta);
DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
196

197 198
cputime_t cputime_one_jiffy;

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
static void calc_cputime_factors(void)
{
	struct div_result res;

	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
	__cputime_jiffies_factor = res.result_low;
	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
	__cputime_msec_factor = res.result_low;
	div128_by_32(1, 0, tb_ticks_per_sec, &res);
	__cputime_sec_factor = res.result_low;
	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
	__cputime_clockt_factor = res.result_low;
}

/*
 * Read the PURR on systems that have it, otherwise the timebase.
 */
static u64 read_purr(void)
{
	if (cpu_has_feature(CPU_FTR_PURR))
		return mfspr(SPRN_PURR);
	return mftb();
}

223 224 225 226 227
/*
 * Read the SPURR on systems that have it, otherwise the purr
 */
static u64 read_spurr(u64 purr)
{
228 229 230 231 232
	/*
	 * cpus without PURR won't have a SPURR
	 * We already know the former when we use this, so tell gcc
	 */
	if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
233 234 235 236
		return mfspr(SPRN_SPURR);
	return purr;
}

237 238 239 240 241 242
/*
 * Account time for a transition between system, hard irq
 * or soft irq state.
 */
void account_system_vtime(struct task_struct *tsk)
{
243
	u64 now, nowscaled, delta, deltascaled, sys_time;
244 245 246 247
	unsigned long flags;

	local_irq_save(flags);
	now = read_purr();
248
	nowscaled = read_spurr(now);
249
	delta = now - get_paca()->startpurr;
250
	deltascaled = nowscaled - get_paca()->startspurr;
251
	get_paca()->startpurr = now;
252
	get_paca()->startspurr = nowscaled;
253
	if (!in_interrupt()) {
254 255 256
		/* deltascaled includes both user and system time.
		 * Hence scale it based on the purr ratio to estimate
		 * the system time */
257
		sys_time = get_paca()->system_time;
258
		if (get_paca()->user_time)
259 260 261
			deltascaled = deltascaled * sys_time /
			     (sys_time + get_paca()->user_time);
		delta += sys_time;
262 263
		get_paca()->system_time = 0;
	}
264 265 266 267
	if (in_irq() || idle_task(smp_processor_id()) != tsk)
		account_system_time(tsk, 0, delta, deltascaled);
	else
		account_idle_time(delta);
268 269
	__get_cpu_var(cputime_last_delta) = delta;
	__get_cpu_var(cputime_scaled_last_delta) = deltascaled;
270 271
	local_irq_restore(flags);
}
A
Alexander Graf 已提交
272
EXPORT_SYMBOL_GPL(account_system_vtime);
273 274 275 276 277 278 279

/*
 * Transfer the user and system times accumulated in the paca
 * by the exception entry and exit code to the generic process
 * user and system time records.
 * Must be called with interrupts disabled.
 */
280
void account_process_tick(struct task_struct *tsk, int user_tick)
281
{
282
	cputime_t utime, utimescaled;
283 284 285

	utime = get_paca()->user_time;
	get_paca()->user_time = 0;
M
Michael Neuling 已提交
286
	utimescaled = cputime_to_scaled(utime);
287
	account_user_time(tsk, utime, utimescaled);
288 289 290 291 292 293 294 295 296
}

/*
 * Stuff for accounting stolen time.
 */
struct cpu_purr_data {
	int	initialized;			/* thread is running */
	u64	tb;			/* last TB value read */
	u64	purr;			/* last PURR value read */
297
	u64	spurr;			/* last SPURR value read */
298 299
};

300 301 302 303 304 305 306
/*
 * Each entry in the cpu_purr_data array is manipulated only by its
 * "owner" cpu -- usually in the timer interrupt but also occasionally
 * in process context for cpu online.  As long as cpus do not touch
 * each others' cpu_purr_data, disabling local interrupts is
 * sufficient to serialize accesses.
 */
307 308 309 310
static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);

static void snapshot_tb_and_purr(void *data)
{
311
	unsigned long flags;
312 313
	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);

314
	local_irq_save(flags);
315
	p->tb = get_tb_or_rtc();
316
	p->purr = mfspr(SPRN_PURR);
317 318
	wmb();
	p->initialized = 1;
319
	local_irq_restore(flags);
320 321 322 323 324 325 326 327 328
}

/*
 * Called during boot when all cpus have come up.
 */
void snapshot_timebases(void)
{
	if (!cpu_has_feature(CPU_FTR_PURR))
		return;
329
	on_each_cpu(snapshot_tb_and_purr, NULL, 1);
330 331
}

332 333 334
/*
 * Must be called with interrupts disabled.
 */
335 336
void calculate_steal_time(void)
{
337
	u64 tb, purr;
338
	s64 stolen;
339
	struct cpu_purr_data *pme;
340

341
	pme = &__get_cpu_var(cpu_purr_data);
342
	if (!pme->initialized)
343
		return;		/* !CPU_FTR_PURR or early in early boot */
344
	tb = mftb();
345 346
	purr = mfspr(SPRN_PURR);
	stolen = (tb - pme->tb) - (purr - pme->purr);
347 348 349 350 351 352
	if (stolen > 0) {
		if (idle_task(smp_processor_id()) != current)
			account_steal_time(stolen);
		else
			account_idle_time(stolen);
	}
353 354 355 356
	pme->tb = tb;
	pme->purr = purr;
}

357
#ifdef CONFIG_PPC_SPLPAR
358 359 360 361 362 363
/*
 * Must be called before the cpu is added to the online map when
 * a cpu is being brought up at runtime.
 */
static void snapshot_purr(void)
{
364
	struct cpu_purr_data *pme;
365 366 367 368
	unsigned long flags;

	if (!cpu_has_feature(CPU_FTR_PURR))
		return;
369
	local_irq_save(flags);
370
	pme = &__get_cpu_var(cpu_purr_data);
371 372
	pme->tb = mftb();
	pme->purr = mfspr(SPRN_PURR);
373
	pme->initialized = 1;
374
	local_irq_restore(flags);
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
}

#endif /* CONFIG_PPC_SPLPAR */

#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
#define calc_cputime_factors()
#define calculate_steal_time()		do { } while (0)
#endif

#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
#define snapshot_purr()			do { } while (0)
#endif

/*
 * Called when a cpu comes up after the system has finished booting,
 * i.e. as a result of a hotplug cpu action.
 */
void snapshot_timebase(void)
{
394
	__get_cpu_var(last_jiffy) = get_tb_or_rtc();
395 396 397
	snapshot_purr();
}

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
void __delay(unsigned long loops)
{
	unsigned long start;
	int diff;

	if (__USE_RTC()) {
		start = get_rtcl();
		do {
			/* the RTCL register wraps at 1000000000 */
			diff = get_rtcl() - start;
			if (diff < 0)
				diff += 1000000000;
		} while (diff < loops);
	} else {
		start = get_tbl();
		while (get_tbl() - start < loops)
			HMT_low();
		HMT_medium();
	}
}
EXPORT_SYMBOL(__delay);

void udelay(unsigned long usecs)
{
	__delay(tb_ticks_per_usec * usecs);
}
EXPORT_SYMBOL(udelay);

426
static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
427
			       u64 new_tb_to_xs)
L
Linus Torvalds 已提交
428
{
429 430 431 432 433 434 435 436
	/*
	 * tb_update_count is used to allow the userspace gettimeofday code
	 * to assure itself that it sees a consistent view of the tb_to_xs and
	 * stamp_xsec variables.  It reads the tb_update_count, then reads
	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
	 * the two values of tb_update_count match and are even then the
	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
	 * loops back and reads them again until this criteria is met.
437 438
	 * We expect the caller to have done the first increment of
	 * vdso_data->tb_update_count already.
439
	 */
440 441 442 443 444
	vdso_data->tb_orig_stamp = new_tb_stamp;
	vdso_data->stamp_xsec = new_stamp_xsec;
	vdso_data->tb_to_xs = new_tb_to_xs;
	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
445
	vdso_data->stamp_xtime = xtime;
446
	smp_wmb();
447
	++(vdso_data->tb_update_count);
448 449
}

L
Linus Torvalds 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
	unsigned long pc = instruction_pointer(regs);

	if (in_lock_functions(pc))
		return regs->link;

	return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif

#ifdef CONFIG_PPC_ISERIES

/* 
 * This function recalibrates the timebase based on the 49-bit time-of-day
 * value in the Titan chip.  The Titan is much more accurate than the value
 * returned by the service processor for the timebase frequency.  
 */

471
static int __init iSeries_tb_recal(void)
L
Linus Torvalds 已提交
472 473 474
{
	struct div_result divres;
	unsigned long titan, tb;
475 476 477 478 479

	/* Make sure we only run on iSeries */
	if (!firmware_has_feature(FW_FEATURE_ISERIES))
		return -ENODEV;

L
Linus Torvalds 已提交
480 481 482 483 484 485
	tb = get_tb();
	titan = HvCallXm_loadTod();
	if ( iSeries_recal_titan ) {
		unsigned long tb_ticks = tb - iSeries_recal_tb;
		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
486 487
		unsigned long new_tb_ticks_per_jiffy =
			DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
L
Linus Torvalds 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
		char sign = '+';		
		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;

		if ( tick_diff < 0 ) {
			tick_diff = -tick_diff;
			sign = '-';
		}
		if ( tick_diff ) {
			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
						new_tb_ticks_per_jiffy, sign, tick_diff );
				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
				tb_ticks_per_sec   = new_tb_ticks_per_sec;
503
				calc_cputime_factors();
L
Linus Torvalds 已提交
504 505
				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
				tb_to_xs = divres.result_low;
506 507
				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
				vdso_data->tb_to_xs = tb_to_xs;
508
				setup_cputime_one_jiffy();
L
Linus Torvalds 已提交
509 510 511 512 513 514 515 516 517 518 519
			}
			else {
				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
					"                   new tb_ticks_per_jiffy = %lu\n"
					"                   old tb_ticks_per_jiffy = %lu\n",
					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
			}
		}
	}
	iSeries_recal_titan = titan;
	iSeries_recal_tb = tb;
520

521 522
	/* Called here as now we know accurate values for the timebase */
	clocksource_init();
523
	return 0;
L
Linus Torvalds 已提交
524
}
525 526 527 528 529 530 531 532 533
late_initcall(iSeries_tb_recal);

/* Called from platform early init */
void __init iSeries_time_init_early(void)
{
	iSeries_recal_tb = get_tb();
	iSeries_recal_titan = HvCallXm_loadTod();
}
#endif /* CONFIG_PPC_ISERIES */
L
Linus Torvalds 已提交
534

535
#ifdef CONFIG_PERF_EVENTS
536

537 538 539 540 541
/*
 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 */
#ifdef CONFIG_PPC64
static inline unsigned long test_perf_event_pending(void)
542
{
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
	unsigned long x;

	asm volatile("lbz %0,%1(13)"
		: "=r" (x)
		: "i" (offsetof(struct paca_struct, perf_event_pending)));
	return x;
}

static inline void set_perf_event_pending_flag(void)
{
	asm volatile("stb %0,%1(13)" : :
		"r" (1),
		"i" (offsetof(struct paca_struct, perf_event_pending)));
}

static inline void clear_perf_event_pending(void)
{
	asm volatile("stb %0,%1(13)" : :
		"r" (0),
		"i" (offsetof(struct paca_struct, perf_event_pending)));
563 564
}

565 566 567 568 569
#else /* 32-bit */

DEFINE_PER_CPU(u8, perf_event_pending);

#define set_perf_event_pending_flag()	__get_cpu_var(perf_event_pending) = 1
570 571
#define test_perf_event_pending()	__get_cpu_var(perf_event_pending)
#define clear_perf_event_pending()	__get_cpu_var(perf_event_pending) = 0
572

573 574 575 576 577 578 579 580 581 582 583
#endif /* 32 vs 64 bit */

void set_perf_event_pending(void)
{
	preempt_disable();
	set_perf_event_pending_flag();
	set_dec(1);
	preempt_enable();
}

#else  /* CONFIG_PERF_EVENTS */
584

585 586
#define test_perf_event_pending()	0
#define clear_perf_event_pending()
587

588
#endif /* CONFIG_PERF_EVENTS */
589

L
Linus Torvalds 已提交
590 591 592 593 594 595 596 597 598 599 600 601 602 603
/*
 * For iSeries shared processors, we have to let the hypervisor
 * set the hardware decrementer.  We set a virtual decrementer
 * in the lppaca and call the hypervisor if the virtual
 * decrementer is less than the current value in the hardware
 * decrementer. (almost always the new decrementer value will
 * be greater than the current hardware decementer so the hypervisor
 * call will not be needed)
 */

/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 */
604
void timer_interrupt(struct pt_regs * regs)
L
Linus Torvalds 已提交
605
{
606
	struct pt_regs *old_regs;
607 608
	struct decrementer_clock *decrementer =  &__get_cpu_var(decrementers);
	struct clock_event_device *evt = &decrementer->event;
609
	u64 now;
610

611 612
	trace_timer_interrupt_entry(regs);

613 614
	__get_cpu_var(irq_stat).timer_irqs++;

615 616 617
	/* Ensure a positive value is written to the decrementer, or else
	 * some CPUs will continuue to take decrementer exceptions */
	set_dec(DECREMENTER_MAX);
618 619 620 621 622

#ifdef CONFIG_PPC32
	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);
#endif
L
Linus Torvalds 已提交
623

624
	now = get_tb_or_rtc();
625
	if (now < decrementer->next_tb) {
626
		/* not time for this event yet */
627
		now = decrementer->next_tb - now;
628
		if (now <= DECREMENTER_MAX)
629
			set_dec((int)now);
630
		trace_timer_interrupt_exit(regs);
631 632
		return;
	}
633
	old_regs = set_irq_regs(regs);
L
Linus Torvalds 已提交
634 635
	irq_enter();

636
	calculate_steal_time();
L
Linus Torvalds 已提交
637

638 639 640 641 642
	if (test_perf_event_pending()) {
		clear_perf_event_pending();
		perf_event_do_pending();
	}

643
#ifdef CONFIG_PPC_ISERIES
644 645
	if (firmware_has_feature(FW_FEATURE_ISERIES))
		get_lppaca()->int_dword.fields.decr_int = 0;
646 647
#endif

648 649
	if (evt->event_handler)
		evt->event_handler(evt);
L
Linus Torvalds 已提交
650 651

#ifdef CONFIG_PPC_ISERIES
652
	if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
O
Olaf Hering 已提交
653
		process_hvlpevents();
L
Linus Torvalds 已提交
654 655
#endif

656
#ifdef CONFIG_PPC64
657
	/* collect purr register values often, for accurate calculations */
658
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
L
Linus Torvalds 已提交
659 660 661
		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
		cu->current_tb = mfspr(SPRN_PURR);
	}
662
#endif
L
Linus Torvalds 已提交
663 664

	irq_exit();
665
	set_irq_regs(old_regs);
666 667

	trace_timer_interrupt_exit(regs);
L
Linus Torvalds 已提交
668 669
}

670 671
void wakeup_decrementer(void)
{
672
	unsigned long ticks;
673 674

	/*
675 676
	 * The timebase gets saved on sleep and restored on wakeup,
	 * so all we need to do is to reset the decrementer.
677
	 */
678 679 680 681 682 683
	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
	if (ticks < tb_ticks_per_jiffy)
		ticks = tb_ticks_per_jiffy - ticks;
	else
		ticks = 1;
	set_dec(ticks);
684 685
}

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
#ifdef CONFIG_SUSPEND
void generic_suspend_disable_irqs(void)
{
	preempt_disable();

	/* Disable the decrementer, so that it doesn't interfere
	 * with suspending.
	 */

	set_dec(0x7fffffff);
	local_irq_disable();
	set_dec(0x7fffffff);
}

void generic_suspend_enable_irqs(void)
{
	wakeup_decrementer();

	local_irq_enable();
	preempt_enable();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_disable_irqs(void)
{
	if (ppc_md.suspend_disable_irqs)
		ppc_md.suspend_disable_irqs();
	generic_suspend_disable_irqs();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_enable_irqs(void)
{
	generic_suspend_enable_irqs();
	if (ppc_md.suspend_enable_irqs)
		ppc_md.suspend_enable_irqs();
}
#endif

725
#ifdef CONFIG_SMP
726 727 728
void __init smp_space_timers(unsigned int max_cpus)
{
	int i;
729
	u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
730

731 732
	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
	previous_tb -= tb_ticks_per_jiffy;
733

734
	for_each_possible_cpu(i) {
735 736
		if (i == boot_cpuid)
			continue;
737
		per_cpu(last_jiffy, i) = previous_tb;
738 739 740 741
	}
}
#endif

L
Linus Torvalds 已提交
742 743 744 745 746 747 748 749 750
/*
 * Scheduler clock - returns current time in nanosec units.
 *
 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 * are 64-bit unsigned numbers.
 */
unsigned long long sched_clock(void)
{
751 752
	if (__USE_RTC())
		return get_rtc();
753
	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
L
Linus Torvalds 已提交
754 755
}

756
static int __init get_freq(char *name, int cells, unsigned long *val)
757 758
{
	struct device_node *cpu;
759
	const unsigned int *fp;
760
	int found = 0;
761

762
	/* The cpu node should have timebase and clock frequency properties */
763 764
	cpu = of_find_node_by_type(NULL, "cpu");

765
	if (cpu) {
766
		fp = of_get_property(cpu, name, NULL);
767
		if (fp) {
768
			found = 1;
769
			*val = of_read_ulong(fp, cells);
770
		}
771 772

		of_node_put(cpu);
773
	}
774 775 776 777

	return found;
}

778 779 780 781 782 783 784 785 786 787 788 789
/* should become __cpuinit when secondary_cpu_time_init also is */
void start_cpu_decrementer(void)
{
#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
	/* Clear any pending timer interrupts */
	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);

	/* Enable decrementer interrupt */
	mtspr(SPRN_TCR, TCR_DIE);
#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
}

790 791 792 793 794 795 796
void __init generic_calibrate_decr(void)
{
	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */

	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {

797 798
		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
				"(not found)\n");
799
	}
800

801 802 803 804 805 806 807
	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */

	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {

		printk(KERN_ERR "WARNING: Estimating processor frequency "
				"(not found)\n");
808 809 810
	}
}

811
int update_persistent_clock(struct timespec now)
812 813 814
{
	struct rtc_time tm;

815 816 817 818 819 820 821 822 823 824
	if (!ppc_md.set_rtc_time)
		return 0;

	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
	tm.tm_year -= 1900;
	tm.tm_mon -= 1;

	return ppc_md.set_rtc_time(&tm);
}

825
static void __read_persistent_clock(struct timespec *ts)
826 827 828 829
{
	struct rtc_time tm;
	static int first = 1;

830
	ts->tv_nsec = 0;
831 832 833 834 835 836 837
	/* XXX this is a litle fragile but will work okay in the short term */
	if (first) {
		first = 0;
		if (ppc_md.time_init)
			timezone_offset = ppc_md.time_init();

		/* get_boot_time() isn't guaranteed to be safe to call late */
838 839 840 841 842 843 844 845
		if (ppc_md.get_boot_time) {
			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
			return;
		}
	}
	if (!ppc_md.get_rtc_time) {
		ts->tv_sec = 0;
		return;
846
	}
847
	ppc_md.get_rtc_time(&tm);
848

849 850
	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
			    tm.tm_hour, tm.tm_min, tm.tm_sec);
851 852
}

853 854 855 856 857 858 859 860 861 862 863 864
void read_persistent_clock(struct timespec *ts)
{
	__read_persistent_clock(ts);

	/* Sanitize it in case real time clock is set below EPOCH */
	if (ts->tv_sec < 0) {
		ts->tv_sec = 0;
		ts->tv_nsec = 0;
	}
		
}

865
/* clocksource code */
866
static cycle_t rtc_read(struct clocksource *cs)
867 868 869 870
{
	return (cycle_t)get_rtc();
}

871
static cycle_t timebase_read(struct clocksource *cs)
872 873 874 875
{
	return (cycle_t)get_tb();
}

876 877
void update_vsyscall(struct timespec *wall_time, struct clocksource *clock,
		     u32 mult)
878 879 880 881 882 883 884 885 886 887 888 889
{
	u64 t2x, stamp_xsec;

	if (clock != &clocksource_timebase)
		return;

	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();

	/* XXX this assumes clock->shift == 22 */
	/* 4611686018 ~= 2^(20+64-22) / 1e9 */
890
	t2x = (u64) mult * 4611686018ULL;
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
	stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
	do_div(stamp_xsec, 1000000000);
	stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
	update_gtod(clock->cycle_last, stamp_xsec, t2x);
}

void update_vsyscall_tz(void)
{
	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();
	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
	smp_mb();
	++vdso_data->tb_update_count;
}

908
static void __init clocksource_init(void)
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
{
	struct clocksource *clock;

	if (__USE_RTC())
		clock = &clocksource_rtc;
	else
		clock = &clocksource_timebase;

	clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);

	if (clocksource_register(clock)) {
		printk(KERN_ERR "clocksource: %s is already registered\n",
		       clock->name);
		return;
	}

	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
	       clock->name, clock->mult, clock->shift);
}

929 930 931
static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev)
{
932
	__get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
933 934 935 936 937 938 939 940 941 942 943
	set_dec(evt);
	return 0;
}

static void decrementer_set_mode(enum clock_event_mode mode,
				 struct clock_event_device *dev)
{
	if (mode != CLOCK_EVT_MODE_ONESHOT)
		decrementer_set_next_event(DECREMENTER_MAX, dev);
}

944 945 946 947 948 949 950 951 952
static inline uint64_t div_sc64(unsigned long ticks, unsigned long nsec,
				int shift)
{
	uint64_t tmp = ((uint64_t)ticks) << shift;

	do_div(tmp, nsec);
	return tmp;
}

953 954 955 956 957
static void __init setup_clockevent_multiplier(unsigned long hz)
{
	u64 mult, shift = 32;

	while (1) {
958
		mult = div_sc64(hz, NSEC_PER_SEC, shift);
959 960 961 962 963 964 965 966 967 968
		if (mult && (mult >> 32UL) == 0UL)
			break;

		shift--;
	}

	decrementer_clockevent.shift = shift;
	decrementer_clockevent.mult = mult;
}

969 970
static void register_decrementer_clockevent(int cpu)
{
971
	struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
972 973

	*dec = decrementer_clockevent;
974
	dec->cpumask = cpumask_of(cpu);
975

976 977
	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
		    dec->name, dec->mult, dec->shift, cpu);
978 979 980 981

	clockevents_register_device(dec);
}

982
static void __init init_decrementer_clockevent(void)
983 984 985
{
	int cpu = smp_processor_id();

986
	setup_clockevent_multiplier(ppc_tb_freq);
987 988
	decrementer_clockevent.max_delta_ns =
		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
989 990
	decrementer_clockevent.min_delta_ns =
		clockevent_delta2ns(2, &decrementer_clockevent);
991 992 993 994 995 996

	register_decrementer_clockevent(cpu);
}

void secondary_cpu_time_init(void)
{
997 998 999 1000 1001
	/* Start the decrementer on CPUs that have manual control
	 * such as BookE
	 */
	start_cpu_decrementer();

1002 1003 1004 1005 1006
	/* FIME: Should make unrelatred change to move snapshot_timebase
	 * call here ! */
	register_decrementer_clockevent(smp_processor_id());
}

1007
/* This function is only called on the boot processor */
L
Linus Torvalds 已提交
1008 1009 1010 1011
void __init time_init(void)
{
	unsigned long flags;
	struct div_result res;
1012
	u64 scale, x;
1013 1014
	unsigned shift;

1015 1016 1017
	if (__USE_RTC()) {
		/* 601 processor: dec counts down by 128 every 128ns */
		ppc_tb_freq = 1000000000;
1018
		tb_last_jiffy = get_rtcl();
1019 1020 1021
	} else {
		/* Normal PowerPC with timebase register */
		ppc_md.calibrate_decr();
1022
		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1023
		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1024
		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
1025
		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
1026
		tb_last_jiffy = get_tb();
1027
	}
1028 1029

	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1030
	tb_ticks_per_sec = ppc_tb_freq;
1031 1032
	tb_ticks_per_usec = ppc_tb_freq / 1000000;
	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
1033
	calc_cputime_factors();
1034
	setup_cputime_one_jiffy();
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

	/*
	 * Calculate the length of each tick in ns.  It will not be
	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
	 * rounded up.
	 */
	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
	do_div(x, ppc_tb_freq);
	tick_nsec = x;
	last_tick_len = x << TICKLEN_SCALE;

	/*
	 * Compute ticklen_to_xs, which is a factor which gets multiplied
	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
	 * It is computed as:
	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
1053 1054 1055 1056 1057 1058 1059
	 * which turns out to be N = 51 - SHIFT_HZ.
	 * This gives the result as a 0.64 fixed-point fraction.
	 * That value is reduced by an offset amounting to 1 xsec per
	 * 2^31 timebase ticks to avoid problems with time going backwards
	 * by 1 xsec when we do timer_recalc_offset due to losing the
	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
	 * since there are 2^20 xsec in a second.
1060
	 */
1061 1062
	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
1063 1064 1065 1066 1067
	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
	ticklen_to_xs = res.result_low;

	/* Compute tb_to_xs from tick_nsec */
	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
1068

L
Linus Torvalds 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	/*
	 * Compute scale factor for sched_clock.
	 * The calibrate_decr() function has set tb_ticks_per_sec,
	 * which is the timebase frequency.
	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
	 * the 128-bit result as a 64.64 fixed-point number.
	 * We then shift that number right until it is less than 1.0,
	 * giving us the scale factor and shift count to use in
	 * sched_clock().
	 */
	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
	scale = res.result_low;
	for (shift = 0; res.result_high != 0; ++shift) {
		scale = (scale >> 1) | (res.result_high << 63);
		res.result_high >>= 1;
	}
	tb_to_ns_scale = scale;
	tb_to_ns_shift = shift;
1087
	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1088
	boot_tb = get_tb_or_rtc();
L
Linus Torvalds 已提交
1089 1090

	write_seqlock_irqsave(&xtime_lock, flags);
1091 1092 1093 1094 1095 1096 1097

	/* If platform provided a timezone (pmac), we correct the time */
        if (timezone_offset) {
		sys_tz.tz_minuteswest = -timezone_offset / 60;
		sys_tz.tz_dsttime = 0;
        }

1098 1099 1100
	vdso_data->tb_orig_stamp = tb_last_jiffy;
	vdso_data->tb_update_count = 0;
	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1101
	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1102
	vdso_data->tb_to_xs = tb_to_xs;
L
Linus Torvalds 已提交
1103 1104 1105

	write_sequnlock_irqrestore(&xtime_lock, flags);

1106 1107 1108 1109 1110
	/* Start the decrementer on CPUs that have manual control
	 * such as BookE
	 */
	start_cpu_decrementer();

1111 1112 1113 1114
	/* Register the clocksource, if we're not running on iSeries */
	if (!firmware_has_feature(FW_FEATURE_ISERIES))
		clocksource_init();

1115
	init_decrementer_clockevent();
L
Linus Torvalds 已提交
1116 1117 1118 1119 1120 1121 1122
}


#define FEBRUARY	2
#define	STARTOFTIME	1970
#define SECDAY		86400L
#define SECYR		(SECDAY * 365)
1123 1124
#define	leapyear(year)		((year) % 4 == 0 && \
				 ((year) % 100 != 0 || (year) % 400 == 0))
L
Linus Torvalds 已提交
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
#define	days_in_month(a) 	(month_days[(a) - 1])

static int month_days[12] = {
	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

/*
 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
 */
void GregorianDay(struct rtc_time * tm)
{
	int leapsToDate;
	int lastYear;
	int day;
	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };

1142
	lastYear = tm->tm_year - 1;
L
Linus Torvalds 已提交
1143 1144 1145 1146

	/*
	 * Number of leap corrections to apply up to end of last year
	 */
1147
	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
L
Linus Torvalds 已提交
1148 1149 1150 1151 1152

	/*
	 * This year is a leap year if it is divisible by 4 except when it is
	 * divisible by 100 unless it is divisible by 400
	 *
1153
	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
L
Linus Torvalds 已提交
1154
	 */
1155
	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
L
Linus Torvalds 已提交
1156 1157 1158 1159

	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
		   tm->tm_mday;

1160
	tm->tm_wday = day % 7;
L
Linus Torvalds 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
}

void to_tm(int tim, struct rtc_time * tm)
{
	register int    i;
	register long   hms, day;

	day = tim / SECDAY;
	hms = tim % SECDAY;

	/* Hours, minutes, seconds are easy */
	tm->tm_hour = hms / 3600;
	tm->tm_min = (hms % 3600) / 60;
	tm->tm_sec = (hms % 3600) % 60;

	/* Number of years in days */
	for (i = STARTOFTIME; day >= days_in_year(i); i++)
		day -= days_in_year(i);
	tm->tm_year = i;

	/* Number of months in days left */
	if (leapyear(tm->tm_year))
		days_in_month(FEBRUARY) = 29;
	for (i = 1; day >= days_in_month(i); i++)
		day -= days_in_month(i);
	days_in_month(FEBRUARY) = 28;
	tm->tm_mon = i;

	/* Days are what is left over (+1) from all that. */
	tm->tm_mday = day + 1;

	/*
	 * Determine the day of week
	 */
	GregorianDay(tm);
}

/* Auxiliary function to compute scaling factors */
/* Actually the choice of a timebase running at 1/4 the of the bus
 * frequency giving resolution of a few tens of nanoseconds is quite nice.
 * It makes this computation very precise (27-28 bits typically) which
 * is optimistic considering the stability of most processor clock
 * oscillators and the precision with which the timebase frequency
 * is measured but does not harm.
 */
1206 1207
unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
{
L
Linus Torvalds 已提交
1208 1209 1210 1211 1212 1213
        unsigned mlt=0, tmp, err;
        /* No concern for performance, it's done once: use a stupid
         * but safe and compact method to find the multiplier.
         */
  
        for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1214 1215
                if (mulhwu(inscale, mlt|tmp) < outscale)
			mlt |= tmp;
L
Linus Torvalds 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224
        }
  
        /* We might still be off by 1 for the best approximation.
         * A side effect of this is that if outscale is too large
         * the returned value will be zero.
         * Many corner cases have been checked and seem to work,
         * some might have been forgotten in the test however.
         */
  
1225 1226 1227
        err = inscale * (mlt+1);
        if (err <= inscale/2)
		mlt++;
L
Linus Torvalds 已提交
1228
        return mlt;
1229
}
L
Linus Torvalds 已提交
1230 1231 1232 1233 1234

/*
 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
 * result.
 */
1235 1236
void div128_by_32(u64 dividend_high, u64 dividend_low,
		  unsigned divisor, struct div_result *dr)
L
Linus Torvalds 已提交
1237
{
1238 1239 1240
	unsigned long a, b, c, d;
	unsigned long w, x, y, z;
	u64 ra, rb, rc;
L
Linus Torvalds 已提交
1241 1242 1243 1244 1245 1246

	a = dividend_high >> 32;
	b = dividend_high & 0xffffffff;
	c = dividend_low >> 32;
	d = dividend_low & 0xffffffff;

1247 1248 1249 1250 1251
	w = a / divisor;
	ra = ((u64)(a - (w * divisor)) << 32) + b;

	rb = ((u64) do_div(ra, divisor) << 32) + c;
	x = ra;
L
Linus Torvalds 已提交
1252

1253 1254 1255 1256 1257
	rc = ((u64) do_div(rb, divisor) << 32) + d;
	y = rb;

	do_div(rc, divisor);
	z = rc;
L
Linus Torvalds 已提交
1258

1259 1260
	dr->result_high = ((u64)w << 32) + x;
	dr->result_low  = ((u64)y << 32) + z;
L
Linus Torvalds 已提交
1261 1262

}
1263

1264 1265 1266 1267 1268 1269 1270 1271 1272
/* We don't need to calibrate delay, we use the CPU timebase for that */
void calibrate_delay(void)
{
	/* Some generic code (such as spinlock debug) use loops_per_jiffy
	 * as the number of __delay(1) in a jiffy, so make it so
	 */
	loops_per_jiffy = tb_ticks_per_jiffy;
}

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
static int __init rtc_init(void)
{
	struct platform_device *pdev;

	if (!ppc_md.get_rtc_time)
		return -ENODEV;

	pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
	if (IS_ERR(pdev))
		return PTR_ERR(pdev);

	return 0;
}

module_init(rtc_init);