slub.c 104.7 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4 5 6 7
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
 * The allocator synchronizes using per slab locks and only
 * uses a centralized lock to manage a pool of partial slabs.
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
C
Christoph Lameter 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
22
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
23
#include <linux/kallsyms.h>
24
#include <linux/memory.h>
R
Roman Zippel 已提交
25
#include <linux/math64.h>
C
Christoph Lameter 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

/*
 * Lock order:
 *   1. slab_lock(page)
 *   2. slab->list_lock
 *
 *   The slab_lock protects operations on the object of a particular
 *   slab and its metadata in the page struct. If the slab lock
 *   has been taken then no allocations nor frees can be performed
 *   on the objects in the slab nor can the slab be added or removed
 *   from the partial or full lists since this would mean modifying
 *   the page_struct of the slab.
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *
 *   The lock order is sometimes inverted when we are trying to get a slab
 *   off a list. We take the list_lock and then look for a page on the list
 *   to use. While we do that objects in the slabs may be freed. We can
 *   only operate on the slab if we have also taken the slab_lock. So we use
 *   a slab_trylock() on the slab. If trylock was successful then no frees
 *   can occur anymore and we can use the slab for allocations etc. If the
 *   slab_trylock() does not succeed then frees are in progress in the slab and
 *   we must stay away from it for a while since we may cause a bouncing
 *   cacheline if we try to acquire the lock. So go onto the next slab.
 *   If all pages are busy then we may allocate a new slab instead of reusing
 *   a partial slab. A new slab has noone operating on it and thus there is
 *   no danger of cacheline contention.
 *
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
72 73
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
74
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
75 76
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
77 78 79 80 81 82 83
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
84 85 86 87 88 89 90 91 92 93 94 95
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
96
 * 			freelist that allows lockless access to
97 98
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
99 100 101
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
102
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
103 104
 */

105
#ifdef CONFIG_SLUB_DEBUG
106
#define SLABDEBUG 1
107 108 109 110
#else
#define SLABDEBUG 0
#endif

C
Christoph Lameter 已提交
111 112 113 114 115 116 117 118 119 120 121
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

122 123 124 125
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
126
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
127

128 129 130 131 132 133 134
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
 * sort the partial list by the number of objects in the.
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
135 136
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
137

C
Christoph Lameter 已提交
138 139 140 141 142 143 144 145 146 147
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DESTROY_BY_RCU)

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
		SLAB_CACHE_DMA)

#ifndef ARCH_KMALLOC_MINALIGN
148
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
149 150 151
#endif

#ifndef ARCH_SLAB_MINALIGN
152
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
153 154 155
#endif

/* Internal SLUB flags */
156 157
#define __OBJECT_POISON		0x80000000 /* Poison object */
#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
C
Christoph Lameter 已提交
158 159 160 161 162 163 164 165 166 167

static int kmem_size = sizeof(struct kmem_cache);

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

static enum {
	DOWN,		/* No slab functionality available */
	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
C
Christoph Lameter 已提交
168
	UP,		/* Everything works but does not show up in sysfs */
C
Christoph Lameter 已提交
169 170 171 172 173
	SYSFS		/* Sysfs up */
} slab_state = DOWN;

/* A list of all slab caches on the system */
static DECLARE_RWSEM(slub_lock);
A
Adrian Bunk 已提交
174
static LIST_HEAD(slab_caches);
C
Christoph Lameter 已提交
175

176 177 178 179 180 181 182 183 184 185 186 187
/*
 * Tracking user of a slab.
 */
struct track {
	void *addr;		/* Called from address */
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

C
Christoph Lameter 已提交
188
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
189 190 191
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
192

C
Christoph Lameter 已提交
193
#else
194 195 196
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
C
Christoph Lameter 已提交
197 198 199 200
static inline void sysfs_slab_remove(struct kmem_cache *s)
{
	kfree(s);
}
201

C
Christoph Lameter 已提交
202 203
#endif

204 205 206 207 208 209 210
static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
{
#ifdef CONFIG_SLUB_STATS
	c->stat[si]++;
#endif
}

C
Christoph Lameter 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

int slab_is_available(void)
{
	return slab_state >= UP;
}

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
#ifdef CONFIG_NUMA
	return s->node[node];
#else
	return &s->local_node;
#endif
}

229 230
static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
{
231 232 233 234 235
#ifdef CONFIG_SMP
	return s->cpu_slab[cpu];
#else
	return &s->cpu_slab;
#endif
236 237
}

C
Christoph Lameter 已提交
238
/* Verify that a pointer has an address that is valid within a slab page */
239 240 241 242 243
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

244
	if (!object)
245 246
		return 1;

247
	base = page_address(page);
248
	if (object < base || object >= base + page->objects * s->size ||
249 250 251 252 253 254 255
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
/*
 * Slow version of get and set free pointer.
 *
 * This version requires touching the cache lines of kmem_cache which
 * we avoid to do in the fast alloc free paths. There we obtain the offset
 * from the page struct.
 */
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
274 275
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
276 277 278 279
			__p += (__s)->size)

/* Scan freelist */
#define for_each_free_object(__p, __s, __free) \
280
	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
281 282 283 284 285 286 287

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
static inline struct kmem_cache_order_objects oo_make(int order,
						unsigned long size)
{
	struct kmem_cache_order_objects x = {
		(order << 16) + (PAGE_SIZE << order) / size
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
	return x.x >> 16;
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
	return x.x & ((1 << 16) - 1);
}

C
Christoph Lameter 已提交
308 309 310 311
#ifdef CONFIG_SLUB_DEBUG
/*
 * Debug settings:
 */
312 313 314
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
315
static int slub_debug;
316
#endif
C
Christoph Lameter 已提交
317 318 319

static char *slub_debug_slabs;

C
Christoph Lameter 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
	int i, offset;
	int newline = 1;
	char ascii[17];

	ascii[16] = 0;

	for (i = 0; i < length; i++) {
		if (newline) {
333
			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
C
Christoph Lameter 已提交
334 335
			newline = 0;
		}
P
Pekka Enberg 已提交
336
		printk(KERN_CONT " %02x", addr[i]);
C
Christoph Lameter 已提交
337 338 339
		offset = i % 16;
		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
		if (offset == 15) {
P
Pekka Enberg 已提交
340
			printk(KERN_CONT " %s\n", ascii);
C
Christoph Lameter 已提交
341 342 343 344 345 346
			newline = 1;
		}
	}
	if (!newline) {
		i %= 16;
		while (i < 16) {
P
Pekka Enberg 已提交
347
			printk(KERN_CONT "   ");
C
Christoph Lameter 已提交
348 349 350
			ascii[i] = ' ';
			i++;
		}
P
Pekka Enberg 已提交
351
		printk(KERN_CONT " %s\n", ascii);
C
Christoph Lameter 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
	}
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
				enum track_item alloc, void *addr)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	p += alloc;
	if (addr) {
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
382
		p->pid = current->pid;
C
Christoph Lameter 已提交
383 384 385 386 387 388 389
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
390 391 392 393 394
	if (!(s->flags & SLAB_STORE_USER))
		return;

	set_track(s, object, TRACK_FREE, NULL);
	set_track(s, object, TRACK_ALLOC, NULL);
C
Christoph Lameter 已提交
395 396 397 398 399 400 401
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

402 403
	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
		s, t->addr, jiffies - t->when, t->cpu, t->pid);
404 405 406 407 408 409 410 411 412 413 414 415 416
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
417 418
	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
		page, page->objects, page->inuse, page->freelist, page->flags);
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "========================================"
			"=====================================\n");
	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
	printk(KERN_ERR "----------------------------------------"
			"-------------------------------------\n\n");
C
Christoph Lameter 已提交
435 436
}

437 438 439 440 441 442 443 444 445 446 447 448
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
449 450
{
	unsigned int off;	/* Offset of last byte */
451
	u8 *addr = page_address(page);
452 453 454 455 456 457 458 459 460 461 462

	print_tracking(s, p);

	print_page_info(page);

	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
			p, p - addr, get_freepointer(s, p));

	if (p > addr + 16)
		print_section("Bytes b4", p - 16, 16);

463
	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
C
Christoph Lameter 已提交
464 465 466 467 468 469 470 471 472 473

	if (s->flags & SLAB_RED_ZONE)
		print_section("Redzone", p + s->objsize,
			s->inuse - s->objsize);

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

474
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
475 476 477 478
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
479 480 481
		print_section("Padding", p + off, s->size - off);

	dump_stack();
C
Christoph Lameter 已提交
482 483 484 485 486
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
487
	slab_bug(s, "%s", reason);
488
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
489 490
}

491
static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
C
Christoph Lameter 已提交
492 493 494 495
{
	va_list args;
	char buf[100];

496 497
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
498
	va_end(args);
499
	slab_bug(s, "%s", buf);
500
	print_page_info(page);
C
Christoph Lameter 已提交
501 502 503 504 505 506 507 508 509
	dump_stack();
}

static void init_object(struct kmem_cache *s, void *object, int active)
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
		memset(p, POISON_FREE, s->objsize - 1);
P
Pekka Enberg 已提交
510
		p[s->objsize - 1] = POISON_END;
C
Christoph Lameter 已提交
511 512 513 514 515 516 517 518
	}

	if (s->flags & SLAB_RED_ZONE)
		memset(p + s->objsize,
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
			s->inuse - s->objsize);
}

519
static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
C
Christoph Lameter 已提交
520 521 522
{
	while (bytes) {
		if (*start != (u8)value)
523
			return start;
C
Christoph Lameter 已提交
524 525 526
		start++;
		bytes--;
	}
527 528 529 530 531 532 533 534 535 536 537 538
	return NULL;
}

static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
539
			u8 *start, unsigned int value, unsigned int bytes)
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
{
	u8 *fault;
	u8 *end;

	fault = check_bytes(start, value, bytes);
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
559 560 561 562 563 564 565 566 567
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
568
 *
C
Christoph Lameter 已提交
569 570 571 572 573
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
 * object + s->objsize
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
574 575 576
 * 	Padding is extended by another word if Redzoning is enabled and
 * 	objsize == inuse.
 *
C
Christoph Lameter 已提交
577 578 579 580
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
581 582
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
583 584
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
585
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
586
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
587 588 589
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
590 591
 *
 * object + s->size
C
Christoph Lameter 已提交
592
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
593
 *
C
Christoph Lameter 已提交
594 595
 * If slabcaches are merged then the objsize and inuse boundaries are mostly
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

614 615
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
616 617
}

618
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
619 620
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
621 622 623 624 625
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
626 627 628 629

	if (!(s->flags & SLAB_POISON))
		return 1;

630
	start = page_address(page);
631
	length = (PAGE_SIZE << compound_order(page));
632 633
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
634 635 636
	if (!remainder)
		return 1;

637
	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
638 639 640 641 642 643
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
644
	print_section("Padding", end - remainder, remainder);
645 646 647

	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
	return 0;
C
Christoph Lameter 已提交
648 649 650 651 652 653 654 655 656 657 658 659
}

static int check_object(struct kmem_cache *s, struct page *page,
					void *object, int active)
{
	u8 *p = object;
	u8 *endobject = object + s->objsize;

	if (s->flags & SLAB_RED_ZONE) {
		unsigned int red =
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;

660 661
		if (!check_bytes_and_report(s, page, object, "Redzone",
			endobject, red, s->inuse - s->objsize))
C
Christoph Lameter 已提交
662 663
			return 0;
	} else {
I
Ingo Molnar 已提交
664 665 666 667
		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
			check_bytes_and_report(s, page, p, "Alignment padding",
				endobject, POISON_INUSE, s->inuse - s->objsize);
		}
C
Christoph Lameter 已提交
668 669 670 671
	}

	if (s->flags & SLAB_POISON) {
		if (!active && (s->flags & __OBJECT_POISON) &&
672 673 674
			(!check_bytes_and_report(s, page, p, "Poison", p,
					POISON_FREE, s->objsize - 1) ||
			 !check_bytes_and_report(s, page, p, "Poison",
P
Pekka Enberg 已提交
675
				p + s->objsize - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

	if (!s->offset && active)
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
		 * No choice but to zap it and thus loose the remainder
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
696
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
697
		 */
698
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
699 700 701 702 703 704 705
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
706 707
	int maxobj;

C
Christoph Lameter 已提交
708 709 710
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
711
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
712 713
		return 0;
	}
714 715 716 717 718 719 720 721

	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
			s->name, page->objects, maxobj);
		return 0;
	}
	if (page->inuse > page->objects) {
722
		slab_err(s, page, "inuse %u > max %u",
723
			s->name, page->inuse, page->objects);
C
Christoph Lameter 已提交
724 725 726 727 728 729 730 731
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
732 733
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
734 735 736 737 738 739
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
	void *fp = page->freelist;
	void *object = NULL;
740
	unsigned long max_objects;
C
Christoph Lameter 已提交
741

742
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
743 744 745 746 747 748
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
749
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
750 751
				break;
			} else {
752
				slab_err(s, page, "Freepointer corrupt");
753
				page->freelist = NULL;
754
				page->inuse = page->objects;
755
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
756 757 758 759 760 761 762 763 764
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

765 766 767 768 769 770 771 772 773 774
	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
	if (max_objects > 65535)
		max_objects = 65535;

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
775
	if (page->inuse != page->objects - nr) {
776
		slab_err(s, page, "Wrong object count. Counter is %d but "
777 778
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
779
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
780 781 782 783
	}
	return search == NULL;
}

784 785
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
			print_section("Object", (void *)object, s->objsize);

		dump_stack();
	}
}

801
/*
C
Christoph Lameter 已提交
802
 * Tracking of fully allocated slabs for debugging purposes.
803
 */
C
Christoph Lameter 已提交
804
static void add_full(struct kmem_cache_node *n, struct page *page)
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
{
	spin_lock(&n->list_lock);
	list_add(&page->lru, &n->full);
	spin_unlock(&n->list_lock);
}

static void remove_full(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n;

	if (!(s->flags & SLAB_STORE_USER))
		return;

	n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	spin_unlock(&n->list_lock);
}

825 826 827 828 829 830 831 832
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

833
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
834 835 836 837 838 839 840 841 842
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
843
	if (!NUMA_BUILD || n) {
844
		atomic_long_inc(&n->nr_slabs);
845 846
		atomic_long_add(objects, &n->total_objects);
	}
847
}
848
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
849 850 851 852
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
853
	atomic_long_sub(objects, &n->total_objects);
854 855 856
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
857 858 859 860 861 862 863 864 865 866 867 868
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

	init_object(s, object, 0);
	init_tracking(s, object);
}

static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
						void *object, void *addr)
C
Christoph Lameter 已提交
869 870 871 872
{
	if (!check_slab(s, page))
		goto bad;

873
	if (!on_freelist(s, page, object)) {
874
		object_err(s, page, object, "Object already allocated");
875
		goto bad;
C
Christoph Lameter 已提交
876 877 878 879
	}

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
880
		goto bad;
C
Christoph Lameter 已提交
881 882
	}

883
	if (!check_object(s, page, object, 0))
C
Christoph Lameter 已提交
884 885
		goto bad;

C
Christoph Lameter 已提交
886 887 888 889 890
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
	init_object(s, object, 1);
C
Christoph Lameter 已提交
891
	return 1;
C
Christoph Lameter 已提交
892

C
Christoph Lameter 已提交
893 894 895 896 897
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
898
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
899
		 */
900
		slab_fix(s, "Marking all objects used");
901
		page->inuse = page->objects;
902
		page->freelist = NULL;
C
Christoph Lameter 已提交
903 904 905 906
	}
	return 0;
}

C
Christoph Lameter 已提交
907 908
static int free_debug_processing(struct kmem_cache *s, struct page *page,
						void *object, void *addr)
C
Christoph Lameter 已提交
909 910 911 912 913
{
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
914
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
915 916 917 918
		goto fail;
	}

	if (on_freelist(s, page, object)) {
919
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
920 921 922 923 924 925 926
		goto fail;
	}

	if (!check_object(s, page, object, 1))
		return 0;

	if (unlikely(s != page->slab)) {
I
Ingo Molnar 已提交
927
		if (!PageSlab(page)) {
928 929
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
I
Ingo Molnar 已提交
930
		} else if (!page->slab) {
C
Christoph Lameter 已提交
931
			printk(KERN_ERR
932
				"SLUB <none>: no slab for object 0x%p.\n",
C
Christoph Lameter 已提交
933
						object);
934
			dump_stack();
P
Pekka Enberg 已提交
935
		} else
936 937
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
938 939
		goto fail;
	}
C
Christoph Lameter 已提交
940 941

	/* Special debug activities for freeing objects */
942
	if (!PageSlubFrozen(page) && !page->freelist)
C
Christoph Lameter 已提交
943 944 945 946 947
		remove_full(s, page);
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
	init_object(s, object, 0);
C
Christoph Lameter 已提交
948
	return 1;
C
Christoph Lameter 已提交
949

C
Christoph Lameter 已提交
950
fail:
951
	slab_fix(s, "Object at 0x%p not freed", object);
C
Christoph Lameter 已提交
952 953 954
	return 0;
}

C
Christoph Lameter 已提交
955 956
static int __init setup_slub_debug(char *str)
{
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
981
	for (; *str && *str != ','; str++) {
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
		default:
			printk(KERN_ERR "slub_debug option '%c' "
P
Pekka Enberg 已提交
1000
				"unknown. skipped\n", *str);
1001
		}
C
Christoph Lameter 已提交
1002 1003
	}

1004
check_slabs:
C
Christoph Lameter 已提交
1005 1006
	if (*str == ',')
		slub_debug_slabs = str + 1;
1007
out:
C
Christoph Lameter 已提交
1008 1009 1010 1011 1012
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1013 1014
static unsigned long kmem_cache_flags(unsigned long objsize,
	unsigned long flags, const char *name,
1015
	void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
1016 1017
{
	/*
1018
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1019
	 */
1020 1021 1022
	if (slub_debug && (!slub_debug_slabs ||
	    strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
			flags |= slub_debug;
1023 1024

	return flags;
C
Christoph Lameter 已提交
1025 1026
}
#else
C
Christoph Lameter 已提交
1027 1028
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1029

C
Christoph Lameter 已提交
1030 1031
static inline int alloc_debug_processing(struct kmem_cache *s,
	struct page *page, void *object, void *addr) { return 0; }
C
Christoph Lameter 已提交
1032

C
Christoph Lameter 已提交
1033 1034
static inline int free_debug_processing(struct kmem_cache *s,
	struct page *page, void *object, void *addr) { return 0; }
C
Christoph Lameter 已提交
1035 1036 1037 1038 1039

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
			void *object, int active) { return 1; }
C
Christoph Lameter 已提交
1040
static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1041 1042
static inline unsigned long kmem_cache_flags(unsigned long objsize,
	unsigned long flags, const char *name,
1043
	void (*ctor)(struct kmem_cache *, void *))
1044 1045 1046
{
	return flags;
}
C
Christoph Lameter 已提交
1047
#define slub_debug 0
1048 1049 1050

static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1051 1052 1053 1054
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
C
Christoph Lameter 已提交
1055
#endif
1056

C
Christoph Lameter 已提交
1057 1058 1059
/*
 * Slab allocation and freeing
 */
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
static inline struct page *alloc_slab_page(gfp_t flags, int node,
					struct kmem_cache_order_objects oo)
{
	int order = oo_order(oo);

	if (node == -1)
		return alloc_pages(flags, order);
	else
		return alloc_pages_node(node, flags, order);
}

C
Christoph Lameter 已提交
1071 1072
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1073
	struct page *page;
1074
	struct kmem_cache_order_objects oo = s->oo;
C
Christoph Lameter 已提交
1075

1076
	flags |= s->allocflags;
1077

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
									oo);
	if (unlikely(!page)) {
		oo = s->min;
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
		page = alloc_slab_page(flags, node, oo);
		if (!page)
			return NULL;
C
Christoph Lameter 已提交
1089

1090 1091
		stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
	}
1092
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1093 1094 1095
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1096
		1 << oo_order(oo));
C
Christoph Lameter 已提交
1097 1098 1099 1100 1101 1102 1103

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1104
	setup_object_debug(s, page, object);
1105
	if (unlikely(s->ctor))
1106
		s->ctor(s, object);
C
Christoph Lameter 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *last;
	void *p;

C
Christoph Lameter 已提交
1116
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1117

C
Christoph Lameter 已提交
1118 1119
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1120 1121 1122
	if (!page)
		goto out;

1123
	inc_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1124 1125 1126 1127
	page->slab = s;
	page->flags |= 1 << PG_slab;
	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
			SLAB_STORE_USER | SLAB_TRACE))
1128
		__SetPageSlubDebug(page);
C
Christoph Lameter 已提交
1129 1130 1131 1132

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
1133
		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
C
Christoph Lameter 已提交
1134 1135

	last = start;
1136
	for_each_object(p, s, start, page->objects) {
C
Christoph Lameter 已提交
1137 1138 1139 1140 1141
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
1142
	set_freepointer(s, last, NULL);
C
Christoph Lameter 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151

	page->freelist = start;
	page->inuse = 0;
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1152 1153
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1154

1155
	if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
C
Christoph Lameter 已提交
1156 1157 1158
		void *p;

		slab_pad_check(s, page);
1159 1160
		for_each_object(p, s, page_address(page),
						page->objects)
C
Christoph Lameter 已提交
1161
			check_object(s, page, p, 0);
1162
		__ClearPageSlubDebug(page);
C
Christoph Lameter 已提交
1163 1164 1165 1166 1167
	}

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1168
		-pages);
C
Christoph Lameter 已提交
1169

1170 1171
	__ClearPageSlab(page);
	reset_page_mapcount(page);
1172
	__free_pages(page, order);
C
Christoph Lameter 已提交
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
}

static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

	page = container_of((struct list_head *)h, struct page, lru);
	__free_slab(page->slab, page);
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
		/*
		 * RCU free overloads the RCU head over the LRU
		 */
		struct rcu_head *head = (void *)&page->lru;

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1198
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	free_slab(s, page);
}

/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
N
Nick Piggin 已提交
1212
	__bit_spin_unlock(PG_locked, &page->flags);
C
Christoph Lameter 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
}

static __always_inline int slab_trylock(struct page *page)
{
	int rc = 1;

	rc = bit_spin_trylock(PG_locked, &page->flags);
	return rc;
}

/*
 * Management of partially allocated slabs
 */
1226 1227
static void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
C
Christoph Lameter 已提交
1228
{
C
Christoph Lameter 已提交
1229 1230
	spin_lock(&n->list_lock);
	n->nr_partial++;
1231 1232 1233 1234
	if (tail)
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1235 1236 1237
	spin_unlock(&n->list_lock);
}

1238
static void remove_partial(struct kmem_cache *s, struct page *page)
C
Christoph Lameter 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	n->nr_partial--;
	spin_unlock(&n->list_lock);
}

/*
C
Christoph Lameter 已提交
1249
 * Lock slab and remove from the partial list.
C
Christoph Lameter 已提交
1250
 *
C
Christoph Lameter 已提交
1251
 * Must hold list_lock.
C
Christoph Lameter 已提交
1252
 */
1253 1254
static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
							struct page *page)
C
Christoph Lameter 已提交
1255 1256 1257 1258
{
	if (slab_trylock(page)) {
		list_del(&page->lru);
		n->nr_partial--;
1259
		__SetPageSlubFrozen(page);
C
Christoph Lameter 已提交
1260 1261 1262 1263 1264 1265
		return 1;
	}
	return 0;
}

/*
C
Christoph Lameter 已提交
1266
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1267 1268 1269 1270 1271 1272 1273 1274
 */
static struct page *get_partial_node(struct kmem_cache_node *n)
{
	struct page *page;

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1275 1276
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1277 1278 1279 1280 1281 1282
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
	list_for_each_entry(page, &n->partial, lru)
1283
		if (lock_and_freeze_slab(n, page))
C
Christoph Lameter 已提交
1284 1285 1286 1287 1288 1289 1290 1291
			goto out;
	page = NULL;
out:
	spin_unlock(&n->list_lock);
	return page;
}

/*
C
Christoph Lameter 已提交
1292
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1293 1294 1295 1296 1297
 */
static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1298
	struct zoneref *z;
1299 1300
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
C
Christoph Lameter 已提交
1301 1302 1303
	struct page *page;

	/*
C
Christoph Lameter 已提交
1304 1305 1306 1307
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1308
	 *
C
Christoph Lameter 已提交
1309 1310 1311 1312
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1313
	 *
C
Christoph Lameter 已提交
1314
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1315 1316 1317 1318 1319
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1320
	 */
1321 1322
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1323 1324
		return NULL;

1325
	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1326
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
C
Christoph Lameter 已提交
1327 1328
		struct kmem_cache_node *n;

1329
		n = get_node(s, zone_to_nid(zone));
C
Christoph Lameter 已提交
1330

1331
		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
C
Christoph Lameter 已提交
1332
				n->nr_partial > MIN_PARTIAL) {
C
Christoph Lameter 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
			page = get_partial_node(n);
			if (page)
				return page;
		}
	}
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	int searchnode = (node == -1) ? numa_node_id() : node;

	page = get_partial_node(get_node(s, searchnode));
	if (page || (flags & __GFP_THISNODE))
		return page;

	return get_any_partial(s, flags);
}

/*
 * Move a page back to the lists.
 *
 * Must be called with the slab lock held.
 *
 * On exit the slab lock will have been dropped.
 */
1364
static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
C
Christoph Lameter 已提交
1365
{
C
Christoph Lameter 已提交
1366
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1367
	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
1368

1369
	__ClearPageSlubFrozen(page);
C
Christoph Lameter 已提交
1370
	if (page->inuse) {
C
Christoph Lameter 已提交
1371

1372
		if (page->freelist) {
1373
			add_partial(n, page, tail);
1374 1375 1376
			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
		} else {
			stat(c, DEACTIVATE_FULL);
1377 1378
			if (SLABDEBUG && PageSlubDebug(page) &&
						(s->flags & SLAB_STORE_USER))
1379 1380
				add_full(n, page);
		}
C
Christoph Lameter 已提交
1381 1382
		slab_unlock(page);
	} else {
1383
		stat(c, DEACTIVATE_EMPTY);
C
Christoph Lameter 已提交
1384 1385
		if (n->nr_partial < MIN_PARTIAL) {
			/*
C
Christoph Lameter 已提交
1386 1387 1388
			 * Adding an empty slab to the partial slabs in order
			 * to avoid page allocator overhead. This slab needs
			 * to come after the other slabs with objects in
C
Christoph Lameter 已提交
1389 1390 1391
			 * so that the others get filled first. That way the
			 * size of the partial list stays small.
			 *
1392 1393
			 * kmem_cache_shrink can reclaim any empty slabs from
			 * the partial list.
C
Christoph Lameter 已提交
1394
			 */
1395
			add_partial(n, page, 1);
C
Christoph Lameter 已提交
1396 1397 1398
			slab_unlock(page);
		} else {
			slab_unlock(page);
1399
			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
C
Christoph Lameter 已提交
1400 1401
			discard_slab(s, page);
		}
C
Christoph Lameter 已提交
1402 1403 1404 1405 1406 1407
	}
}

/*
 * Remove the cpu slab
 */
1408
static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1409
{
1410
	struct page *page = c->page;
1411
	int tail = 1;
1412

1413
	if (page->freelist)
1414
		stat(c, DEACTIVATE_REMOTE_FREES);
1415
	/*
C
Christoph Lameter 已提交
1416
	 * Merge cpu freelist into slab freelist. Typically we get here
1417 1418 1419
	 * because both freelists are empty. So this is unlikely
	 * to occur.
	 */
1420
	while (unlikely(c->freelist)) {
1421 1422
		void **object;

1423 1424
		tail = 0;	/* Hot objects. Put the slab first */

1425
		/* Retrieve object from cpu_freelist */
1426
		object = c->freelist;
1427
		c->freelist = c->freelist[c->offset];
1428 1429

		/* And put onto the regular freelist */
1430
		object[c->offset] = page->freelist;
1431 1432 1433
		page->freelist = object;
		page->inuse--;
	}
1434
	c->page = NULL;
1435
	unfreeze_slab(s, page, tail);
C
Christoph Lameter 已提交
1436 1437
}

1438
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1439
{
1440
	stat(c, CPUSLAB_FLUSH);
1441 1442
	slab_lock(c->page);
	deactivate_slab(s, c);
C
Christoph Lameter 已提交
1443 1444 1445 1446
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
1447
 *
C
Christoph Lameter 已提交
1448 1449
 * Called from IPI handler with interrupts disabled.
 */
1450
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
1451
{
1452
	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
C
Christoph Lameter 已提交
1453

1454 1455
	if (likely(c && c->page))
		flush_slab(s, c);
C
Christoph Lameter 已提交
1456 1457 1458 1459 1460 1461
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

1462
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
1463 1464 1465 1466
}

static void flush_all(struct kmem_cache *s)
{
1467
	on_each_cpu(flush_cpu_slab, s, 1);
C
Christoph Lameter 已提交
1468 1469
}

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
static inline int node_match(struct kmem_cache_cpu *c, int node)
{
#ifdef CONFIG_NUMA
	if (node != -1 && c->node != node)
		return 0;
#endif
	return 1;
}

C
Christoph Lameter 已提交
1483
/*
1484 1485 1486 1487
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Interrupts are disabled.
C
Christoph Lameter 已提交
1488
 *
1489 1490 1491
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
1492
 *
1493 1494 1495
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
1496
 *
1497
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
1498 1499
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
1500
 */
1501
static void *__slab_alloc(struct kmem_cache *s,
1502
		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1503 1504
{
	void **object;
1505
	struct page *new;
C
Christoph Lameter 已提交
1506

1507 1508 1509
	/* We handle __GFP_ZERO in the caller */
	gfpflags &= ~__GFP_ZERO;

1510
	if (!c->page)
C
Christoph Lameter 已提交
1511 1512
		goto new_slab;

1513 1514
	slab_lock(c->page);
	if (unlikely(!node_match(c, node)))
C
Christoph Lameter 已提交
1515
		goto another_slab;
C
Christoph Lameter 已提交
1516

1517
	stat(c, ALLOC_REFILL);
C
Christoph Lameter 已提交
1518

1519
load_freelist:
1520
	object = c->page->freelist;
1521
	if (unlikely(!object))
C
Christoph Lameter 已提交
1522
		goto another_slab;
1523
	if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
C
Christoph Lameter 已提交
1524 1525
		goto debug;

1526
	c->freelist = object[c->offset];
1527
	c->page->inuse = c->page->objects;
1528
	c->page->freelist = NULL;
1529
	c->node = page_to_nid(c->page);
1530
unlock_out:
1531
	slab_unlock(c->page);
1532
	stat(c, ALLOC_SLOWPATH);
C
Christoph Lameter 已提交
1533 1534 1535
	return object;

another_slab:
1536
	deactivate_slab(s, c);
C
Christoph Lameter 已提交
1537 1538

new_slab:
1539 1540 1541
	new = get_partial(s, gfpflags, node);
	if (new) {
		c->page = new;
1542
		stat(c, ALLOC_FROM_PARTIAL);
1543
		goto load_freelist;
C
Christoph Lameter 已提交
1544 1545
	}

1546 1547 1548
	if (gfpflags & __GFP_WAIT)
		local_irq_enable();

1549
	new = new_slab(s, gfpflags, node);
1550 1551 1552 1553

	if (gfpflags & __GFP_WAIT)
		local_irq_disable();

1554 1555
	if (new) {
		c = get_cpu_slab(s, smp_processor_id());
1556
		stat(c, ALLOC_SLAB);
1557
		if (c->page)
1558 1559
			flush_slab(s, c);
		slab_lock(new);
1560
		__SetPageSlubFrozen(new);
1561
		c->page = new;
1562
		goto load_freelist;
C
Christoph Lameter 已提交
1563
	}
1564
	return NULL;
C
Christoph Lameter 已提交
1565
debug:
1566
	if (!alloc_debug_processing(s, c->page, object, addr))
C
Christoph Lameter 已提交
1567
		goto another_slab;
1568

1569
	c->page->inuse++;
1570
	c->page->freelist = object[c->offset];
1571
	c->node = -1;
1572
	goto unlock_out;
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
P
Pekka Enberg 已提交
1585
static __always_inline void *slab_alloc(struct kmem_cache *s,
1586
		gfp_t gfpflags, int node, void *addr)
1587 1588
{
	void **object;
1589
	struct kmem_cache_cpu *c;
1590
	unsigned long flags;
1591
	unsigned int objsize;
1592

1593
	local_irq_save(flags);
1594
	c = get_cpu_slab(s, smp_processor_id());
1595
	objsize = c->objsize;
1596
	if (unlikely(!c->freelist || !node_match(c, node)))
1597

1598
		object = __slab_alloc(s, gfpflags, node, addr, c);
1599 1600

	else {
1601
		object = c->freelist;
1602
		c->freelist = object[c->offset];
1603
		stat(c, ALLOC_FASTPATH);
1604 1605
	}
	local_irq_restore(flags);
1606 1607

	if (unlikely((gfpflags & __GFP_ZERO) && object))
1608
		memset(object, 0, objsize);
1609

1610
	return object;
C
Christoph Lameter 已提交
1611 1612 1613 1614
}

void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
1615
	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
1616 1617 1618 1619 1620 1621
}
EXPORT_SYMBOL(kmem_cache_alloc);

#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
1622
	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
C
Christoph Lameter 已提交
1623 1624 1625 1626 1627
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
#endif

/*
1628 1629
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
1630
 *
1631 1632 1633
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
1634
 */
1635
static void __slab_free(struct kmem_cache *s, struct page *page,
1636
				void *x, void *addr, unsigned int offset)
C
Christoph Lameter 已提交
1637 1638 1639
{
	void *prior;
	void **object = (void *)x;
1640
	struct kmem_cache_cpu *c;
C
Christoph Lameter 已提交
1641

1642 1643
	c = get_cpu_slab(s, raw_smp_processor_id());
	stat(c, FREE_SLOWPATH);
C
Christoph Lameter 已提交
1644 1645
	slab_lock(page);

1646
	if (unlikely(SLABDEBUG && PageSlubDebug(page)))
C
Christoph Lameter 已提交
1647
		goto debug;
C
Christoph Lameter 已提交
1648

C
Christoph Lameter 已提交
1649
checks_ok:
1650
	prior = object[offset] = page->freelist;
C
Christoph Lameter 已提交
1651 1652 1653
	page->freelist = object;
	page->inuse--;

1654
	if (unlikely(PageSlubFrozen(page))) {
1655
		stat(c, FREE_FROZEN);
C
Christoph Lameter 已提交
1656
		goto out_unlock;
1657
	}
C
Christoph Lameter 已提交
1658 1659 1660 1661 1662

	if (unlikely(!page->inuse))
		goto slab_empty;

	/*
C
Christoph Lameter 已提交
1663
	 * Objects left in the slab. If it was not on the partial list before
C
Christoph Lameter 已提交
1664 1665
	 * then add it.
	 */
1666
	if (unlikely(!prior)) {
1667
		add_partial(get_node(s, page_to_nid(page)), page, 1);
1668 1669
		stat(c, FREE_ADD_PARTIAL);
	}
C
Christoph Lameter 已提交
1670 1671 1672 1673 1674 1675

out_unlock:
	slab_unlock(page);
	return;

slab_empty:
1676
	if (prior) {
C
Christoph Lameter 已提交
1677
		/*
C
Christoph Lameter 已提交
1678
		 * Slab still on the partial list.
C
Christoph Lameter 已提交
1679 1680
		 */
		remove_partial(s, page);
1681 1682
		stat(c, FREE_REMOVE_PARTIAL);
	}
C
Christoph Lameter 已提交
1683
	slab_unlock(page);
1684
	stat(c, FREE_SLAB);
C
Christoph Lameter 已提交
1685 1686 1687 1688
	discard_slab(s, page);
	return;

debug:
C
Christoph Lameter 已提交
1689
	if (!free_debug_processing(s, page, x, addr))
C
Christoph Lameter 已提交
1690 1691
		goto out_unlock;
	goto checks_ok;
C
Christoph Lameter 已提交
1692 1693
}

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
1705
static __always_inline void slab_free(struct kmem_cache *s,
1706 1707 1708
			struct page *page, void *x, void *addr)
{
	void **object = (void *)x;
1709
	struct kmem_cache_cpu *c;
1710 1711
	unsigned long flags;

1712
	local_irq_save(flags);
1713
	c = get_cpu_slab(s, smp_processor_id());
1714
	debug_check_no_locks_freed(object, c->objsize);
1715 1716
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(object, s->objsize);
1717
	if (likely(page == c->page && c->node >= 0)) {
1718
		object[c->offset] = c->freelist;
1719
		c->freelist = object;
1720
		stat(c, FREE_FASTPATH);
1721
	} else
1722
		__slab_free(s, page, x, addr, c->offset);
1723 1724 1725 1726

	local_irq_restore(flags);
}

C
Christoph Lameter 已提交
1727 1728
void kmem_cache_free(struct kmem_cache *s, void *x)
{
C
Christoph Lameter 已提交
1729
	struct page *page;
C
Christoph Lameter 已提交
1730

1731
	page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1732

C
Christoph Lameter 已提交
1733
	slab_free(s, page, x, __builtin_return_address(0));
C
Christoph Lameter 已提交
1734 1735 1736 1737 1738 1739
}
EXPORT_SYMBOL(kmem_cache_free);

/* Figure out on which slab object the object resides */
static struct page *get_object_page(const void *x)
{
1740
	struct page *page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1741 1742 1743 1744 1745 1746 1747 1748

	if (!PageSlab(page))
		return NULL;

	return page;
}

/*
C
Christoph Lameter 已提交
1749 1750 1751 1752
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
1753 1754 1755 1756
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
1757
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
1768
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1769
static int slub_min_objects;
C
Christoph Lameter 已提交
1770 1771 1772

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
1773
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
1774 1775 1776 1777 1778 1779
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
1780 1781 1782 1783
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
1784
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
1785 1786 1787 1788 1789 1790
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
1791
 *
C
Christoph Lameter 已提交
1792 1793 1794 1795
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
1796
 *
C
Christoph Lameter 已提交
1797 1798 1799 1800
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
1801
 */
1802 1803
static inline int slab_order(int size, int min_objects,
				int max_order, int fract_leftover)
C
Christoph Lameter 已提交
1804 1805 1806
{
	int order;
	int rem;
1807
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
1808

1809 1810 1811
	if ((PAGE_SIZE << min_order) / size > 65535)
		return get_order(size * 65535) - 1;

1812
	for (order = max(min_order,
1813 1814
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
1815

1816
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
1817

1818
		if (slab_size < min_objects * size)
C
Christoph Lameter 已提交
1819 1820 1821 1822
			continue;

		rem = slab_size % size;

1823
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
1824 1825 1826
			break;

	}
C
Christoph Lameter 已提交
1827

C
Christoph Lameter 已提交
1828 1829 1830
	return order;
}

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
static inline int calculate_order(int size)
{
	int order;
	int min_objects;
	int fraction;

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
1846 1847
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
1848
	while (min_objects > 1) {
C
Christoph Lameter 已提交
1849
		fraction = 16;
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
						slub_max_order, fraction);
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
		min_objects /= 2;
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
	order = slab_order(size, 1, slub_max_order, 1);
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
	order = slab_order(size, 1, MAX_ORDER, 1);
	if (order <= MAX_ORDER)
		return order;
	return -ENOSYS;
}

C
Christoph Lameter 已提交
1877
/*
C
Christoph Lameter 已提交
1878
 * Figure out what the alignment of the objects will be.
C
Christoph Lameter 已提交
1879 1880 1881 1882 1883
 */
static unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
C
Christoph Lameter 已提交
1884 1885
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
C
Christoph Lameter 已提交
1886
	 *
C
Christoph Lameter 已提交
1887 1888
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
C
Christoph Lameter 已提交
1889
	 */
1890 1891 1892 1893 1894 1895
	if (flags & SLAB_HWCACHE_ALIGN) {
		unsigned long ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}
C
Christoph Lameter 已提交
1896 1897

	if (align < ARCH_SLAB_MINALIGN)
1898
		align = ARCH_SLAB_MINALIGN;
C
Christoph Lameter 已提交
1899 1900 1901 1902

	return ALIGN(align, sizeof(void *));
}

1903 1904 1905 1906
static void init_kmem_cache_cpu(struct kmem_cache *s,
			struct kmem_cache_cpu *c)
{
	c->page = NULL;
1907
	c->freelist = NULL;
1908
	c->node = 0;
1909 1910
	c->offset = s->offset / sizeof(void *);
	c->objsize = s->objsize;
P
Pekka Enberg 已提交
1911 1912 1913
#ifdef CONFIG_SLUB_STATS
	memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
#endif
1914 1915
}

C
Christoph Lameter 已提交
1916 1917 1918 1919 1920
static void init_kmem_cache_node(struct kmem_cache_node *n)
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
1921
#ifdef CONFIG_SLUB_DEBUG
1922
	atomic_long_set(&n->nr_slabs, 0);
1923
	INIT_LIST_HEAD(&n->full);
1924
#endif
C
Christoph Lameter 已提交
1925 1926
}

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
#ifdef CONFIG_SMP
/*
 * Per cpu array for per cpu structures.
 *
 * The per cpu array places all kmem_cache_cpu structures from one processor
 * close together meaning that it becomes possible that multiple per cpu
 * structures are contained in one cacheline. This may be particularly
 * beneficial for the kmalloc caches.
 *
 * A desktop system typically has around 60-80 slabs. With 100 here we are
 * likely able to get per cpu structures for all caches from the array defined
 * here. We must be able to cover all kmalloc caches during bootstrap.
 *
 * If the per cpu array is exhausted then fall back to kmalloc
 * of individual cachelines. No sharing is possible then.
 */
#define NR_KMEM_CACHE_CPU 100

static DEFINE_PER_CPU(struct kmem_cache_cpu,
				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];

static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;

static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
							int cpu, gfp_t flags)
{
	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);

	if (c)
		per_cpu(kmem_cache_cpu_free, cpu) =
				(void *)c->freelist;
	else {
		/* Table overflow: So allocate ourselves */
		c = kmalloc_node(
			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
			flags, cpu_to_node(cpu));
		if (!c)
			return NULL;
	}

	init_kmem_cache_cpu(s, c);
	return c;
}

static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
{
	if (c < per_cpu(kmem_cache_cpu, cpu) ||
			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
		kfree(c);
		return;
	}
	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
	per_cpu(kmem_cache_cpu_free, cpu) = c;
}

static void free_kmem_cache_cpus(struct kmem_cache *s)
{
	int cpu;

	for_each_online_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c) {
			s->cpu_slab[cpu] = NULL;
			free_kmem_cache_cpu(c, cpu);
		}
	}
}

static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
	int cpu;

	for_each_online_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c)
			continue;

		c = alloc_kmem_cache_cpu(s, cpu, flags);
		if (!c) {
			free_kmem_cache_cpus(s);
			return 0;
		}
		s->cpu_slab[cpu] = c;
	}
	return 1;
}

/*
 * Initialize the per cpu array.
 */
static void init_alloc_cpu_cpu(int cpu)
{
	int i;

	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
		return;

	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);

	cpu_set(cpu, kmem_cach_cpu_free_init_once);
}

static void __init init_alloc_cpu(void)
{
	int cpu;

	for_each_online_cpu(cpu)
		init_alloc_cpu_cpu(cpu);
  }

#else
static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
static inline void init_alloc_cpu(void) {}

static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
	init_kmem_cache_cpu(s, &s->cpu_slab);
	return 1;
}
#endif

C
Christoph Lameter 已提交
2052 2053 2054 2055 2056 2057 2058
#ifdef CONFIG_NUMA
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
 * Note that this function only works on the kmalloc_node_cache
2059 2060
 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2061
 */
2062 2063
static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
							   int node)
C
Christoph Lameter 已提交
2064 2065 2066
{
	struct page *page;
	struct kmem_cache_node *n;
R
root 已提交
2067
	unsigned long flags;
C
Christoph Lameter 已提交
2068 2069 2070

	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));

2071
	page = new_slab(kmalloc_caches, gfpflags, node);
C
Christoph Lameter 已提交
2072 2073

	BUG_ON(!page);
2074 2075 2076 2077 2078 2079 2080
	if (page_to_nid(page) != node) {
		printk(KERN_ERR "SLUB: Unable to allocate memory from "
				"node %d\n", node);
		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
				"in order to be able to continue\n");
	}

C
Christoph Lameter 已提交
2081 2082 2083 2084 2085
	n = page->freelist;
	BUG_ON(!n);
	page->freelist = get_freepointer(kmalloc_caches, n);
	page->inuse++;
	kmalloc_caches->node[node] = n;
2086
#ifdef CONFIG_SLUB_DEBUG
2087 2088
	init_object(kmalloc_caches, n, 1);
	init_tracking(kmalloc_caches, n);
2089
#endif
C
Christoph Lameter 已提交
2090
	init_kmem_cache_node(n);
2091
	inc_slabs_node(kmalloc_caches, node, page->objects);
C
Christoph Lameter 已提交
2092

R
root 已提交
2093 2094 2095 2096 2097 2098
	/*
	 * lockdep requires consistent irq usage for each lock
	 * so even though there cannot be a race this early in
	 * the boot sequence, we still disable irqs.
	 */
	local_irq_save(flags);
2099
	add_partial(n, page, 0);
R
root 已提交
2100
	local_irq_restore(flags);
C
Christoph Lameter 已提交
2101 2102 2103 2104 2105 2106 2107
	return n;
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

C
Christoph Lameter 已提交
2108
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
		struct kmem_cache_node *n = s->node[node];
		if (n && n != &s->local_node)
			kmem_cache_free(kmalloc_caches, n);
		s->node[node] = NULL;
	}
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	int node;
	int local_node;

	if (slab_state >= UP)
		local_node = page_to_nid(virt_to_page(s));
	else
		local_node = 0;

C
Christoph Lameter 已提交
2126
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
		struct kmem_cache_node *n;

		if (local_node == node)
			n = &s->local_node;
		else {
			if (slab_state == DOWN) {
				n = early_kmem_cache_node_alloc(gfpflags,
								node);
				continue;
			}
			n = kmem_cache_alloc_node(kmalloc_caches,
							gfpflags, node);

			if (!n) {
				free_kmem_cache_nodes(s);
				return 0;
			}

		}
		s->node[node] = n;
		init_kmem_cache_node(n);
	}
	return 1;
}
#else
static void free_kmem_cache_nodes(struct kmem_cache *s)
{
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	init_kmem_cache_node(&s->local_node);
	return 1;
}
#endif

/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
2167
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
2168 2169 2170 2171
{
	unsigned long flags = s->flags;
	unsigned long size = s->objsize;
	unsigned long align = s->align;
2172
	int order;
C
Christoph Lameter 已提交
2173

2174 2175 2176 2177 2178 2179 2180 2181
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2182 2183 2184 2185 2186 2187
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2188
			!s->ctor)
C
Christoph Lameter 已提交
2189 2190 2191 2192 2193 2194
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
2195
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2196
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2197
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2198 2199 2200
	 */
	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
		size += sizeof(void *);
C
Christoph Lameter 已提交
2201
#endif
C
Christoph Lameter 已提交
2202 2203

	/*
C
Christoph Lameter 已提交
2204 2205
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
2206 2207 2208 2209
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2210
		s->ctor)) {
C
Christoph Lameter 已提交
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

2223
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2224 2225 2226 2227 2228 2229 2230
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

2231
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
2232 2233 2234 2235 2236 2237 2238 2239
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
		 * corrupted if an user writes before the start
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
2240
#endif
C
Christoph Lameter 已提交
2241

C
Christoph Lameter 已提交
2242 2243
	/*
	 * Determine the alignment based on various parameters that the
2244 2245
	 * user specified and the dynamic determination of cache line size
	 * on bootup.
C
Christoph Lameter 已提交
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
	 */
	align = calculate_alignment(flags, align, s->objsize);

	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
	size = ALIGN(size, align);
	s->size = size;
2256 2257 2258 2259
	if (forced_order >= 0)
		order = forced_order;
	else
		order = calculate_order(size);
C
Christoph Lameter 已提交
2260

2261
	if (order < 0)
C
Christoph Lameter 已提交
2262 2263
		return 0;

2264
	s->allocflags = 0;
2265
	if (order)
2266 2267 2268 2269 2270 2271 2272 2273
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
		s->allocflags |= SLUB_DMA;

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
2274 2275 2276
	/*
	 * Determine the number of objects per slab
	 */
2277
	s->oo = oo_make(order, size);
2278
	s->min = oo_make(get_order(size), size);
2279 2280
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
2281

2282
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
2283 2284 2285 2286 2287 2288

}

static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
		const char *name, size_t size,
		size_t align, unsigned long flags,
2289
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
2290 2291 2292 2293 2294 2295
{
	memset(s, 0, kmem_size);
	s->name = name;
	s->ctor = ctor;
	s->objsize = size;
	s->align = align;
2296
	s->flags = kmem_cache_flags(size, flags, name, ctor);
C
Christoph Lameter 已提交
2297

2298
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
2299 2300 2301 2302
		goto error;

	s->refcount = 1;
#ifdef CONFIG_NUMA
2303
	s->remote_node_defrag_ratio = 100;
C
Christoph Lameter 已提交
2304
#endif
2305 2306
	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
		goto error;
C
Christoph Lameter 已提交
2307

2308
	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
C
Christoph Lameter 已提交
2309
		return 1;
2310
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
2311 2312 2313 2314
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
2315
			s->name, (unsigned long)size, s->size, oo_order(s->oo),
C
Christoph Lameter 已提交
2316 2317 2318 2319 2320 2321 2322 2323 2324
			s->offset, flags);
	return 0;
}

/*
 * Check if a given pointer is valid
 */
int kmem_ptr_validate(struct kmem_cache *s, const void *object)
{
P
Pekka Enberg 已提交
2325
	struct page *page;
C
Christoph Lameter 已提交
2326 2327 2328 2329 2330 2331 2332

	page = get_object_page(object);

	if (!page || s != page->slab)
		/* No slab or wrong slab */
		return 0;

2333
	if (!check_valid_pointer(s, page, object))
C
Christoph Lameter 已提交
2334 2335 2336 2337 2338
		return 0;

	/*
	 * We could also check if the object is on the slabs freelist.
	 * But this would be too expensive and it seems that the main
C
Christoph Lameter 已提交
2339
	 * purpose of kmem_ptr_valid() is to check if the object belongs
C
Christoph Lameter 已提交
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	 * to a certain slab.
	 */
	return 1;
}
EXPORT_SYMBOL(kmem_ptr_validate);

/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->objsize;
}
EXPORT_SYMBOL(kmem_cache_size);

const char *kmem_cache_name(struct kmem_cache *s)
{
	return s->name;
}
EXPORT_SYMBOL(kmem_cache_name);

2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
	DECLARE_BITMAP(map, page->objects);

	bitmap_zero(map, page->objects);
	slab_err(s, page, "%s", text);
	slab_lock(page);
	for_each_free_object(p, s, page->freelist)
		set_bit(slab_index(p, s, addr), map);

	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
							p, p - addr);
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
#endif
}

C
Christoph Lameter 已提交
2387
/*
C
Christoph Lameter 已提交
2388
 * Attempt to free all partial slabs on a node.
C
Christoph Lameter 已提交
2389
 */
C
Christoph Lameter 已提交
2390
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
2391 2392 2393 2394 2395
{
	unsigned long flags;
	struct page *page, *h;

	spin_lock_irqsave(&n->list_lock, flags);
2396
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
2397 2398 2399
		if (!page->inuse) {
			list_del(&page->lru);
			discard_slab(s, page);
C
Christoph Lameter 已提交
2400
			n->nr_partial--;
2401 2402 2403
		} else {
			list_slab_objects(s, page,
				"Objects remaining on kmem_cache_close()");
C
Christoph Lameter 已提交
2404
		}
2405
	}
C
Christoph Lameter 已提交
2406 2407 2408 2409
	spin_unlock_irqrestore(&n->list_lock, flags);
}

/*
C
Christoph Lameter 已提交
2410
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
2411
 */
2412
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
2413 2414 2415 2416 2417 2418
{
	int node;

	flush_all(s);

	/* Attempt to free all objects */
2419
	free_kmem_cache_cpus(s);
C
Christoph Lameter 已提交
2420
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2421 2422
		struct kmem_cache_node *n = get_node(s, node);

C
Christoph Lameter 已提交
2423 2424
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
			return 1;
	}
	free_kmem_cache_nodes(s);
	return 0;
}

/*
 * Close a cache and release the kmem_cache structure
 * (must be used for caches created using kmem_cache_create)
 */
void kmem_cache_destroy(struct kmem_cache *s)
{
	down_write(&slub_lock);
	s->refcount--;
	if (!s->refcount) {
		list_del(&s->list);
2441
		up_write(&slub_lock);
2442 2443 2444 2445 2446
		if (kmem_cache_close(s)) {
			printk(KERN_ERR "SLUB %s: %s called for cache that "
				"still has objects.\n", s->name, __func__);
			dump_stack();
		}
C
Christoph Lameter 已提交
2447
		sysfs_slab_remove(s);
2448 2449
	} else
		up_write(&slub_lock);
C
Christoph Lameter 已提交
2450 2451 2452 2453 2454 2455 2456
}
EXPORT_SYMBOL(kmem_cache_destroy);

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

2457
struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
C
Christoph Lameter 已提交
2458 2459 2460 2461
EXPORT_SYMBOL(kmalloc_caches);

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
2462
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
2463 2464 2465 2466 2467 2468 2469 2470

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
2471
	get_option(&str, &slub_max_order);
C
Christoph Lameter 已提交
2472 2473 2474 2475 2476 2477 2478 2479

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
2480
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
		const char *name, int size, gfp_t gfp_flags)
{
	unsigned int flags = 0;

	if (gfp_flags & SLUB_DMA)
		flags = SLAB_CACHE_DMA;

	down_write(&slub_lock);
	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2505
								flags, NULL))
C
Christoph Lameter 已提交
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
		goto panic;

	list_add(&s->list, &slab_caches);
	up_write(&slub_lock);
	if (sysfs_slab_add(s))
		goto panic;
	return s;

panic:
	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
}

2518
#ifdef CONFIG_ZONE_DMA
2519
static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536

static void sysfs_add_func(struct work_struct *w)
{
	struct kmem_cache *s;

	down_write(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		if (s->flags & __SYSFS_ADD_DEFERRED) {
			s->flags &= ~__SYSFS_ADD_DEFERRED;
			sysfs_slab_add(s);
		}
	}
	up_write(&slub_lock);
}

static DECLARE_WORK(sysfs_add_work, sysfs_add_func);

2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
{
	struct kmem_cache *s;
	char *text;
	size_t realsize;

	s = kmalloc_caches_dma[index];
	if (s)
		return s;

	/* Dynamically create dma cache */
2548 2549 2550 2551 2552 2553 2554 2555 2556
	if (flags & __GFP_WAIT)
		down_write(&slub_lock);
	else {
		if (!down_write_trylock(&slub_lock))
			goto out;
	}

	if (kmalloc_caches_dma[index])
		goto unlock_out;
2557

2558
	realsize = kmalloc_caches[index].objsize;
I
Ingo Molnar 已提交
2559 2560
	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
			 (unsigned int)realsize);
2561 2562 2563 2564 2565 2566 2567 2568
	s = kmalloc(kmem_size, flags & ~SLUB_DMA);

	if (!s || !text || !kmem_cache_open(s, flags, text,
			realsize, ARCH_KMALLOC_MINALIGN,
			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
		kfree(s);
		kfree(text);
		goto unlock_out;
2569
	}
2570 2571 2572 2573 2574 2575 2576

	list_add(&s->list, &slab_caches);
	kmalloc_caches_dma[index] = s;

	schedule_work(&sysfs_add_work);

unlock_out:
2577
	up_write(&slub_lock);
2578
out:
2579
	return kmalloc_caches_dma[index];
2580 2581 2582
}
#endif

2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

C
Christoph Lameter 已提交
2616 2617
static struct kmem_cache *get_slab(size_t size, gfp_t flags)
{
2618
	int index;
C
Christoph Lameter 已提交
2619

2620 2621 2622
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;
C
Christoph Lameter 已提交
2623

2624
		index = size_index[(size - 1) / 8];
2625
	} else
2626
		index = fls(size - 1);
C
Christoph Lameter 已提交
2627 2628

#ifdef CONFIG_ZONE_DMA
2629
	if (unlikely((flags & SLUB_DMA)))
2630
		return dma_kmalloc_cache(index, flags);
2631

C
Christoph Lameter 已提交
2632 2633 2634 2635 2636 2637
#endif
	return &kmalloc_caches[index];
}

void *__kmalloc(size_t size, gfp_t flags)
{
2638
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2639

2640
	if (unlikely(size > PAGE_SIZE))
2641
		return kmalloc_large(size, flags);
2642 2643 2644 2645

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
2646 2647
		return s;

2648
	return slab_alloc(s, flags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
2649 2650 2651
}
EXPORT_SYMBOL(__kmalloc);

2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
	struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
						get_order(size));

	if (page)
		return page_address(page);
	else
		return NULL;
}

C
Christoph Lameter 已提交
2663 2664 2665
#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
2666
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2667

2668
	if (unlikely(size > PAGE_SIZE))
2669
		return kmalloc_large_node(size, flags, node);
2670 2671 2672 2673

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
2674 2675
		return s;

2676
	return slab_alloc(s, flags, node, __builtin_return_address(0));
C
Christoph Lameter 已提交
2677 2678 2679 2680 2681 2682
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
2683
	struct page *page;
C
Christoph Lameter 已提交
2684 2685
	struct kmem_cache *s;

2686
	if (unlikely(object == ZERO_SIZE_PTR))
2687 2688
		return 0;

2689 2690
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
2691 2692
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
2693
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
2694
	}
C
Christoph Lameter 已提交
2695 2696
	s = page->slab;

2697
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2698 2699 2700 2701 2702 2703 2704
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
		return s->objsize;

2705
#endif
C
Christoph Lameter 已提交
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}
EXPORT_SYMBOL(ksize);

void kfree(const void *x)
{
	struct page *page;
2723
	void *object = (void *)x;
C
Christoph Lameter 已提交
2724

2725
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
2726 2727
		return;

2728
	page = virt_to_head_page(x);
2729
	if (unlikely(!PageSlab(page))) {
2730
		BUG_ON(!PageCompound(page));
2731 2732 2733
		put_page(page);
		return;
	}
2734
	slab_free(page->slab, page, object, __builtin_return_address(0));
C
Christoph Lameter 已提交
2735 2736 2737
}
EXPORT_SYMBOL(kfree);

2738
/*
C
Christoph Lameter 已提交
2739 2740 2741 2742 2743 2744 2745 2746
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
2747 2748 2749 2750 2751 2752 2753 2754
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
2755
	int objects = oo_objects(s->max);
2756
	struct list_head *slabs_by_inuse =
2757
		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2758 2759 2760 2761 2762 2763
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
2764
	for_each_node_state(node, N_NORMAL_MEMORY) {
2765 2766 2767 2768 2769
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

2770
		for (i = 0; i < objects; i++)
2771 2772 2773 2774 2775
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
2776
		 * Build lists indexed by the items in use in each slab.
2777
		 *
C
Christoph Lameter 已提交
2778 2779
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
			if (!page->inuse && slab_trylock(page)) {
				/*
				 * Must hold slab lock here because slab_free
				 * may have freed the last object and be
				 * waiting to release the slab.
				 */
				list_del(&page->lru);
				n->nr_partial--;
				slab_unlock(page);
				discard_slab(s, page);
			} else {
2793 2794
				list_move(&page->lru,
				slabs_by_inuse + page->inuse);
2795 2796 2797 2798
			}
		}

		/*
C
Christoph Lameter 已提交
2799 2800
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
2801
		 */
2802
		for (i = objects - 1; i >= 0; i--)
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list)
		kmem_cache_shrink(s);
	up_read(&slub_lock);

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

	offline_node = marg->status_change_nid;

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
			 * and offline_pages() function shoudn't call this
			 * callback. So, we must fail.
			 */
2852
			BUG_ON(slabs_node(s, offline_node));
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876

			s->node[offline_node] = NULL;
			kmem_cache_free(kmalloc_caches, n);
		}
	}
	up_read(&slub_lock);
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int nid = marg->status_change_nid;
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
2877
	 * We are bringing a node online. No memory is available yet. We must
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
		init_kmem_cache_node(n);
		s->node[nid] = n;
	}
out:
	up_read(&slub_lock);
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}

	ret = notifier_from_errno(ret);
	return ret;
}

#endif /* CONFIG_MEMORY_HOTPLUG */

C
Christoph Lameter 已提交
2928 2929 2930 2931 2932 2933 2934
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

void __init kmem_cache_init(void)
{
	int i;
2935
	int caches = 0;
C
Christoph Lameter 已提交
2936

2937 2938
	init_alloc_cpu();

C
Christoph Lameter 已提交
2939 2940 2941
#ifdef CONFIG_NUMA
	/*
	 * Must first have the slab cache available for the allocations of the
C
Christoph Lameter 已提交
2942
	 * struct kmem_cache_node's. There is special bootstrap code in
C
Christoph Lameter 已提交
2943 2944 2945 2946
	 * kmem_cache_open for slab_state == DOWN.
	 */
	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
		sizeof(struct kmem_cache_node), GFP_KERNEL);
2947
	kmalloc_caches[0].refcount = -1;
2948
	caches++;
2949

2950
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
C
Christoph Lameter 已提交
2951 2952 2953 2954 2955 2956
#endif

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

	/* Caches that are not of the two-to-the-power-of size */
2957 2958
	if (KMALLOC_MIN_SIZE <= 64) {
		create_kmalloc_cache(&kmalloc_caches[1],
C
Christoph Lameter 已提交
2959
				"kmalloc-96", 96, GFP_KERNEL);
2960 2961
		caches++;
		create_kmalloc_cache(&kmalloc_caches[2],
C
Christoph Lameter 已提交
2962
				"kmalloc-192", 192, GFP_KERNEL);
2963 2964
		caches++;
	}
C
Christoph Lameter 已提交
2965

2966
	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
C
Christoph Lameter 已提交
2967 2968
		create_kmalloc_cache(&kmalloc_caches[i],
			"kmalloc", 1 << i, GFP_KERNEL);
2969 2970
		caches++;
	}
C
Christoph Lameter 已提交
2971

2972 2973 2974 2975

	/*
	 * Patch up the size_index table if we have strange large alignment
	 * requirements for the kmalloc array. This is only the case for
C
Christoph Lameter 已提交
2976
	 * MIPS it seems. The standard arches will not generate any code here.
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
	 *
	 * Largest permitted alignment is 256 bytes due to the way we
	 * handle the index determination for the smaller caches.
	 *
	 * Make sure that nothing crazy happens if someone starts tinkering
	 * around with ARCH_KMALLOC_MINALIGN
	 */
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

2987
	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2988 2989
		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;

2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
	if (KMALLOC_MIN_SIZE == 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[(i - 1) / 8] = 8;
	}

C
Christoph Lameter 已提交
3000 3001 3002
	slab_state = UP;

	/* Provide the correct kmalloc names now that the caches are up */
3003
	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
C
Christoph Lameter 已提交
3004 3005 3006 3007 3008
		kmalloc_caches[i]. name =
			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3009 3010 3011 3012
	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
#else
	kmem_size = sizeof(struct kmem_cache);
C
Christoph Lameter 已提交
3013 3014
#endif

I
Ingo Molnar 已提交
3015 3016
	printk(KERN_INFO
		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3017 3018
		" CPUs=%d, Nodes=%d\n",
		caches, cache_line_size(),
C
Christoph Lameter 已提交
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

3031
	if (s->ctor)
C
Christoph Lameter 已提交
3032 3033
		return 1;

3034 3035 3036 3037 3038 3039
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
3040 3041 3042 3043
	return 0;
}

static struct kmem_cache *find_mergeable(size_t size,
3044
		size_t align, unsigned long flags, const char *name,
3045
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
3046
{
3047
	struct kmem_cache *s;
C
Christoph Lameter 已提交
3048 3049 3050 3051

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

3052
	if (ctor)
C
Christoph Lameter 已提交
3053 3054 3055 3056 3057
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
3058
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
3059

3060
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
3061 3062 3063 3064 3065 3066
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3067
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
C
Christoph Lameter 已提交
3068 3069 3070 3071 3072
				continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
P
Pekka Enberg 已提交
3073
		if ((s->size & ~(align - 1)) != s->size)
C
Christoph Lameter 已提交
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

		return s;
	}
	return NULL;
}

struct kmem_cache *kmem_cache_create(const char *name, size_t size,
		size_t align, unsigned long flags,
3086
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
3087 3088 3089 3090
{
	struct kmem_cache *s;

	down_write(&slub_lock);
3091
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3092
	if (s) {
3093 3094
		int cpu;

C
Christoph Lameter 已提交
3095 3096 3097 3098 3099 3100
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		s->objsize = max(s->objsize, (int)size);
3101 3102 3103 3104 3105 3106 3107

		/*
		 * And then we need to update the object size in the
		 * per cpu structures
		 */
		for_each_online_cpu(cpu)
			get_cpu_slab(s, cpu)->objsize = s->objsize;
C
Christoph Lameter 已提交
3108

C
Christoph Lameter 已提交
3109
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3110
		up_write(&slub_lock);
C
Christoph Lameter 已提交
3111

C
Christoph Lameter 已提交
3112 3113
		if (sysfs_slab_alias(s, name))
			goto err;
3114 3115
		return s;
	}
C
Christoph Lameter 已提交
3116

3117 3118 3119
	s = kmalloc(kmem_size, GFP_KERNEL);
	if (s) {
		if (kmem_cache_open(s, GFP_KERNEL, name,
3120
				size, align, flags, ctor)) {
C
Christoph Lameter 已提交
3121
			list_add(&s->list, &slab_caches);
3122 3123 3124 3125 3126 3127
			up_write(&slub_lock);
			if (sysfs_slab_add(s))
				goto err;
			return s;
		}
		kfree(s);
C
Christoph Lameter 已提交
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
	}
	up_write(&slub_lock);

err:
	if (flags & SLAB_PANIC)
		panic("Cannot create slabcache %s\n", name);
	else
		s = NULL;
	return s;
}
EXPORT_SYMBOL(kmem_cache_create);

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3142 3143
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3144 3145 3146 3147 3148
 */
static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3149 3150
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3151 3152

	switch (action) {
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
		init_alloc_cpu_cpu(cpu);
		down_read(&slub_lock);
		list_for_each_entry(s, &slab_caches, list)
			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
							GFP_KERNEL);
		up_read(&slub_lock);
		break;

C
Christoph Lameter 已提交
3163
	case CPU_UP_CANCELED:
3164
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3165
	case CPU_DEAD:
3166
	case CPU_DEAD_FROZEN:
3167 3168
		down_read(&slub_lock);
		list_for_each_entry(s, &slab_caches, list) {
3169 3170
			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

3171 3172 3173
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
3174 3175
			free_kmem_cache_cpu(c, cpu);
			s->cpu_slab[cpu] = NULL;
3176 3177
		}
		up_read(&slub_lock);
C
Christoph Lameter 已提交
3178 3179 3180 3181 3182 3183 3184
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

P
Pekka Enberg 已提交
3185
static struct notifier_block __cpuinitdata slab_notifier = {
I
Ingo Molnar 已提交
3186
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3187
};
C
Christoph Lameter 已提交
3188 3189 3190 3191 3192

#endif

void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
{
3193 3194
	struct kmem_cache *s;

3195
	if (unlikely(size > PAGE_SIZE))
3196 3197
		return kmalloc_large(size, gfpflags);

3198
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
3199

3200
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3201
		return s;
C
Christoph Lameter 已提交
3202

3203
	return slab_alloc(s, gfpflags, -1, caller);
C
Christoph Lameter 已提交
3204 3205 3206 3207 3208
}

void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
					int node, void *caller)
{
3209 3210
	struct kmem_cache *s;

3211
	if (unlikely(size > PAGE_SIZE))
3212
		return kmalloc_large_node(size, gfpflags, node);
3213

3214
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
3215

3216
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3217
		return s;
C
Christoph Lameter 已提交
3218

3219
	return slab_alloc(s, gfpflags, node, caller);
C
Christoph Lameter 已提交
3220 3221
}

C
Christoph Lameter 已提交
3222
#ifdef CONFIG_SLUB_DEBUG
3223 3224
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
3225 3226 3227 3228 3229 3230 3231
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
3232
		x += get_count(page);
3233 3234 3235
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250

static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}

static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}
3251

3252 3253
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3254 3255
{
	void *p;
3256
	void *addr = page_address(page);
3257 3258 3259 3260 3261 3262

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
3263
	bitmap_zero(map, page->objects);
3264

3265 3266
	for_each_free_object(p, s, page->freelist) {
		set_bit(slab_index(p, s, addr), map);
3267 3268 3269 3270
		if (!check_object(s, page, p, 0))
			return 0;
	}

3271
	for_each_object(p, s, addr, page->objects)
3272
		if (!test_bit(slab_index(p, s, addr), map))
3273 3274 3275 3276 3277
			if (!check_object(s, page, p, 1))
				return 0;
	return 1;
}

3278 3279
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3280 3281
{
	if (slab_trylock(page)) {
3282
		validate_slab(s, page, map);
3283 3284 3285 3286 3287 3288
		slab_unlock(page);
	} else
		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
			s->name, page);

	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3289 3290
		if (!PageSlubDebug(page))
			printk(KERN_ERR "SLUB %s: SlubDebug not set "
3291 3292
				"on slab 0x%p\n", s->name, page);
	} else {
3293 3294
		if (PageSlubDebug(page))
			printk(KERN_ERR "SLUB %s: SlubDebug set on "
3295 3296 3297 3298
				"slab 0x%p\n", s->name, page);
	}
}

3299 3300
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3301 3302 3303 3304 3305 3306 3307 3308
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3309
		validate_slab_slab(s, page, map);
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3320
		validate_slab_slab(s, page, map);
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3333
static long validate_slab_cache(struct kmem_cache *s)
3334 3335 3336
{
	int node;
	unsigned long count = 0;
3337
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3338 3339 3340 3341
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
3342 3343

	flush_all(s);
C
Christoph Lameter 已提交
3344
	for_each_node_state(node, N_NORMAL_MEMORY) {
3345 3346
		struct kmem_cache_node *n = get_node(s, node);

3347
		count += validate_slab_node(s, n, map);
3348
	}
3349
	kfree(map);
3350 3351 3352
	return count;
}

3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches + 4);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
I
Ingo Molnar 已提交
3373 3374 3375
			" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
3376 3377 3378 3379 3380 3381 3382

	validate_slab_cache(kmalloc_caches + 5);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
I
Ingo Molnar 已提交
3383 3384
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
	validate_slab_cache(kmalloc_caches + 6);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 7);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
I
Ingo Molnar 已提交
3397 3398
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
			p);
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
	validate_slab_cache(kmalloc_caches + 8);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 9);
}
#else
static void resiliency_test(void) {};
#endif

3411
/*
C
Christoph Lameter 已提交
3412
 * Generate lists of code addresses where slabcache objects are allocated
3413 3414 3415 3416 3417 3418
 * and freed.
 */

struct location {
	unsigned long count;
	void *addr;
3419 3420 3421 3422 3423 3424 3425
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
	cpumask_t cpus;
	nodemask_t nodes;
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

3441
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3442 3443 3444 3445 3446 3447
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

3448
	l = (void *)__get_free_pages(flags, order);
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
3462
				const struct track *track)
3463 3464 3465 3466
{
	long start, end, pos;
	struct location *l;
	void *caddr;
3467
	unsigned long age = jiffies - track->when;
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

				cpu_set(track->cpu, l->cpus);
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3502 3503 3504
			return 1;
		}

3505
		if (track->addr < caddr)
3506 3507 3508 3509 3510 3511
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
3512
	 * Not found. Insert new tracking element.
3513
	 */
3514
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3515 3516 3517 3518 3519 3520 3521 3522
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
	cpus_clear(l->cpus);
	cpu_set(track->cpu, l->cpus);
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3533 3534 3535 3536 3537 3538
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
		struct page *page, enum track_item alloc)
{
3539
	void *addr = page_address(page);
3540
	DECLARE_BITMAP(map, page->objects);
3541 3542
	void *p;

3543
	bitmap_zero(map, page->objects);
3544 3545
	for_each_free_object(p, s, page->freelist)
		set_bit(slab_index(p, s, addr), map);
3546

3547
	for_each_object(p, s, addr, page->objects)
3548 3549
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
3550 3551 3552 3553 3554
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
3555
	int len = 0;
3556
	unsigned long i;
3557
	struct loc_track t = { 0, 0, NULL };
3558 3559
	int node;

3560
	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3561
			GFP_TEMPORARY))
3562
		return sprintf(buf, "Out of memory\n");
3563 3564 3565 3566

	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
3567
	for_each_node_state(node, N_NORMAL_MEMORY) {
3568 3569 3570 3571
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

3572
		if (!atomic_long_read(&n->nr_slabs))
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
			process_slab(&t, s, page, alloc);
		list_for_each_entry(page, &n->full, lru)
			process_slab(&t, s, page, alloc);
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
3584
		struct location *l = &t.loc[i];
3585

3586
		if (len > PAGE_SIZE - 100)
3587
			break;
3588
		len += sprintf(buf + len, "%7ld ", l->count);
3589 3590

		if (l->addr)
3591
			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3592
		else
3593
			len += sprintf(buf + len, "<not-available>");
3594 3595

		if (l->sum_time != l->min_time) {
3596
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
3597 3598 3599
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
3600
		} else
3601
			len += sprintf(buf + len, " age=%ld",
3602 3603 3604
				l->min_time);

		if (l->min_pid != l->max_pid)
3605
			len += sprintf(buf + len, " pid=%ld-%ld",
3606 3607
				l->min_pid, l->max_pid);
		else
3608
			len += sprintf(buf + len, " pid=%ld",
3609 3610
				l->min_pid);

3611
		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3612 3613 3614
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3615 3616 3617
					l->cpus);
		}

3618
		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3619 3620 3621
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3622 3623 3624
					l->nodes);
		}

3625
		len += sprintf(buf + len, "\n");
3626 3627 3628 3629
	}

	free_loc_track(&t);
	if (!t.count)
3630 3631
		len += sprintf(buf, "No data\n");
	return len;
3632 3633
}

C
Christoph Lameter 已提交
3634
enum slab_stat_type {
3635 3636 3637 3638 3639
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
3640 3641
};

3642
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
3643 3644 3645
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
3646
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
3647

3648 3649
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
3650 3651 3652 3653 3654 3655 3656 3657
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;
	unsigned long *per_cpu;

	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3658 3659
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
3660 3661
	per_cpu = nodes + nr_node_ids;

3662 3663
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
3664

3665 3666
		for_each_possible_cpu(cpu) {
			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3667

3668 3669 3670 3671 3672 3673 3674 3675
			if (!c || c->node < 0)
				continue;

			if (c->page) {
					if (flags & SO_TOTAL)
						x = c->page->objects;
				else if (flags & SO_OBJECTS)
					x = c->page->inuse;
C
Christoph Lameter 已提交
3676 3677
				else
					x = 1;
3678

C
Christoph Lameter 已提交
3679
				total += x;
3680
				nodes[c->node] += x;
C
Christoph Lameter 已提交
3681
			}
3682
			per_cpu[c->node]++;
C
Christoph Lameter 已提交
3683 3684 3685
		}
	}

3686 3687 3688 3689 3690 3691 3692 3693 3694
	if (flags & SO_ALL) {
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);

		if (flags & SO_TOTAL)
			x = atomic_long_read(&n->total_objects);
		else if (flags & SO_OBJECTS)
			x = atomic_long_read(&n->total_objects) -
				count_partial(n, count_free);
C
Christoph Lameter 已提交
3695 3696

			else
3697
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
3698 3699 3700 3701
			total += x;
			nodes[node] += x;
		}

3702 3703 3704
	} else if (flags & SO_PARTIAL) {
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);
C
Christoph Lameter 已提交
3705

3706 3707 3708 3709
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
3710
			else
3711
				x = n->nr_partial;
C
Christoph Lameter 已提交
3712 3713 3714 3715 3716 3717
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3718
	for_each_node_state(node, N_NORMAL_MEMORY)
C
Christoph Lameter 已提交
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

static int any_slab_objects(struct kmem_cache *s)
{
	int node;

3731
	for_each_online_node(node) {
C
Christoph Lameter 已提交
3732 3733
		struct kmem_cache_node *n = get_node(s, node);

3734 3735 3736
		if (!n)
			continue;

3737
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
			return 1;
	}
	return 0;
}

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
#define to_slab(n) container_of(n, struct kmem_cache, kobj);

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
	static struct slab_attribute _name##_attr = __ATTR_RO(_name)

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
	__ATTR(_name, 0644, _name##_show, _name##_store)

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objsize);
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
3779
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
3780 3781 3782
}
SLAB_ATTR_RO(objs_per_slab);

3783 3784 3785
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
3786 3787 3788 3789 3790 3791
	unsigned long order;
	int err;

	err = strict_strtoul(buf, 10, &order);
	if (err)
		return err;
3792 3793 3794 3795 3796 3797 3798 3799

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
3800 3801
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
3802
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
3803
}
3804
SLAB_ATTR(order);
C
Christoph Lameter 已提交
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824

static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
	if (s->ctor) {
		int n = sprint_symbol(buf, (unsigned long)s->ctor);

		return n + sprintf(buf + n, "\n");
	}
	return 0;
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
3825
	return show_slab_objects(s, buf, SO_ALL);
C
Christoph Lameter 已提交
3826 3827 3828 3829 3830
}
SLAB_ATTR_RO(slabs);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
3831
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
3832 3833 3834 3835 3836
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
3837
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
3838 3839 3840 3841 3842
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
3843
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
3844 3845 3846
}
SLAB_ATTR_RO(objects);

3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
	if (buf[0] == '1')
		s->flags |= SLAB_DEBUG_FREE;
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
	if (buf[0] == '1')
		s->flags |= SLAB_TRACE;
	return length;
}
SLAB_ATTR(trace);

static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
3906
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
C
Christoph Lameter 已提交
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
	if (buf[0] == '1')
		s->flags |= SLAB_RED_ZONE;
3938
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
	if (buf[0] == '1')
		s->flags |= SLAB_POISON;
3957
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
	if (buf[0] == '1')
		s->flags |= SLAB_STORE_USER;
3976
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
3977 3978 3979 3980
	return length;
}
SLAB_ATTR(store_user);

3981 3982 3983 3984 3985 3986 3987 3988
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
3989 3990 3991 3992 3993 3994 3995 3996
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
3997 3998 3999
}
SLAB_ATTR(validate);

4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);

C
Christoph Lameter 已提交
4035
#ifdef CONFIG_NUMA
4036
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4037
{
4038
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4039 4040
}

4041
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4042 4043
				const char *buf, size_t length)
{
4044 4045 4046 4047 4048 4049 4050 4051 4052
	unsigned long ratio;
	int err;

	err = strict_strtoul(buf, 10, &ratio);
	if (err)
		return err;

	if (ratio < 100)
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4053 4054 4055

	return length;
}
4056
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4057 4058
#endif

4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
		unsigned x = get_cpu_slab(s, cpu)->stat[si];

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4079
#ifdef CONFIG_SMP
4080 4081
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4082
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4083
	}
4084
#endif
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
SLAB_ATTR_RO(text);						\

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4113
STAT_ATTR(ORDER_FALLBACK, order_fallback);
4114 4115
#endif

P
Pekka Enberg 已提交
4116
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4117 4118 4119 4120 4121
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
	&objects_attr.attr,
4122 4123
	&objects_partial_attr.attr,
	&total_objects_attr.attr,
C
Christoph Lameter 已提交
4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
	&slabs_attr.attr,
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4138
	&validate_attr.attr,
4139
	&shrink_attr.attr,
4140 4141
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
C
Christoph Lameter 已提交
4142 4143 4144 4145
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4146
	&remote_node_defrag_ratio_attr.attr,
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
4166
	&order_fallback_attr.attr,
C
Christoph Lameter 已提交
4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
#endif
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);

	return err;
}

C
Christoph Lameter 已提交
4213 4214 4215 4216 4217 4218 4219
static void kmem_cache_release(struct kobject *kobj)
{
	struct kmem_cache *s = to_slab(kobj);

	kfree(s);
}

C
Christoph Lameter 已提交
4220 4221 4222 4223 4224 4225 4226
static struct sysfs_ops slab_sysfs_ops = {
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
C
Christoph Lameter 已提交
4227
	.release = kmem_cache_release
C
Christoph Lameter 已提交
4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

static struct kset_uevent_ops slab_uevent_ops = {
	.filter = uevent_filter,
};

4243
static struct kset *slab_kset;
C
Christoph Lameter 已提交
4244 4245 4246 4247

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
4248 4249
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
	int unmergeable;

	if (slab_state < SYSFS)
		/* Defer until later */
		return 0;

	unmergeable = slab_unmergeable(s);
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
4296
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
4297 4298 4299 4300 4301 4302 4303 4304 4305
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

4306
	s->kobj.kset = slab_kset;
4307 4308 4309
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
	if (err) {
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
4310
		return err;
4311
	}
C
Christoph Lameter 已提交
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
	if (err)
		return err;
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
4329
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
 * available lest we loose that information.
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
4342
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
4343 4344 4345 4346 4347 4348 4349 4350 4351

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

	if (slab_state == SYSFS) {
		/*
		 * If we have a leftover link then remove it.
		 */
4352 4353
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
4369
	struct kmem_cache *s;
C
Christoph Lameter 已提交
4370 4371
	int err;

4372
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4373
	if (!slab_kset) {
C
Christoph Lameter 已提交
4374 4375 4376 4377
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

4378 4379
	slab_state = SYSFS;

4380
	list_for_each_entry(s, &slab_caches, list) {
4381
		err = sysfs_slab_add(s);
4382 4383 4384
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
						" to sysfs\n", s->name);
4385
	}
C
Christoph Lameter 已提交
4386 4387 4388 4389 4390 4391

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
4392 4393 4394
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
					" %s to sysfs\n", s->name);
C
Christoph Lameter 已提交
4395 4396 4397 4398 4399 4400 4401 4402 4403
		kfree(al);
	}

	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
#endif
P
Pekka J Enberg 已提交
4404 4405 4406 4407

/*
 * The /proc/slabinfo ABI
 */
4408 4409
#ifdef CONFIG_SLABINFO

4410 4411
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
4412 4413 4414 4415
{
	return -EINVAL;
}

P
Pekka J Enberg 已提交
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452

static void print_slabinfo_header(struct seq_file *m)
{
	seq_puts(m, "slabinfo - version: 2.1\n");
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

	down_read(&slub_lock);
	if (!n)
		print_slabinfo_header(m);

	return seq_list_start(&slab_caches, *pos);
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
	return seq_list_next(p, &slab_caches, pos);
}

static void s_stop(struct seq_file *m, void *p)
{
	up_read(&slub_lock);
}

static int s_show(struct seq_file *m, void *p)
{
	unsigned long nr_partials = 0;
	unsigned long nr_slabs = 0;
	unsigned long nr_inuse = 0;
4453 4454
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467
	struct kmem_cache *s;
	int node;

	s = list_entry(p, struct kmem_cache, list);

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (!n)
			continue;

		nr_partials += n->nr_partial;
		nr_slabs += atomic_long_read(&n->nr_slabs);
4468 4469
		nr_objs += atomic_long_read(&n->total_objects);
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
4470 4471
	}

4472
	nr_inuse = nr_objs - nr_free;
P
Pekka J Enberg 已提交
4473 4474

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4475 4476
		   nr_objs, s->size, oo_objects(s->oo),
		   (1 << oo_order(s->oo)));
P
Pekka J Enberg 已提交
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
		   0UL);
	seq_putc(m, '\n');
	return 0;
}

const struct seq_operations slabinfo_op = {
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};

4491
#endif /* CONFIG_SLABINFO */