slub.c 103.2 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
 * The allocator synchronizes using per slab locks and only
 * uses a centralized lock to manage a pool of partial slabs.
 *
 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
#include <linux/kallsyms.h>
23
#include <linux/memory.h>
C
Christoph Lameter 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

/*
 * Lock order:
 *   1. slab_lock(page)
 *   2. slab->list_lock
 *
 *   The slab_lock protects operations on the object of a particular
 *   slab and its metadata in the page struct. If the slab lock
 *   has been taken then no allocations nor frees can be performed
 *   on the objects in the slab nor can the slab be added or removed
 *   from the partial or full lists since this would mean modifying
 *   the page_struct of the slab.
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *
 *   The lock order is sometimes inverted when we are trying to get a slab
 *   off a list. We take the list_lock and then look for a page on the list
 *   to use. While we do that objects in the slabs may be freed. We can
 *   only operate on the slab if we have also taken the slab_lock. So we use
 *   a slab_trylock() on the slab. If trylock was successful then no frees
 *   can occur anymore and we can use the slab for allocations etc. If the
 *   slab_trylock() does not succeed then frees are in progress in the slab and
 *   we must stay away from it for a while since we may cause a bouncing
 *   cacheline if we try to acquire the lock. So go onto the next slab.
 *   If all pages are busy then we may allocate a new slab instead of reusing
 *   a partial slab. A new slab has noone operating on it and thus there is
 *   no danger of cacheline contention.
 *
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
70 71
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
72
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
73 74
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
75 76 77 78 79 80 81
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
82 83 84 85 86 87 88 89 90 91 92 93
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
94
 * 			freelist that allows lockless access to
95 96
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
97 98 99
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
100
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
101 102
 */

103 104 105 106 107 108 109 110
#define FROZEN (1 << PG_active)

#ifdef CONFIG_SLUB_DEBUG
#define SLABDEBUG (1 << PG_error)
#else
#define SLABDEBUG 0
#endif

111 112
static inline int SlabFrozen(struct page *page)
{
113
	return page->flags & FROZEN;
114 115 116 117
}

static inline void SetSlabFrozen(struct page *page)
{
118
	page->flags |= FROZEN;
119 120 121 122
}

static inline void ClearSlabFrozen(struct page *page)
{
123
	page->flags &= ~FROZEN;
124 125
}

126 127
static inline int SlabDebug(struct page *page)
{
128
	return page->flags & SLABDEBUG;
129 130 131 132
}

static inline void SetSlabDebug(struct page *page)
{
133
	page->flags |= SLABDEBUG;
134 135 136 137
}

static inline void ClearSlabDebug(struct page *page)
{
138
	page->flags &= ~SLABDEBUG;
139 140
}

C
Christoph Lameter 已提交
141 142 143 144 145 146 147 148 149 150 151
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

152 153 154 155 156 157 158
/*
 * Currently fastpath is not supported if preemption is enabled.
 */
#if defined(CONFIG_FAST_CMPXCHG_LOCAL) && !defined(CONFIG_PREEMPT)
#define SLUB_FASTPATH
#endif

C
Christoph Lameter 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
#if PAGE_SHIFT <= 12

/*
 * Small page size. Make sure that we do not fragment memory
 */
#define DEFAULT_MAX_ORDER 1
#define DEFAULT_MIN_OBJECTS 4

#else

/*
 * Large page machines are customarily able to handle larger
 * page orders.
 */
#define DEFAULT_MAX_ORDER 2
#define DEFAULT_MIN_OBJECTS 8

#endif

178 179 180 181
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
182
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
183

184 185 186 187 188 189 190
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
 * sort the partial list by the number of objects in the.
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
191 192
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
193

C
Christoph Lameter 已提交
194 195 196 197 198 199 200 201 202 203
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DESTROY_BY_RCU)

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
		SLAB_CACHE_DMA)

#ifndef ARCH_KMALLOC_MINALIGN
204
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
205 206 207
#endif

#ifndef ARCH_SLAB_MINALIGN
208
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
209 210 211
#endif

/* Internal SLUB flags */
212 213
#define __OBJECT_POISON		0x80000000 /* Poison object */
#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
C
Christoph Lameter 已提交
214

215 216 217 218 219
/* Not all arches define cache_line_size */
#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

C
Christoph Lameter 已提交
220 221 222 223 224 225 226 227 228
static int kmem_size = sizeof(struct kmem_cache);

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

static enum {
	DOWN,		/* No slab functionality available */
	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
C
Christoph Lameter 已提交
229
	UP,		/* Everything works but does not show up in sysfs */
C
Christoph Lameter 已提交
230 231 232 233 234
	SYSFS		/* Sysfs up */
} slab_state = DOWN;

/* A list of all slab caches on the system */
static DECLARE_RWSEM(slub_lock);
A
Adrian Bunk 已提交
235
static LIST_HEAD(slab_caches);
C
Christoph Lameter 已提交
236

237 238 239 240 241 242 243 244 245 246 247 248
/*
 * Tracking user of a slab.
 */
struct track {
	void *addr;		/* Called from address */
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

C
Christoph Lameter 已提交
249
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
C
Christoph Lameter 已提交
250 251 252
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
253

C
Christoph Lameter 已提交
254
#else
255 256 257
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
C
Christoph Lameter 已提交
258 259 260 261
static inline void sysfs_slab_remove(struct kmem_cache *s)
{
	kfree(s);
}
262

C
Christoph Lameter 已提交
263 264
#endif

265 266 267 268 269 270 271
static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
{
#ifdef CONFIG_SLUB_STATS
	c->stat[si]++;
#endif
}

C
Christoph Lameter 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

int slab_is_available(void)
{
	return slab_state >= UP;
}

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
#ifdef CONFIG_NUMA
	return s->node[node];
#else
	return &s->local_node;
#endif
}

290 291
static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
{
292 293 294 295 296
#ifdef CONFIG_SMP
	return s->cpu_slab[cpu];
#else
	return &s->cpu_slab;
#endif
297 298
}

299 300 301 302 303 304 305 306 307 308 309 310
/*
 * The end pointer in a slab is special. It points to the first object in the
 * slab but has bit 0 set to mark it.
 *
 * Note that SLUB relies on page_mapping returning NULL for pages with bit 0
 * in the mapping set.
 */
static inline int is_end(void *addr)
{
	return (unsigned long)addr & PAGE_MAPPING_ANON;
}

A
Adrian Bunk 已提交
311
static void *slab_address(struct page *page)
312 313 314 315
{
	return page->end - PAGE_MAPPING_ANON;
}

316 317 318 319 320
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

321
	if (object == page->end)
322 323
		return 1;

324
	base = slab_address(page);
325 326 327 328 329 330 331 332
	if (object < base || object >= base + s->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
/*
 * Slow version of get and set free pointer.
 *
 * This version requires touching the cache lines of kmem_cache which
 * we avoid to do in the fast alloc free paths. There we obtain the offset
 * from the page struct.
 */
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
#define for_each_object(__p, __s, __addr) \
	for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
			__p += (__s)->size)

/* Scan freelist */
#define for_each_free_object(__p, __s, __free) \
357 358
	for (__p = (__free); (__p) != page->end; __p = get_freepointer((__s),\
		__p))
359 360 361 362 363 364 365

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

C
Christoph Lameter 已提交
366 367 368 369
#ifdef CONFIG_SLUB_DEBUG
/*
 * Debug settings:
 */
370 371 372
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
373
static int slub_debug;
374
#endif
C
Christoph Lameter 已提交
375 376 377

static char *slub_debug_slabs;

C
Christoph Lameter 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
	int i, offset;
	int newline = 1;
	char ascii[17];

	ascii[16] = 0;

	for (i = 0; i < length; i++) {
		if (newline) {
391
			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
C
Christoph Lameter 已提交
392 393
			newline = 0;
		}
P
Pekka Enberg 已提交
394
		printk(KERN_CONT " %02x", addr[i]);
C
Christoph Lameter 已提交
395 396 397
		offset = i % 16;
		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
		if (offset == 15) {
P
Pekka Enberg 已提交
398
			printk(KERN_CONT " %s\n", ascii);
C
Christoph Lameter 已提交
399 400 401 402 403 404
			newline = 1;
		}
	}
	if (!newline) {
		i %= 16;
		while (i < 16) {
P
Pekka Enberg 已提交
405
			printk(KERN_CONT "   ");
C
Christoph Lameter 已提交
406 407 408
			ascii[i] = ' ';
			i++;
		}
P
Pekka Enberg 已提交
409
		printk(KERN_CONT " %s\n", ascii);
C
Christoph Lameter 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
	}
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
				enum track_item alloc, void *addr)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	p += alloc;
	if (addr) {
		p->addr = addr;
		p->cpu = smp_processor_id();
		p->pid = current ? current->pid : -1;
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
448 449 450 451 452
	if (!(s->flags & SLAB_STORE_USER))
		return;

	set_track(s, object, TRACK_FREE, NULL);
	set_track(s, object, TRACK_ALLOC, NULL);
C
Christoph Lameter 已提交
453 454 455 456 457 458 459
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

460
	printk(KERN_ERR "INFO: %s in ", s);
C
Christoph Lameter 已提交
461
	__print_symbol("%s", (unsigned long)t->addr);
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
	printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
	printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
		page, page->inuse, page->freelist, page->flags);

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "========================================"
			"=====================================\n");
	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
	printk(KERN_ERR "----------------------------------------"
			"-------------------------------------\n\n");
C
Christoph Lameter 已提交
494 495
}

496 497 498 499 500 501 502 503 504 505 506 507
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
508 509
{
	unsigned int off;	/* Offset of last byte */
510
	u8 *addr = slab_address(page);
511 512 513 514 515 516 517 518 519 520 521 522

	print_tracking(s, p);

	print_page_info(page);

	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
			p, p - addr, get_freepointer(s, p));

	if (p > addr + 16)
		print_section("Bytes b4", p - 16, 16);

	print_section("Object", p, min(s->objsize, 128));
C
Christoph Lameter 已提交
523 524 525 526 527 528 529 530 531 532

	if (s->flags & SLAB_RED_ZONE)
		print_section("Redzone", p + s->objsize,
			s->inuse - s->objsize);

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

533
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
534 535 536 537
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
538 539 540
		print_section("Padding", p + off, s->size - off);

	dump_stack();
C
Christoph Lameter 已提交
541 542 543 544 545
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
546 547
	slab_bug(s, reason);
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
548 549
}

550
static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
C
Christoph Lameter 已提交
551 552 553 554
{
	va_list args;
	char buf[100];

555 556
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
557
	va_end(args);
558 559
	slab_bug(s, fmt);
	print_page_info(page);
C
Christoph Lameter 已提交
560 561 562 563 564 565 566 567 568
	dump_stack();
}

static void init_object(struct kmem_cache *s, void *object, int active)
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
		memset(p, POISON_FREE, s->objsize - 1);
P
Pekka Enberg 已提交
569
		p[s->objsize - 1] = POISON_END;
C
Christoph Lameter 已提交
570 571 572 573 574 575 576 577
	}

	if (s->flags & SLAB_RED_ZONE)
		memset(p + s->objsize,
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
			s->inuse - s->objsize);
}

578
static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
C
Christoph Lameter 已提交
579 580 581
{
	while (bytes) {
		if (*start != (u8)value)
582
			return start;
C
Christoph Lameter 已提交
583 584 585
		start++;
		bytes--;
	}
586 587 588 589 590 591 592 593 594 595 596 597
	return NULL;
}

static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
598
			u8 *start, unsigned int value, unsigned int bytes)
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
{
	u8 *fault;
	u8 *end;

	fault = check_bytes(start, value, bytes);
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
618 619 620 621 622 623 624 625 626
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
627
 *
C
Christoph Lameter 已提交
628 629 630 631 632
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
 * object + s->objsize
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
633 634 635
 * 	Padding is extended by another word if Redzoning is enabled and
 * 	objsize == inuse.
 *
C
Christoph Lameter 已提交
636 637 638 639
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
640 641
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
642 643
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
644 645 646 647 648
 * 	C. Padding to reach required alignment boundary or at mininum
 * 		one word if debuggin is on to be able to detect writes
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
649 650
 *
 * object + s->size
C
Christoph Lameter 已提交
651
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
652
 *
C
Christoph Lameter 已提交
653 654
 * If slabcaches are merged then the objsize and inuse boundaries are mostly
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

673 674
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
675 676 677 678
}

static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
679 680 681 682 683
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
684 685 686 687

	if (!(s->flags & SLAB_POISON))
		return 1;

688
	start = slab_address(page);
689
	end = start + (PAGE_SIZE << s->order);
C
Christoph Lameter 已提交
690
	length = s->objects * s->size;
691
	remainder = end - (start + length);
C
Christoph Lameter 已提交
692 693 694
	if (!remainder)
		return 1;

695 696 697 698 699 700 701 702 703 704 705
	fault = check_bytes(start + length, POISON_INUSE, remainder);
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
	print_section("Padding", start, length);

	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
	return 0;
C
Christoph Lameter 已提交
706 707 708 709 710 711 712 713 714 715 716 717
}

static int check_object(struct kmem_cache *s, struct page *page,
					void *object, int active)
{
	u8 *p = object;
	u8 *endobject = object + s->objsize;

	if (s->flags & SLAB_RED_ZONE) {
		unsigned int red =
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;

718 719
		if (!check_bytes_and_report(s, page, object, "Redzone",
			endobject, red, s->inuse - s->objsize))
C
Christoph Lameter 已提交
720 721
			return 0;
	} else {
I
Ingo Molnar 已提交
722 723 724 725
		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
			check_bytes_and_report(s, page, p, "Alignment padding",
				endobject, POISON_INUSE, s->inuse - s->objsize);
		}
C
Christoph Lameter 已提交
726 727 728 729
	}

	if (s->flags & SLAB_POISON) {
		if (!active && (s->flags & __OBJECT_POISON) &&
730 731 732
			(!check_bytes_and_report(s, page, p, "Poison", p,
					POISON_FREE, s->objsize - 1) ||
			 !check_bytes_and_report(s, page, p, "Poison",
P
Pekka Enberg 已提交
733
				p + s->objsize - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

	if (!s->offset && active)
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
		 * No choice but to zap it and thus loose the remainder
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
754
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
755
		 */
756
		set_freepointer(s, p, page->end);
C
Christoph Lameter 已提交
757 758 759 760 761 762 763 764 765 766
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
767
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
768 769 770
		return 0;
	}
	if (page->inuse > s->objects) {
771 772
		slab_err(s, page, "inuse %u > max %u",
			s->name, page->inuse, s->objects);
C
Christoph Lameter 已提交
773 774 775 776 777 778 779 780
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
781 782
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
783 784 785 786 787 788 789
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
	void *fp = page->freelist;
	void *object = NULL;

790
	while (fp != page->end && nr <= s->objects) {
C
Christoph Lameter 已提交
791 792 793 794 795 796
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
797
				set_freepointer(s, object, page->end);
C
Christoph Lameter 已提交
798 799
				break;
			} else {
800
				slab_err(s, page, "Freepointer corrupt");
801
				page->freelist = page->end;
C
Christoph Lameter 已提交
802
				page->inuse = s->objects;
803
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
804 805 806 807 808 809 810 811 812 813
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

	if (page->inuse != s->objects - nr) {
814
		slab_err(s, page, "Wrong object count. Counter is %d but "
815
			"counted were %d", page->inuse, s->objects - nr);
C
Christoph Lameter 已提交
816
		page->inuse = s->objects - nr;
817
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
818 819 820 821
	}
	return search == NULL;
}

C
Christoph Lameter 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
			print_section("Object", (void *)object, s->objsize);

		dump_stack();
	}
}

838
/*
C
Christoph Lameter 已提交
839
 * Tracking of fully allocated slabs for debugging purposes.
840
 */
C
Christoph Lameter 已提交
841
static void add_full(struct kmem_cache_node *n, struct page *page)
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
{
	spin_lock(&n->list_lock);
	list_add(&page->lru, &n->full);
	spin_unlock(&n->list_lock);
}

static void remove_full(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n;

	if (!(s->flags & SLAB_STORE_USER))
		return;

	n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	spin_unlock(&n->list_lock);
}

C
Christoph Lameter 已提交
862 863 864 865 866 867 868 869 870 871 872 873
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

	init_object(s, object, 0);
	init_tracking(s, object);
}

static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
						void *object, void *addr)
C
Christoph Lameter 已提交
874 875 876 877 878
{
	if (!check_slab(s, page))
		goto bad;

	if (object && !on_freelist(s, page, object)) {
879
		object_err(s, page, object, "Object already allocated");
880
		goto bad;
C
Christoph Lameter 已提交
881 882 883 884
	}

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
885
		goto bad;
C
Christoph Lameter 已提交
886 887
	}

C
Christoph Lameter 已提交
888
	if (object && !check_object(s, page, object, 0))
C
Christoph Lameter 已提交
889 890
		goto bad;

C
Christoph Lameter 已提交
891 892 893 894 895
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
	init_object(s, object, 1);
C
Christoph Lameter 已提交
896
	return 1;
C
Christoph Lameter 已提交
897

C
Christoph Lameter 已提交
898 899 900 901 902
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
903
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
904
		 */
905
		slab_fix(s, "Marking all objects used");
C
Christoph Lameter 已提交
906
		page->inuse = s->objects;
907
		page->freelist = page->end;
C
Christoph Lameter 已提交
908 909 910 911
	}
	return 0;
}

C
Christoph Lameter 已提交
912 913
static int free_debug_processing(struct kmem_cache *s, struct page *page,
						void *object, void *addr)
C
Christoph Lameter 已提交
914 915 916 917 918
{
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
919
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
920 921 922 923
		goto fail;
	}

	if (on_freelist(s, page, object)) {
924
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
925 926 927 928 929 930 931
		goto fail;
	}

	if (!check_object(s, page, object, 1))
		return 0;

	if (unlikely(s != page->slab)) {
I
Ingo Molnar 已提交
932
		if (!PageSlab(page)) {
933 934
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
I
Ingo Molnar 已提交
935
		} else if (!page->slab) {
C
Christoph Lameter 已提交
936
			printk(KERN_ERR
937
				"SLUB <none>: no slab for object 0x%p.\n",
C
Christoph Lameter 已提交
938
						object);
939
			dump_stack();
P
Pekka Enberg 已提交
940
		} else
941 942
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
943 944
		goto fail;
	}
C
Christoph Lameter 已提交
945 946

	/* Special debug activities for freeing objects */
947
	if (!SlabFrozen(page) && page->freelist == page->end)
C
Christoph Lameter 已提交
948 949 950 951 952
		remove_full(s, page);
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
	init_object(s, object, 0);
C
Christoph Lameter 已提交
953
	return 1;
C
Christoph Lameter 已提交
954

C
Christoph Lameter 已提交
955
fail:
956
	slab_fix(s, "Object at 0x%p not freed", object);
C
Christoph Lameter 已提交
957 958 959
	return 0;
}

C
Christoph Lameter 已提交
960 961
static int __init setup_slub_debug(char *str)
{
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
986
	for (; *str && *str != ','; str++) {
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
		default:
			printk(KERN_ERR "slub_debug option '%c' "
P
Pekka Enberg 已提交
1005
				"unknown. skipped\n", *str);
1006
		}
C
Christoph Lameter 已提交
1007 1008
	}

1009
check_slabs:
C
Christoph Lameter 已提交
1010 1011
	if (*str == ',')
		slub_debug_slabs = str + 1;
1012
out:
C
Christoph Lameter 已提交
1013 1014 1015 1016 1017
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1018 1019
static unsigned long kmem_cache_flags(unsigned long objsize,
	unsigned long flags, const char *name,
1020
	void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
{
	/*
	 * The page->offset field is only 16 bit wide. This is an offset
	 * in units of words from the beginning of an object. If the slab
	 * size is bigger then we cannot move the free pointer behind the
	 * object anymore.
	 *
	 * On 32 bit platforms the limit is 256k. On 64bit platforms
	 * the limit is 512k.
	 *
1031
	 * Debugging or ctor may create a need to move the free
C
Christoph Lameter 已提交
1032 1033
	 * pointer. Fail if this happens.
	 */
1034 1035
	if (objsize >= 65535 * sizeof(void *)) {
		BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
C
Christoph Lameter 已提交
1036
				SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1037 1038
		BUG_ON(ctor);
	} else {
C
Christoph Lameter 已提交
1039 1040 1041 1042
		/*
		 * Enable debugging if selected on the kernel commandline.
		 */
		if (slub_debug && (!slub_debug_slabs ||
1043
		    strncmp(slub_debug_slabs, name,
I
Ingo Molnar 已提交
1044
			strlen(slub_debug_slabs)) == 0))
1045 1046 1047 1048
				flags |= slub_debug;
	}

	return flags;
C
Christoph Lameter 已提交
1049 1050
}
#else
C
Christoph Lameter 已提交
1051 1052
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1053

C
Christoph Lameter 已提交
1054 1055
static inline int alloc_debug_processing(struct kmem_cache *s,
	struct page *page, void *object, void *addr) { return 0; }
C
Christoph Lameter 已提交
1056

C
Christoph Lameter 已提交
1057 1058
static inline int free_debug_processing(struct kmem_cache *s,
	struct page *page, void *object, void *addr) { return 0; }
C
Christoph Lameter 已提交
1059 1060 1061 1062 1063

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
			void *object, int active) { return 1; }
C
Christoph Lameter 已提交
1064
static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1065 1066
static inline unsigned long kmem_cache_flags(unsigned long objsize,
	unsigned long flags, const char *name,
1067
	void (*ctor)(struct kmem_cache *, void *))
1068 1069 1070
{
	return flags;
}
C
Christoph Lameter 已提交
1071 1072
#define slub_debug 0
#endif
C
Christoph Lameter 已提交
1073 1074 1075 1076 1077
/*
 * Slab allocation and freeing
 */
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1078
	struct page *page;
C
Christoph Lameter 已提交
1079 1080
	int pages = 1 << s->order;

1081
	flags |= s->allocflags;
1082

C
Christoph Lameter 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	if (node == -1)
		page = alloc_pages(flags, s->order);
	else
		page = alloc_pages_node(node, flags, s->order);

	if (!page)
		return NULL;

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		pages);

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1102
	setup_object_debug(s, page, object);
1103
	if (unlikely(s->ctor))
1104
		s->ctor(s, object);
C
Christoph Lameter 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	struct kmem_cache_node *n;
	void *start;
	void *last;
	void *p;

C
Christoph Lameter 已提交
1115
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1116

C
Christoph Lameter 已提交
1117 1118
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
	if (!page)
		goto out;

	n = get_node(s, page_to_nid(page));
	if (n)
		atomic_long_inc(&n->nr_slabs);
	page->slab = s;
	page->flags |= 1 << PG_slab;
	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
			SLAB_STORE_USER | SLAB_TRACE))
1129
		SetSlabDebug(page);
C
Christoph Lameter 已提交
1130 1131

	start = page_address(page);
1132
	page->end = start + 1;
C
Christoph Lameter 已提交
1133 1134 1135 1136 1137

	if (unlikely(s->flags & SLAB_POISON))
		memset(start, POISON_INUSE, PAGE_SIZE << s->order);

	last = start;
1138
	for_each_object(p, s, start) {
C
Christoph Lameter 已提交
1139 1140 1141 1142 1143
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
1144
	set_freepointer(s, last, page->end);
C
Christoph Lameter 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155

	page->freelist = start;
	page->inuse = 0;
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
	int pages = 1 << s->order;

1156
	if (unlikely(SlabDebug(page))) {
C
Christoph Lameter 已提交
1157 1158 1159
		void *p;

		slab_pad_check(s, page);
1160
		for_each_object(p, s, slab_address(page))
C
Christoph Lameter 已提交
1161
			check_object(s, page, p, 0);
1162
		ClearSlabDebug(page);
C
Christoph Lameter 已提交
1163 1164 1165 1166 1167
	}

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1168
		-pages);
C
Christoph Lameter 已提交
1169

1170
	page->mapping = NULL;
C
Christoph Lameter 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	__free_pages(page, s->order);
}

static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

	page = container_of((struct list_head *)h, struct page, lru);
	__free_slab(page->slab, page);
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
		/*
		 * RCU free overloads the RCU head over the LRU
		 */
		struct rcu_head *head = (void *)&page->lru;

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	atomic_long_dec(&n->nr_slabs);
	reset_page_mapcount(page);
1201
	__ClearPageSlab(page);
C
Christoph Lameter 已提交
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	free_slab(s, page);
}

/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
N
Nick Piggin 已提交
1215
	__bit_spin_unlock(PG_locked, &page->flags);
C
Christoph Lameter 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
}

static __always_inline int slab_trylock(struct page *page)
{
	int rc = 1;

	rc = bit_spin_trylock(PG_locked, &page->flags);
	return rc;
}

/*
 * Management of partially allocated slabs
 */
1229 1230
static void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
C
Christoph Lameter 已提交
1231
{
C
Christoph Lameter 已提交
1232 1233
	spin_lock(&n->list_lock);
	n->nr_partial++;
1234 1235 1236 1237
	if (tail)
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	spin_unlock(&n->list_lock);
}

static void remove_partial(struct kmem_cache *s,
						struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	n->nr_partial--;
	spin_unlock(&n->list_lock);
}

/*
C
Christoph Lameter 已提交
1253
 * Lock slab and remove from the partial list.
C
Christoph Lameter 已提交
1254
 *
C
Christoph Lameter 已提交
1255
 * Must hold list_lock.
C
Christoph Lameter 已提交
1256
 */
1257
static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
C
Christoph Lameter 已提交
1258 1259 1260 1261
{
	if (slab_trylock(page)) {
		list_del(&page->lru);
		n->nr_partial--;
1262
		SetSlabFrozen(page);
C
Christoph Lameter 已提交
1263 1264 1265 1266 1267 1268
		return 1;
	}
	return 0;
}

/*
C
Christoph Lameter 已提交
1269
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1270 1271 1272 1273 1274 1275 1276 1277
 */
static struct page *get_partial_node(struct kmem_cache_node *n)
{
	struct page *page;

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1278 1279
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1280 1281 1282 1283 1284 1285
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
	list_for_each_entry(page, &n->partial, lru)
1286
		if (lock_and_freeze_slab(n, page))
C
Christoph Lameter 已提交
1287 1288 1289 1290 1291 1292 1293 1294
			goto out;
	page = NULL;
out:
	spin_unlock(&n->list_lock);
	return page;
}

/*
C
Christoph Lameter 已提交
1295
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304
 */
static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
	struct zone **z;
	struct page *page;

	/*
C
Christoph Lameter 已提交
1305 1306 1307 1308
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1309
	 *
C
Christoph Lameter 已提交
1310 1311 1312 1313
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1314 1315
	 *
	 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1316 1317 1318 1319 1320
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1321
	 */
1322 1323
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1324 1325
		return NULL;

I
Ingo Molnar 已提交
1326 1327
	zonelist = &NODE_DATA(
		slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
C
Christoph Lameter 已提交
1328 1329 1330 1331 1332 1333
	for (z = zonelist->zones; *z; z++) {
		struct kmem_cache_node *n;

		n = get_node(s, zone_to_nid(*z));

		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
C
Christoph Lameter 已提交
1334
				n->nr_partial > MIN_PARTIAL) {
C
Christoph Lameter 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
			page = get_partial_node(n);
			if (page)
				return page;
		}
	}
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	int searchnode = (node == -1) ? numa_node_id() : node;

	page = get_partial_node(get_node(s, searchnode));
	if (page || (flags & __GFP_THISNODE))
		return page;

	return get_any_partial(s, flags);
}

/*
 * Move a page back to the lists.
 *
 * Must be called with the slab lock held.
 *
 * On exit the slab lock will have been dropped.
 */
1366
static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
C
Christoph Lameter 已提交
1367
{
C
Christoph Lameter 已提交
1368
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1369
	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
1370

1371
	ClearSlabFrozen(page);
C
Christoph Lameter 已提交
1372
	if (page->inuse) {
C
Christoph Lameter 已提交
1373

1374
		if (page->freelist != page->end) {
1375
			add_partial(n, page, tail);
1376 1377 1378 1379 1380 1381
			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
		} else {
			stat(c, DEACTIVATE_FULL);
			if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
				add_full(n, page);
		}
C
Christoph Lameter 已提交
1382 1383
		slab_unlock(page);
	} else {
1384
		stat(c, DEACTIVATE_EMPTY);
C
Christoph Lameter 已提交
1385 1386
		if (n->nr_partial < MIN_PARTIAL) {
			/*
C
Christoph Lameter 已提交
1387 1388 1389 1390 1391 1392
			 * Adding an empty slab to the partial slabs in order
			 * to avoid page allocator overhead. This slab needs
			 * to come after the other slabs with objects in
			 * order to fill them up. That way the size of the
			 * partial list stays small. kmem_cache_shrink can
			 * reclaim empty slabs from the partial list.
C
Christoph Lameter 已提交
1393
			 */
1394
			add_partial(n, page, 1);
C
Christoph Lameter 已提交
1395 1396 1397
			slab_unlock(page);
		} else {
			slab_unlock(page);
1398
			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
C
Christoph Lameter 已提交
1399 1400
			discard_slab(s, page);
		}
C
Christoph Lameter 已提交
1401 1402 1403 1404 1405 1406
	}
}

/*
 * Remove the cpu slab
 */
1407
static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1408
{
1409
	struct page *page = c->page;
1410
	int tail = 1;
1411 1412 1413

	if (c->freelist)
		stat(c, DEACTIVATE_REMOTE_FREES);
1414 1415 1416 1417
	/*
	 * Merge cpu freelist into freelist. Typically we get here
	 * because both freelists are empty. So this is unlikely
	 * to occur.
1418 1419 1420 1421
	 *
	 * We need to use _is_end here because deactivate slab may
	 * be called for a debug slab. Then c->freelist may contain
	 * a dummy pointer.
1422
	 */
1423
	while (unlikely(!is_end(c->freelist))) {
1424 1425
		void **object;

1426 1427
		tail = 0;	/* Hot objects. Put the slab first */

1428
		/* Retrieve object from cpu_freelist */
1429
		object = c->freelist;
1430
		c->freelist = c->freelist[c->offset];
1431 1432

		/* And put onto the regular freelist */
1433
		object[c->offset] = page->freelist;
1434 1435 1436
		page->freelist = object;
		page->inuse--;
	}
1437
	c->page = NULL;
1438
	unfreeze_slab(s, page, tail);
C
Christoph Lameter 已提交
1439 1440
}

1441
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1442
{
1443
	stat(c, CPUSLAB_FLUSH);
1444 1445
	slab_lock(c->page);
	deactivate_slab(s, c);
C
Christoph Lameter 已提交
1446 1447 1448 1449 1450 1451
}

/*
 * Flush cpu slab.
 * Called from IPI handler with interrupts disabled.
 */
1452
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
1453
{
1454
	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
C
Christoph Lameter 已提交
1455

1456 1457
	if (likely(c && c->page))
		flush_slab(s, c);
C
Christoph Lameter 已提交
1458 1459 1460 1461 1462 1463
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

1464
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
}

static void flush_all(struct kmem_cache *s)
{
#ifdef CONFIG_SMP
	on_each_cpu(flush_cpu_slab, s, 1, 1);
#else
	unsigned long flags;

	local_irq_save(flags);
	flush_cpu_slab(s);
	local_irq_restore(flags);
#endif
}

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
static inline int node_match(struct kmem_cache_cpu *c, int node)
{
#ifdef CONFIG_NUMA
	if (node != -1 && c->node != node)
		return 0;
#endif
	return 1;
}

C
Christoph Lameter 已提交
1493
/*
1494 1495 1496 1497
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Interrupts are disabled.
C
Christoph Lameter 已提交
1498
 *
1499 1500 1501
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
1502
 *
1503 1504 1505
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
1506
 *
1507 1508
 * And if we were unable to get a new slab from the partial slab lists then
 * we need to allocate a new slab. This is slowest path since we may sleep.
C
Christoph Lameter 已提交
1509
 */
1510
static void *__slab_alloc(struct kmem_cache *s,
1511
		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1512 1513
{
	void **object;
1514
	struct page *new;
1515 1516
#ifdef SLUB_FASTPATH
	unsigned long flags;
C
Christoph Lameter 已提交
1517

1518 1519
	local_irq_save(flags);
#endif
1520
	if (!c->page)
C
Christoph Lameter 已提交
1521 1522
		goto new_slab;

1523 1524
	slab_lock(c->page);
	if (unlikely(!node_match(c, node)))
C
Christoph Lameter 已提交
1525
		goto another_slab;
1526
	stat(c, ALLOC_REFILL);
1527
load_freelist:
1528
	object = c->page->freelist;
1529
	if (unlikely(object == c->page->end))
C
Christoph Lameter 已提交
1530
		goto another_slab;
1531
	if (unlikely(SlabDebug(c->page)))
C
Christoph Lameter 已提交
1532 1533
		goto debug;

1534
	object = c->page->freelist;
1535
	c->freelist = object[c->offset];
1536
	c->page->inuse = s->objects;
1537
	c->page->freelist = c->page->end;
1538
	c->node = page_to_nid(c->page);
1539
unlock_out:
1540
	slab_unlock(c->page);
1541
	stat(c, ALLOC_SLOWPATH);
1542 1543 1544 1545
out:
#ifdef SLUB_FASTPATH
	local_irq_restore(flags);
#endif
C
Christoph Lameter 已提交
1546 1547 1548
	return object;

another_slab:
1549
	deactivate_slab(s, c);
C
Christoph Lameter 已提交
1550 1551

new_slab:
1552 1553 1554
	new = get_partial(s, gfpflags, node);
	if (new) {
		c->page = new;
1555
		stat(c, ALLOC_FROM_PARTIAL);
1556
		goto load_freelist;
C
Christoph Lameter 已提交
1557 1558
	}

1559 1560 1561
	if (gfpflags & __GFP_WAIT)
		local_irq_enable();

1562
	new = new_slab(s, gfpflags, node);
1563 1564 1565 1566

	if (gfpflags & __GFP_WAIT)
		local_irq_disable();

1567 1568
	if (new) {
		c = get_cpu_slab(s, smp_processor_id());
1569
		stat(c, ALLOC_SLAB);
1570
		if (c->page)
1571 1572 1573 1574
			flush_slab(s, c);
		slab_lock(new);
		SetSlabFrozen(new);
		c->page = new;
1575
		goto load_freelist;
C
Christoph Lameter 已提交
1576
	}
1577 1578
	object = NULL;
	goto out;
C
Christoph Lameter 已提交
1579
debug:
1580 1581
	object = c->page->freelist;
	if (!alloc_debug_processing(s, c->page, object, addr))
C
Christoph Lameter 已提交
1582
		goto another_slab;
1583

1584
	c->page->inuse++;
1585
	c->page->freelist = object[c->offset];
1586
	c->node = -1;
1587
	goto unlock_out;
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
P
Pekka Enberg 已提交
1600
static __always_inline void *slab_alloc(struct kmem_cache *s,
1601
		gfp_t gfpflags, int node, void *addr)
1602 1603
{
	void **object;
1604
	struct kmem_cache_cpu *c;
1605

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
/*
 * The SLUB_FASTPATH path is provisional and is currently disabled if the
 * kernel is compiled with preemption or if the arch does not support
 * fast cmpxchg operations. There are a couple of coming changes that will
 * simplify matters and allow preemption. Ultimately we may end up making
 * SLUB_FASTPATH the default.
 *
 * 1. The introduction of the per cpu allocator will avoid array lookups
 *    through get_cpu_slab(). A special register can be used instead.
 *
 * 2. The introduction of per cpu atomic operations (cpu_ops) means that
 *    we can realize the logic here entirely with per cpu atomics. The
 *    per cpu atomic ops will take care of the preemption issues.
 */

#ifdef SLUB_FASTPATH
	c = get_cpu_slab(s, raw_smp_processor_id());
	do {
		object = c->freelist;
		if (unlikely(is_end(object) || !node_match(c, node))) {
			object = __slab_alloc(s, gfpflags, node, addr, c);
			break;
		}
1629
		stat(c, ALLOC_FASTPATH);
1630 1631 1632 1633 1634
	} while (cmpxchg_local(&c->freelist, object, object[c->offset])
								!= object);
#else
	unsigned long flags;

1635
	local_irq_save(flags);
1636
	c = get_cpu_slab(s, smp_processor_id());
1637
	if (unlikely(is_end(c->freelist) || !node_match(c, node)))
1638

1639
		object = __slab_alloc(s, gfpflags, node, addr, c);
1640 1641

	else {
1642
		object = c->freelist;
1643
		c->freelist = object[c->offset];
1644
		stat(c, ALLOC_FASTPATH);
1645 1646
	}
	local_irq_restore(flags);
1647
#endif
1648 1649

	if (unlikely((gfpflags & __GFP_ZERO) && object))
1650
		memset(object, 0, c->objsize);
1651

1652
	return object;
C
Christoph Lameter 已提交
1653 1654 1655 1656
}

void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
1657
	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
1658 1659 1660 1661 1662 1663
}
EXPORT_SYMBOL(kmem_cache_alloc);

#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
1664
	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
C
Christoph Lameter 已提交
1665 1666 1667 1668 1669
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
#endif

/*
1670 1671
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
1672
 *
1673 1674 1675
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
1676
 */
1677
static void __slab_free(struct kmem_cache *s, struct page *page,
1678
				void *x, void *addr, unsigned int offset)
C
Christoph Lameter 已提交
1679 1680 1681
{
	void *prior;
	void **object = (void *)x;
1682
	struct kmem_cache_cpu *c;
C
Christoph Lameter 已提交
1683

1684 1685 1686 1687 1688
#ifdef SLUB_FASTPATH
	unsigned long flags;

	local_irq_save(flags);
#endif
1689 1690
	c = get_cpu_slab(s, raw_smp_processor_id());
	stat(c, FREE_SLOWPATH);
C
Christoph Lameter 已提交
1691 1692
	slab_lock(page);

1693
	if (unlikely(SlabDebug(page)))
C
Christoph Lameter 已提交
1694 1695
		goto debug;
checks_ok:
1696
	prior = object[offset] = page->freelist;
C
Christoph Lameter 已提交
1697 1698 1699
	page->freelist = object;
	page->inuse--;

1700 1701
	if (unlikely(SlabFrozen(page))) {
		stat(c, FREE_FROZEN);
C
Christoph Lameter 已提交
1702
		goto out_unlock;
1703
	}
C
Christoph Lameter 已提交
1704 1705 1706 1707 1708 1709 1710 1711 1712

	if (unlikely(!page->inuse))
		goto slab_empty;

	/*
	 * Objects left in the slab. If it
	 * was not on the partial list before
	 * then add it.
	 */
1713
	if (unlikely(prior == page->end)) {
1714
		add_partial(get_node(s, page_to_nid(page)), page, 1);
1715 1716
		stat(c, FREE_ADD_PARTIAL);
	}
C
Christoph Lameter 已提交
1717 1718 1719

out_unlock:
	slab_unlock(page);
1720 1721 1722
#ifdef SLUB_FASTPATH
	local_irq_restore(flags);
#endif
C
Christoph Lameter 已提交
1723 1724 1725
	return;

slab_empty:
1726
	if (prior != page->end) {
C
Christoph Lameter 已提交
1727
		/*
C
Christoph Lameter 已提交
1728
		 * Slab still on the partial list.
C
Christoph Lameter 已提交
1729 1730
		 */
		remove_partial(s, page);
1731 1732
		stat(c, FREE_REMOVE_PARTIAL);
	}
C
Christoph Lameter 已提交
1733
	slab_unlock(page);
1734
	stat(c, FREE_SLAB);
1735 1736 1737
#ifdef SLUB_FASTPATH
	local_irq_restore(flags);
#endif
C
Christoph Lameter 已提交
1738 1739 1740 1741
	discard_slab(s, page);
	return;

debug:
C
Christoph Lameter 已提交
1742
	if (!free_debug_processing(s, page, x, addr))
C
Christoph Lameter 已提交
1743 1744
		goto out_unlock;
	goto checks_ok;
C
Christoph Lameter 已提交
1745 1746
}

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
1758
static __always_inline void slab_free(struct kmem_cache *s,
1759 1760 1761
			struct page *page, void *x, void *addr)
{
	void **object = (void *)x;
1762
	struct kmem_cache_cpu *c;
1763

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
#ifdef SLUB_FASTPATH
	void **freelist;

	c = get_cpu_slab(s, raw_smp_processor_id());
	debug_check_no_locks_freed(object, s->objsize);
	do {
		freelist = c->freelist;
		barrier();
		/*
		 * If the compiler would reorder the retrieval of c->page to
		 * come before c->freelist then an interrupt could
		 * change the cpu slab before we retrieve c->freelist. We
		 * could be matching on a page no longer active and put the
		 * object onto the freelist of the wrong slab.
		 *
		 * On the other hand: If we already have the freelist pointer
		 * then any change of cpu_slab will cause the cmpxchg to fail
		 * since the freelist pointers are unique per slab.
		 */
		if (unlikely(page != c->page || c->node < 0)) {
			__slab_free(s, page, x, addr, c->offset);
			break;
		}
		object[c->offset] = freelist;
1788
		stat(c, FREE_FASTPATH);
1789 1790 1791 1792
	} while (cmpxchg_local(&c->freelist, freelist, object) != freelist);
#else
	unsigned long flags;

1793
	local_irq_save(flags);
P
Peter Zijlstra 已提交
1794
	debug_check_no_locks_freed(object, s->objsize);
1795
	c = get_cpu_slab(s, smp_processor_id());
1796
	if (likely(page == c->page && c->node >= 0)) {
1797
		object[c->offset] = c->freelist;
1798
		c->freelist = object;
1799
		stat(c, FREE_FASTPATH);
1800
	} else
1801
		__slab_free(s, page, x, addr, c->offset);
1802 1803

	local_irq_restore(flags);
1804
#endif
1805 1806
}

C
Christoph Lameter 已提交
1807 1808
void kmem_cache_free(struct kmem_cache *s, void *x)
{
C
Christoph Lameter 已提交
1809
	struct page *page;
C
Christoph Lameter 已提交
1810

1811
	page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1812

C
Christoph Lameter 已提交
1813
	slab_free(s, page, x, __builtin_return_address(0));
C
Christoph Lameter 已提交
1814 1815 1816 1817 1818 1819
}
EXPORT_SYMBOL(kmem_cache_free);

/* Figure out on which slab object the object resides */
static struct page *get_object_page(const void *x)
{
1820
	struct page *page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1821 1822 1823 1824 1825 1826 1827 1828

	if (!PageSlab(page))
		return NULL;

	return page;
}

/*
C
Christoph Lameter 已提交
1829 1830 1831 1832
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
1833 1834 1835 1836
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
1837
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
static int slub_max_order = DEFAULT_MAX_ORDER;
static int slub_min_objects = DEFAULT_MIN_OBJECTS;

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
1853
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
1854 1855 1856 1857 1858 1859
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
 * unused space left. We go to a higher order if more than 1/8th of the slab
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
1871
 *
C
Christoph Lameter 已提交
1872 1873 1874 1875
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
1876
 *
C
Christoph Lameter 已提交
1877 1878 1879 1880
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
1881
 */
1882 1883
static inline int slab_order(int size, int min_objects,
				int max_order, int fract_leftover)
C
Christoph Lameter 已提交
1884 1885 1886
{
	int order;
	int rem;
1887
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
1888

1889
	for (order = max(min_order,
1890 1891
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
1892

1893
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
1894

1895
		if (slab_size < min_objects * size)
C
Christoph Lameter 已提交
1896 1897 1898 1899
			continue;

		rem = slab_size % size;

1900
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
1901 1902 1903
			break;

	}
C
Christoph Lameter 已提交
1904

C
Christoph Lameter 已提交
1905 1906 1907
	return order;
}

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
static inline int calculate_order(int size)
{
	int order;
	int min_objects;
	int fraction;

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
	while (min_objects > 1) {
		fraction = 8;
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
						slub_max_order, fraction);
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
		min_objects /= 2;
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
	order = slab_order(size, 1, slub_max_order, 1);
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
	order = slab_order(size, 1, MAX_ORDER, 1);
	if (order <= MAX_ORDER)
		return order;
	return -ENOSYS;
}

C
Christoph Lameter 已提交
1952
/*
C
Christoph Lameter 已提交
1953
 * Figure out what the alignment of the objects will be.
C
Christoph Lameter 已提交
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
 */
static unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then
	 * follow that suggestion if the object is sufficiently
	 * large.
	 *
	 * The hardware cache alignment cannot override the
	 * specified alignment though. If that is greater
	 * then use it.
	 */
1967
	if ((flags & SLAB_HWCACHE_ALIGN) &&
1968 1969
			size > cache_line_size() / 2)
		return max_t(unsigned long, align, cache_line_size());
C
Christoph Lameter 已提交
1970 1971 1972 1973 1974 1975 1976

	if (align < ARCH_SLAB_MINALIGN)
		return ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

1977 1978 1979 1980
static void init_kmem_cache_cpu(struct kmem_cache *s,
			struct kmem_cache_cpu *c)
{
	c->page = NULL;
1981
	c->freelist = (void *)PAGE_MAPPING_ANON;
1982
	c->node = 0;
1983 1984
	c->offset = s->offset / sizeof(void *);
	c->objsize = s->objsize;
1985 1986
}

C
Christoph Lameter 已提交
1987 1988 1989 1990 1991 1992
static void init_kmem_cache_node(struct kmem_cache_node *n)
{
	n->nr_partial = 0;
	atomic_long_set(&n->nr_slabs, 0);
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
1993
#ifdef CONFIG_SLUB_DEBUG
1994
	INIT_LIST_HEAD(&n->full);
1995
#endif
C
Christoph Lameter 已提交
1996 1997
}

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
#ifdef CONFIG_SMP
/*
 * Per cpu array for per cpu structures.
 *
 * The per cpu array places all kmem_cache_cpu structures from one processor
 * close together meaning that it becomes possible that multiple per cpu
 * structures are contained in one cacheline. This may be particularly
 * beneficial for the kmalloc caches.
 *
 * A desktop system typically has around 60-80 slabs. With 100 here we are
 * likely able to get per cpu structures for all caches from the array defined
 * here. We must be able to cover all kmalloc caches during bootstrap.
 *
 * If the per cpu array is exhausted then fall back to kmalloc
 * of individual cachelines. No sharing is possible then.
 */
#define NR_KMEM_CACHE_CPU 100

static DEFINE_PER_CPU(struct kmem_cache_cpu,
				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];

static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;

static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
							int cpu, gfp_t flags)
{
	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);

	if (c)
		per_cpu(kmem_cache_cpu_free, cpu) =
				(void *)c->freelist;
	else {
		/* Table overflow: So allocate ourselves */
		c = kmalloc_node(
			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
			flags, cpu_to_node(cpu));
		if (!c)
			return NULL;
	}

	init_kmem_cache_cpu(s, c);
	return c;
}

static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
{
	if (c < per_cpu(kmem_cache_cpu, cpu) ||
			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
		kfree(c);
		return;
	}
	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
	per_cpu(kmem_cache_cpu_free, cpu) = c;
}

static void free_kmem_cache_cpus(struct kmem_cache *s)
{
	int cpu;

	for_each_online_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c) {
			s->cpu_slab[cpu] = NULL;
			free_kmem_cache_cpu(c, cpu);
		}
	}
}

static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
	int cpu;

	for_each_online_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c)
			continue;

		c = alloc_kmem_cache_cpu(s, cpu, flags);
		if (!c) {
			free_kmem_cache_cpus(s);
			return 0;
		}
		s->cpu_slab[cpu] = c;
	}
	return 1;
}

/*
 * Initialize the per cpu array.
 */
static void init_alloc_cpu_cpu(int cpu)
{
	int i;

	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
		return;

	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);

	cpu_set(cpu, kmem_cach_cpu_free_init_once);
}

static void __init init_alloc_cpu(void)
{
	int cpu;

	for_each_online_cpu(cpu)
		init_alloc_cpu_cpu(cpu);
  }

#else
static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
static inline void init_alloc_cpu(void) {}

static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
	init_kmem_cache_cpu(s, &s->cpu_slab);
	return 1;
}
#endif

C
Christoph Lameter 已提交
2123 2124 2125 2126 2127 2128 2129
#ifdef CONFIG_NUMA
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
 * Note that this function only works on the kmalloc_node_cache
2130 2131
 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2132
 */
2133 2134
static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
							   int node)
C
Christoph Lameter 已提交
2135 2136 2137
{
	struct page *page;
	struct kmem_cache_node *n;
R
root 已提交
2138
	unsigned long flags;
C
Christoph Lameter 已提交
2139 2140 2141

	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));

2142
	page = new_slab(kmalloc_caches, gfpflags, node);
C
Christoph Lameter 已提交
2143 2144

	BUG_ON(!page);
2145 2146 2147 2148 2149 2150 2151
	if (page_to_nid(page) != node) {
		printk(KERN_ERR "SLUB: Unable to allocate memory from "
				"node %d\n", node);
		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
				"in order to be able to continue\n");
	}

C
Christoph Lameter 已提交
2152 2153 2154 2155 2156
	n = page->freelist;
	BUG_ON(!n);
	page->freelist = get_freepointer(kmalloc_caches, n);
	page->inuse++;
	kmalloc_caches->node[node] = n;
2157
#ifdef CONFIG_SLUB_DEBUG
2158 2159
	init_object(kmalloc_caches, n, 1);
	init_tracking(kmalloc_caches, n);
2160
#endif
C
Christoph Lameter 已提交
2161 2162
	init_kmem_cache_node(n);
	atomic_long_inc(&n->nr_slabs);
R
root 已提交
2163 2164 2165 2166 2167 2168
	/*
	 * lockdep requires consistent irq usage for each lock
	 * so even though there cannot be a race this early in
	 * the boot sequence, we still disable irqs.
	 */
	local_irq_save(flags);
2169
	add_partial(n, page, 0);
R
root 已提交
2170
	local_irq_restore(flags);
C
Christoph Lameter 已提交
2171 2172 2173 2174 2175 2176 2177
	return n;
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

C
Christoph Lameter 已提交
2178
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
		struct kmem_cache_node *n = s->node[node];
		if (n && n != &s->local_node)
			kmem_cache_free(kmalloc_caches, n);
		s->node[node] = NULL;
	}
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	int node;
	int local_node;

	if (slab_state >= UP)
		local_node = page_to_nid(virt_to_page(s));
	else
		local_node = 0;

C
Christoph Lameter 已提交
2196
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
		struct kmem_cache_node *n;

		if (local_node == node)
			n = &s->local_node;
		else {
			if (slab_state == DOWN) {
				n = early_kmem_cache_node_alloc(gfpflags,
								node);
				continue;
			}
			n = kmem_cache_alloc_node(kmalloc_caches,
							gfpflags, node);

			if (!n) {
				free_kmem_cache_nodes(s);
				return 0;
			}

		}
		s->node[node] = n;
		init_kmem_cache_node(n);
	}
	return 1;
}
#else
static void free_kmem_cache_nodes(struct kmem_cache *s)
{
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	init_kmem_cache_node(&s->local_node);
	return 1;
}
#endif

/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
static int calculate_sizes(struct kmem_cache *s)
{
	unsigned long flags = s->flags;
	unsigned long size = s->objsize;
	unsigned long align = s->align;

	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2249
			!s->ctor)
C
Christoph Lameter 已提交
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;

	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

C
Christoph Lameter 已提交
2261
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2262
	/*
C
Christoph Lameter 已提交
2263
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2264
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2265
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2266 2267 2268
	 */
	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
		size += sizeof(void *);
C
Christoph Lameter 已提交
2269
#endif
C
Christoph Lameter 已提交
2270 2271

	/*
C
Christoph Lameter 已提交
2272 2273
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
2274 2275 2276 2277
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2278
		s->ctor)) {
C
Christoph Lameter 已提交
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

2291
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2292 2293 2294 2295 2296 2297 2298
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

2299
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
2300 2301 2302 2303 2304 2305 2306 2307
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
		 * corrupted if an user writes before the start
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
2308
#endif
C
Christoph Lameter 已提交
2309

C
Christoph Lameter 已提交
2310 2311
	/*
	 * Determine the alignment based on various parameters that the
2312 2313
	 * user specified and the dynamic determination of cache line size
	 * on bootup.
C
Christoph Lameter 已提交
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
	 */
	align = calculate_alignment(flags, align, s->objsize);

	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
	size = ALIGN(size, align);
	s->size = size;

	s->order = calculate_order(size);
	if (s->order < 0)
		return 0;

2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
	s->allocflags = 0;
	if (s->order)
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
		s->allocflags |= SLUB_DMA;

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
2339 2340 2341 2342 2343
	/*
	 * Determine the number of objects per slab
	 */
	s->objects = (PAGE_SIZE << s->order) / size;

2344
	return !!s->objects;
C
Christoph Lameter 已提交
2345 2346 2347 2348 2349 2350

}

static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
		const char *name, size_t size,
		size_t align, unsigned long flags,
2351
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
2352 2353 2354 2355 2356 2357
{
	memset(s, 0, kmem_size);
	s->name = name;
	s->ctor = ctor;
	s->objsize = size;
	s->align = align;
2358
	s->flags = kmem_cache_flags(size, flags, name, ctor);
C
Christoph Lameter 已提交
2359 2360 2361 2362 2363 2364

	if (!calculate_sizes(s))
		goto error;

	s->refcount = 1;
#ifdef CONFIG_NUMA
2365
	s->remote_node_defrag_ratio = 100;
C
Christoph Lameter 已提交
2366
#endif
2367 2368
	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
		goto error;
C
Christoph Lameter 已提交
2369

2370
	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
C
Christoph Lameter 已提交
2371
		return 1;
2372
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
			s->name, (unsigned long)size, s->size, s->order,
			s->offset, flags);
	return 0;
}

/*
 * Check if a given pointer is valid
 */
int kmem_ptr_validate(struct kmem_cache *s, const void *object)
{
P
Pekka Enberg 已提交
2387
	struct page *page;
C
Christoph Lameter 已提交
2388 2389 2390 2391 2392 2393 2394

	page = get_object_page(object);

	if (!page || s != page->slab)
		/* No slab or wrong slab */
		return 0;

2395
	if (!check_valid_pointer(s, page, object))
C
Christoph Lameter 已提交
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
		return 0;

	/*
	 * We could also check if the object is on the slabs freelist.
	 * But this would be too expensive and it seems that the main
	 * purpose of kmem_ptr_valid is to check if the object belongs
	 * to a certain slab.
	 */
	return 1;
}
EXPORT_SYMBOL(kmem_ptr_validate);

/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->objsize;
}
EXPORT_SYMBOL(kmem_cache_size);

const char *kmem_cache_name(struct kmem_cache *s)
{
	return s->name;
}
EXPORT_SYMBOL(kmem_cache_name);

/*
C
Christoph Lameter 已提交
2424 2425
 * Attempt to free all slabs on a node. Return the number of slabs we
 * were unable to free.
C
Christoph Lameter 已提交
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
 */
static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
			struct list_head *list)
{
	int slabs_inuse = 0;
	unsigned long flags;
	struct page *page, *h;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry_safe(page, h, list, lru)
		if (!page->inuse) {
			list_del(&page->lru);
			discard_slab(s, page);
		} else
			slabs_inuse++;
	spin_unlock_irqrestore(&n->list_lock, flags);
	return slabs_inuse;
}

/*
C
Christoph Lameter 已提交
2446
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
2447
 */
2448
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
2449 2450 2451 2452 2453 2454
{
	int node;

	flush_all(s);

	/* Attempt to free all objects */
2455
	free_kmem_cache_cpus(s);
C
Christoph Lameter 已提交
2456
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2457 2458
		struct kmem_cache_node *n = get_node(s, node);

2459
		n->nr_partial -= free_list(s, n, &n->partial);
C
Christoph Lameter 已提交
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
		if (atomic_long_read(&n->nr_slabs))
			return 1;
	}
	free_kmem_cache_nodes(s);
	return 0;
}

/*
 * Close a cache and release the kmem_cache structure
 * (must be used for caches created using kmem_cache_create)
 */
void kmem_cache_destroy(struct kmem_cache *s)
{
	down_write(&slub_lock);
	s->refcount--;
	if (!s->refcount) {
		list_del(&s->list);
2477
		up_write(&slub_lock);
C
Christoph Lameter 已提交
2478 2479 2480
		if (kmem_cache_close(s))
			WARN_ON(1);
		sysfs_slab_remove(s);
2481 2482
	} else
		up_write(&slub_lock);
C
Christoph Lameter 已提交
2483 2484 2485 2486 2487 2488 2489
}
EXPORT_SYMBOL(kmem_cache_destroy);

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

2490
struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
C
Christoph Lameter 已提交
2491 2492 2493
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
2494
static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
C
Christoph Lameter 已提交
2495 2496 2497 2498
#endif

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
2499
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
2500 2501 2502 2503 2504 2505 2506 2507

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
2508
	get_option(&str, &slub_max_order);
C
Christoph Lameter 已提交
2509 2510 2511 2512 2513 2514 2515 2516

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
2517
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
		const char *name, int size, gfp_t gfp_flags)
{
	unsigned int flags = 0;

	if (gfp_flags & SLUB_DMA)
		flags = SLAB_CACHE_DMA;

	down_write(&slub_lock);
	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2542
			flags, NULL))
C
Christoph Lameter 已提交
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
		goto panic;

	list_add(&s->list, &slab_caches);
	up_write(&slub_lock);
	if (sysfs_slab_add(s))
		goto panic;
	return s;

panic:
	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
}

2555
#ifdef CONFIG_ZONE_DMA
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572

static void sysfs_add_func(struct work_struct *w)
{
	struct kmem_cache *s;

	down_write(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		if (s->flags & __SYSFS_ADD_DEFERRED) {
			s->flags &= ~__SYSFS_ADD_DEFERRED;
			sysfs_slab_add(s);
		}
	}
	up_write(&slub_lock);
}

static DECLARE_WORK(sysfs_add_work, sysfs_add_func);

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
{
	struct kmem_cache *s;
	char *text;
	size_t realsize;

	s = kmalloc_caches_dma[index];
	if (s)
		return s;

	/* Dynamically create dma cache */
2584 2585 2586 2587 2588 2589 2590 2591 2592
	if (flags & __GFP_WAIT)
		down_write(&slub_lock);
	else {
		if (!down_write_trylock(&slub_lock))
			goto out;
	}

	if (kmalloc_caches_dma[index])
		goto unlock_out;
2593

2594
	realsize = kmalloc_caches[index].objsize;
I
Ingo Molnar 已提交
2595 2596
	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
			 (unsigned int)realsize);
2597 2598 2599 2600 2601 2602 2603 2604
	s = kmalloc(kmem_size, flags & ~SLUB_DMA);

	if (!s || !text || !kmem_cache_open(s, flags, text,
			realsize, ARCH_KMALLOC_MINALIGN,
			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
		kfree(s);
		kfree(text);
		goto unlock_out;
2605
	}
2606 2607 2608 2609 2610 2611 2612

	list_add(&s->list, &slab_caches);
	kmalloc_caches_dma[index] = s;

	schedule_work(&sysfs_add_work);

unlock_out:
2613
	up_write(&slub_lock);
2614
out:
2615
	return kmalloc_caches_dma[index];
2616 2617 2618
}
#endif

2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

C
Christoph Lameter 已提交
2652 2653
static struct kmem_cache *get_slab(size_t size, gfp_t flags)
{
2654
	int index;
C
Christoph Lameter 已提交
2655

2656 2657 2658
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;
C
Christoph Lameter 已提交
2659

2660
		index = size_index[(size - 1) / 8];
2661
	} else
2662
		index = fls(size - 1);
C
Christoph Lameter 已提交
2663 2664

#ifdef CONFIG_ZONE_DMA
2665
	if (unlikely((flags & SLUB_DMA)))
2666
		return dma_kmalloc_cache(index, flags);
2667

C
Christoph Lameter 已提交
2668 2669 2670 2671 2672 2673
#endif
	return &kmalloc_caches[index];
}

void *__kmalloc(size_t size, gfp_t flags)
{
2674
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2675

2676
	if (unlikely(size > PAGE_SIZE / 2))
2677
		return kmalloc_large(size, flags);
2678 2679 2680 2681

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
2682 2683
		return s;

2684
	return slab_alloc(s, flags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
2685 2686 2687 2688 2689 2690
}
EXPORT_SYMBOL(__kmalloc);

#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
2691
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2692

2693
	if (unlikely(size > PAGE_SIZE / 2))
2694
		return kmalloc_large(size, flags);
2695 2696 2697 2698

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
2699 2700
		return s;

2701
	return slab_alloc(s, flags, node, __builtin_return_address(0));
C
Christoph Lameter 已提交
2702 2703 2704 2705 2706 2707
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
2708
	struct page *page;
C
Christoph Lameter 已提交
2709 2710
	struct kmem_cache *s;

2711 2712
	BUG_ON(!object);
	if (unlikely(object == ZERO_SIZE_PTR))
2713 2714
		return 0;

2715
	page = virt_to_head_page(object);
C
Christoph Lameter 已提交
2716
	BUG_ON(!page);
2717 2718 2719 2720

	if (unlikely(!PageSlab(page)))
		return PAGE_SIZE << compound_order(page);

C
Christoph Lameter 已提交
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
	s = page->slab;
	BUG_ON(!s);

	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
		return s->objsize;

	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;

	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}
EXPORT_SYMBOL(ksize);

void kfree(const void *x)
{
	struct page *page;
2749
	void *object = (void *)x;
C
Christoph Lameter 已提交
2750

2751
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
2752 2753
		return;

2754
	page = virt_to_head_page(x);
2755 2756 2757 2758
	if (unlikely(!PageSlab(page))) {
		put_page(page);
		return;
	}
2759
	slab_free(page->slab, page, object, __builtin_return_address(0));
C
Christoph Lameter 已提交
2760 2761 2762
}
EXPORT_SYMBOL(kfree);

2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
static unsigned long count_partial(struct kmem_cache_node *n)
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += page->inuse;
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}

2776
/*
C
Christoph Lameter 已提交
2777 2778 2779 2780 2781 2782 2783 2784
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
	struct list_head *slabs_by_inuse =
		kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
2801
	for_each_node_state(node, N_NORMAL_MEMORY) {
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

		for (i = 0; i < s->objects; i++)
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
2813
		 * Build lists indexed by the items in use in each slab.
2814
		 *
C
Christoph Lameter 已提交
2815 2816
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
			if (!page->inuse && slab_trylock(page)) {
				/*
				 * Must hold slab lock here because slab_free
				 * may have freed the last object and be
				 * waiting to release the slab.
				 */
				list_del(&page->lru);
				n->nr_partial--;
				slab_unlock(page);
				discard_slab(s, page);
			} else {
2830 2831
				list_move(&page->lru,
				slabs_by_inuse + page->inuse);
2832 2833 2834 2835
			}
		}

		/*
C
Christoph Lameter 已提交
2836 2837
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
		 */
		for (i = s->objects - 1; i >= 0; i--)
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list)
		kmem_cache_shrink(s);
	up_read(&slub_lock);

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

	offline_node = marg->status_change_nid;

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
			 * and offline_pages() function shoudn't call this
			 * callback. So, we must fail.
			 */
A
Al Viro 已提交
2889
			BUG_ON(atomic_long_read(&n->nr_slabs));
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964

			s->node[offline_node] = NULL;
			kmem_cache_free(kmalloc_caches, n);
		}
	}
	up_read(&slub_lock);
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int nid = marg->status_change_nid;
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
	 * We are bringing a node online. No memory is availabe yet. We must
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
		init_kmem_cache_node(n);
		s->node[nid] = n;
	}
out:
	up_read(&slub_lock);
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}

	ret = notifier_from_errno(ret);
	return ret;
}

#endif /* CONFIG_MEMORY_HOTPLUG */

C
Christoph Lameter 已提交
2965 2966 2967 2968 2969 2970 2971
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

void __init kmem_cache_init(void)
{
	int i;
2972
	int caches = 0;
C
Christoph Lameter 已提交
2973

2974 2975
	init_alloc_cpu();

C
Christoph Lameter 已提交
2976 2977 2978
#ifdef CONFIG_NUMA
	/*
	 * Must first have the slab cache available for the allocations of the
C
Christoph Lameter 已提交
2979
	 * struct kmem_cache_node's. There is special bootstrap code in
C
Christoph Lameter 已提交
2980 2981 2982 2983
	 * kmem_cache_open for slab_state == DOWN.
	 */
	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
		sizeof(struct kmem_cache_node), GFP_KERNEL);
2984
	kmalloc_caches[0].refcount = -1;
2985
	caches++;
2986 2987

	hotplug_memory_notifier(slab_memory_callback, 1);
C
Christoph Lameter 已提交
2988 2989 2990 2991 2992 2993
#endif

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

	/* Caches that are not of the two-to-the-power-of size */
2994 2995
	if (KMALLOC_MIN_SIZE <= 64) {
		create_kmalloc_cache(&kmalloc_caches[1],
C
Christoph Lameter 已提交
2996
				"kmalloc-96", 96, GFP_KERNEL);
2997 2998 2999 3000
		caches++;
	}
	if (KMALLOC_MIN_SIZE <= 128) {
		create_kmalloc_cache(&kmalloc_caches[2],
C
Christoph Lameter 已提交
3001
				"kmalloc-192", 192, GFP_KERNEL);
3002 3003
		caches++;
	}
C
Christoph Lameter 已提交
3004

3005
	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
C
Christoph Lameter 已提交
3006 3007
		create_kmalloc_cache(&kmalloc_caches[i],
			"kmalloc", 1 << i, GFP_KERNEL);
3008 3009
		caches++;
	}
C
Christoph Lameter 已提交
3010

3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025

	/*
	 * Patch up the size_index table if we have strange large alignment
	 * requirements for the kmalloc array. This is only the case for
	 * mips it seems. The standard arches will not generate any code here.
	 *
	 * Largest permitted alignment is 256 bytes due to the way we
	 * handle the index determination for the smaller caches.
	 *
	 * Make sure that nothing crazy happens if someone starts tinkering
	 * around with ARCH_KMALLOC_MINALIGN
	 */
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

3026
	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3027 3028
		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;

C
Christoph Lameter 已提交
3029 3030 3031
	slab_state = UP;

	/* Provide the correct kmalloc names now that the caches are up */
3032
	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
C
Christoph Lameter 已提交
3033 3034 3035 3036 3037
		kmalloc_caches[i]. name =
			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3038 3039 3040 3041
	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
#else
	kmem_size = sizeof(struct kmem_cache);
C
Christoph Lameter 已提交
3042 3043 3044
#endif


I
Ingo Molnar 已提交
3045 3046
	printk(KERN_INFO
		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3047 3048
		" CPUs=%d, Nodes=%d\n",
		caches, cache_line_size(),
C
Christoph Lameter 已提交
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

3061
	if (s->ctor)
C
Christoph Lameter 已提交
3062 3063
		return 1;

3064 3065 3066 3067 3068 3069
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
3070 3071 3072 3073
	return 0;
}

static struct kmem_cache *find_mergeable(size_t size,
3074
		size_t align, unsigned long flags, const char *name,
3075
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
3076
{
3077
	struct kmem_cache *s;
C
Christoph Lameter 已提交
3078 3079 3080 3081

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

3082
	if (ctor)
C
Christoph Lameter 已提交
3083 3084 3085 3086 3087
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
3088
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
3089

3090
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
3091 3092 3093 3094 3095 3096
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3097
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
C
Christoph Lameter 已提交
3098 3099 3100 3101 3102
				continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
P
Pekka Enberg 已提交
3103
		if ((s->size & ~(align - 1)) != s->size)
C
Christoph Lameter 已提交
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

		return s;
	}
	return NULL;
}

struct kmem_cache *kmem_cache_create(const char *name, size_t size,
		size_t align, unsigned long flags,
3116
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
3117 3118 3119 3120
{
	struct kmem_cache *s;

	down_write(&slub_lock);
3121
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3122
	if (s) {
3123 3124
		int cpu;

C
Christoph Lameter 已提交
3125 3126 3127 3128 3129 3130
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		s->objsize = max(s->objsize, (int)size);
3131 3132 3133 3134 3135 3136 3137

		/*
		 * And then we need to update the object size in the
		 * per cpu structures
		 */
		for_each_online_cpu(cpu)
			get_cpu_slab(s, cpu)->objsize = s->objsize;
C
Christoph Lameter 已提交
3138
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3139
		up_write(&slub_lock);
C
Christoph Lameter 已提交
3140 3141
		if (sysfs_slab_alias(s, name))
			goto err;
3142 3143 3144 3145 3146
		return s;
	}
	s = kmalloc(kmem_size, GFP_KERNEL);
	if (s) {
		if (kmem_cache_open(s, GFP_KERNEL, name,
3147
				size, align, flags, ctor)) {
C
Christoph Lameter 已提交
3148
			list_add(&s->list, &slab_caches);
3149 3150 3151 3152 3153 3154
			up_write(&slub_lock);
			if (sysfs_slab_add(s))
				goto err;
			return s;
		}
		kfree(s);
C
Christoph Lameter 已提交
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
	}
	up_write(&slub_lock);

err:
	if (flags & SLAB_PANIC)
		panic("Cannot create slabcache %s\n", name);
	else
		s = NULL;
	return s;
}
EXPORT_SYMBOL(kmem_cache_create);

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3169 3170
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3171 3172 3173 3174 3175
 */
static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3176 3177
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3178 3179

	switch (action) {
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
		init_alloc_cpu_cpu(cpu);
		down_read(&slub_lock);
		list_for_each_entry(s, &slab_caches, list)
			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
							GFP_KERNEL);
		up_read(&slub_lock);
		break;

C
Christoph Lameter 已提交
3190
	case CPU_UP_CANCELED:
3191
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3192
	case CPU_DEAD:
3193
	case CPU_DEAD_FROZEN:
3194 3195
		down_read(&slub_lock);
		list_for_each_entry(s, &slab_caches, list) {
3196 3197
			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

3198 3199 3200
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
3201 3202
			free_kmem_cache_cpu(c, cpu);
			s->cpu_slab[cpu] = NULL;
3203 3204
		}
		up_read(&slub_lock);
C
Christoph Lameter 已提交
3205 3206 3207 3208 3209 3210 3211
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

P
Pekka Enberg 已提交
3212
static struct notifier_block __cpuinitdata slab_notifier = {
I
Ingo Molnar 已提交
3213
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3214
};
C
Christoph Lameter 已提交
3215 3216 3217 3218 3219

#endif

void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
{
3220 3221 3222
	struct kmem_cache *s;

	if (unlikely(size > PAGE_SIZE / 2))
3223 3224
		return kmalloc_large(size, gfpflags);

3225
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
3226

3227
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3228
		return s;
C
Christoph Lameter 已提交
3229

3230
	return slab_alloc(s, gfpflags, -1, caller);
C
Christoph Lameter 已提交
3231 3232 3233 3234 3235
}

void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
					int node, void *caller)
{
3236 3237 3238
	struct kmem_cache *s;

	if (unlikely(size > PAGE_SIZE / 2))
3239 3240
		return kmalloc_large(size, gfpflags);

3241
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
3242

3243
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3244
		return s;
C
Christoph Lameter 已提交
3245

3246
	return slab_alloc(s, gfpflags, node, caller);
C
Christoph Lameter 已提交
3247 3248
}

C
Christoph Lameter 已提交
3249
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3250 3251
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3252 3253
{
	void *p;
3254
	void *addr = slab_address(page);
3255 3256 3257 3258 3259 3260 3261 3262

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
	bitmap_zero(map, s->objects);

3263 3264
	for_each_free_object(p, s, page->freelist) {
		set_bit(slab_index(p, s, addr), map);
3265 3266 3267 3268
		if (!check_object(s, page, p, 0))
			return 0;
	}

3269 3270
	for_each_object(p, s, addr)
		if (!test_bit(slab_index(p, s, addr), map))
3271 3272 3273 3274 3275
			if (!check_object(s, page, p, 1))
				return 0;
	return 1;
}

3276 3277
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3278 3279
{
	if (slab_trylock(page)) {
3280
		validate_slab(s, page, map);
3281 3282 3283 3284 3285 3286
		slab_unlock(page);
	} else
		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
			s->name, page);

	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3287 3288
		if (!SlabDebug(page))
			printk(KERN_ERR "SLUB %s: SlabDebug not set "
3289 3290
				"on slab 0x%p\n", s->name, page);
	} else {
3291 3292
		if (SlabDebug(page))
			printk(KERN_ERR "SLUB %s: SlabDebug set on "
3293 3294 3295 3296
				"slab 0x%p\n", s->name, page);
	}
}

3297 3298
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3299 3300 3301 3302 3303 3304 3305 3306
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3307
		validate_slab_slab(s, page, map);
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3318
		validate_slab_slab(s, page, map);
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3331
static long validate_slab_cache(struct kmem_cache *s)
3332 3333 3334
{
	int node;
	unsigned long count = 0;
3335 3336 3337 3338 3339
	unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
3340 3341

	flush_all(s);
C
Christoph Lameter 已提交
3342
	for_each_node_state(node, N_NORMAL_MEMORY) {
3343 3344
		struct kmem_cache_node *n = get_node(s, node);

3345
		count += validate_slab_node(s, n, map);
3346
	}
3347
	kfree(map);
3348 3349 3350
	return count;
}

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches + 4);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
I
Ingo Molnar 已提交
3371 3372 3373
			" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
3374 3375 3376 3377 3378 3379 3380

	validate_slab_cache(kmalloc_caches + 5);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
I
Ingo Molnar 已提交
3381 3382
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
	validate_slab_cache(kmalloc_caches + 6);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 7);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
I
Ingo Molnar 已提交
3395 3396
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
			p);
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
	validate_slab_cache(kmalloc_caches + 8);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 9);
}
#else
static void resiliency_test(void) {};
#endif

3409
/*
C
Christoph Lameter 已提交
3410
 * Generate lists of code addresses where slabcache objects are allocated
3411 3412 3413 3414 3415 3416
 * and freed.
 */

struct location {
	unsigned long count;
	void *addr;
3417 3418 3419 3420 3421 3422 3423
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
	cpumask_t cpus;
	nodemask_t nodes;
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

3439
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3440 3441 3442 3443 3444 3445
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

3446
	l = (void *)__get_free_pages(flags, order);
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
3460
				const struct track *track)
3461 3462 3463 3464
{
	long start, end, pos;
	struct location *l;
	void *caddr;
3465
	unsigned long age = jiffies - track->when;
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

				cpu_set(track->cpu, l->cpus);
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3500 3501 3502
			return 1;
		}

3503
		if (track->addr < caddr)
3504 3505 3506 3507 3508 3509
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
3510
	 * Not found. Insert new tracking element.
3511
	 */
3512
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3513 3514 3515 3516 3517 3518 3519 3520
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
	cpus_clear(l->cpus);
	cpu_set(track->cpu, l->cpus);
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3531 3532 3533 3534 3535 3536
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
		struct page *page, enum track_item alloc)
{
3537
	void *addr = slab_address(page);
3538
	DECLARE_BITMAP(map, s->objects);
3539 3540 3541
	void *p;

	bitmap_zero(map, s->objects);
3542 3543
	for_each_free_object(p, s, page->freelist)
		set_bit(slab_index(p, s, addr), map);
3544

3545
	for_each_object(p, s, addr)
3546 3547
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
3548 3549 3550 3551 3552
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
3553
	int len = 0;
3554
	unsigned long i;
3555
	struct loc_track t = { 0, 0, NULL };
3556 3557
	int node;

3558
	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3559
			GFP_TEMPORARY))
3560
		return sprintf(buf, "Out of memory\n");
3561 3562 3563 3564

	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
3565
	for_each_node_state(node, N_NORMAL_MEMORY) {
3566 3567 3568 3569
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

3570
		if (!atomic_long_read(&n->nr_slabs))
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
			process_slab(&t, s, page, alloc);
		list_for_each_entry(page, &n->full, lru)
			process_slab(&t, s, page, alloc);
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
3582
		struct location *l = &t.loc[i];
3583

3584
		if (len > PAGE_SIZE - 100)
3585
			break;
3586
		len += sprintf(buf + len, "%7ld ", l->count);
3587 3588

		if (l->addr)
3589
			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3590
		else
3591
			len += sprintf(buf + len, "<not-available>");
3592 3593 3594 3595

		if (l->sum_time != l->min_time) {
			unsigned long remainder;

3596
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3597 3598 3599 3600
			l->min_time,
			div_long_long_rem(l->sum_time, l->count, &remainder),
			l->max_time);
		} else
3601
			len += sprintf(buf + len, " age=%ld",
3602 3603 3604
				l->min_time);

		if (l->min_pid != l->max_pid)
3605
			len += sprintf(buf + len, " pid=%ld-%ld",
3606 3607
				l->min_pid, l->max_pid);
		else
3608
			len += sprintf(buf + len, " pid=%ld",
3609 3610
				l->min_pid);

3611
		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3612 3613 3614
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3615 3616 3617
					l->cpus);
		}

3618
		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3619 3620 3621
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3622 3623 3624
					l->nodes);
		}

3625
		len += sprintf(buf + len, "\n");
3626 3627 3628 3629
	}

	free_loc_track(&t);
	if (!t.count)
3630 3631
		len += sprintf(buf, "No data\n");
	return len;
3632 3633
}

C
Christoph Lameter 已提交
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
enum slab_stat_type {
	SL_FULL,
	SL_PARTIAL,
	SL_CPU,
	SL_OBJECTS
};

#define SO_FULL		(1 << SL_FULL)
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)

static unsigned long slab_objects(struct kmem_cache *s,
			char *buf, unsigned long flags)
{
	unsigned long total = 0;
	int cpu;
	int node;
	int x;
	unsigned long *nodes;
	unsigned long *per_cpu;

	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
	per_cpu = nodes + nr_node_ids;

	for_each_possible_cpu(cpu) {
3660 3661
		struct page *page;
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
C
Christoph Lameter 已提交
3662

3663 3664 3665 3666
		if (!c)
			continue;

		page = c->page;
3667 3668 3669
		node = c->node;
		if (node < 0)
			continue;
C
Christoph Lameter 已提交
3670 3671 3672 3673 3674 3675 3676
		if (page) {
			if (flags & SO_CPU) {
				if (flags & SO_OBJECTS)
					x = page->inuse;
				else
					x = 1;
				total += x;
3677
				nodes[node] += x;
C
Christoph Lameter 已提交
3678
			}
3679
			per_cpu[node]++;
C
Christoph Lameter 已提交
3680 3681 3682
		}
	}

C
Christoph Lameter 已提交
3683
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
		struct kmem_cache_node *n = get_node(s, node);

		if (flags & SO_PARTIAL) {
			if (flags & SO_OBJECTS)
				x = count_partial(n);
			else
				x = n->nr_partial;
			total += x;
			nodes[node] += x;
		}

		if (flags & SO_FULL) {
3696
			int full_slabs = atomic_long_read(&n->nr_slabs)
C
Christoph Lameter 已提交
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
					- per_cpu[node]
					- n->nr_partial;

			if (flags & SO_OBJECTS)
				x = full_slabs * s->objects;
			else
				x = full_slabs;
			total += x;
			nodes[node] += x;
		}
	}

	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3711
	for_each_node_state(node, N_NORMAL_MEMORY)
C
Christoph Lameter 已提交
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

static int any_slab_objects(struct kmem_cache *s)
{
	int node;
	int cpu;

3725 3726 3727 3728
	for_each_possible_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c && c->page)
C
Christoph Lameter 已提交
3729
			return 1;
3730
	}
C
Christoph Lameter 已提交
3731

3732
	for_each_online_node(node) {
C
Christoph Lameter 已提交
3733 3734
		struct kmem_cache_node *n = get_node(s, node);

3735 3736 3737
		if (!n)
			continue;

3738
		if (n->nr_partial || atomic_long_read(&n->nr_slabs))
C
Christoph Lameter 已提交
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
			return 1;
	}
	return 0;
}

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
#define to_slab(n) container_of(n, struct kmem_cache, kobj);

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
	static struct slab_attribute _name##_attr = __ATTR_RO(_name)

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
	__ATTR(_name, 0644, _name##_show, _name##_store)

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objsize);
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objects);
}
SLAB_ATTR_RO(objs_per_slab);

static ssize_t order_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->order);
}
SLAB_ATTR_RO(order);

static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
	if (s->ctor) {
		int n = sprint_symbol(buf, (unsigned long)s->ctor);

		return n + sprintf(buf + n, "\n");
	}
	return 0;
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
}
SLAB_ATTR_RO(slabs);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_PARTIAL);
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_CPU);
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
}
SLAB_ATTR_RO(objects);

static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
	if (buf[0] == '1')
		s->flags |= SLAB_DEBUG_FREE;
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
	if (buf[0] == '1')
		s->flags |= SLAB_TRACE;
	return length;
}
SLAB_ATTR(trace);

static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
3878
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
C
Christoph Lameter 已提交
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
	if (buf[0] == '1')
		s->flags |= SLAB_RED_ZONE;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
	if (buf[0] == '1')
		s->flags |= SLAB_POISON;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
	if (buf[0] == '1')
		s->flags |= SLAB_STORE_USER;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(store_user);

3953 3954 3955 3956 3957 3958 3959 3960
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
3961 3962 3963 3964 3965 3966 3967 3968
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
3969 3970 3971
}
SLAB_ATTR(validate);

3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);

C
Christoph Lameter 已提交
4007
#ifdef CONFIG_NUMA
4008
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4009
{
4010
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4011 4012
}

4013
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4014 4015 4016 4017 4018
				const char *buf, size_t length)
{
	int n = simple_strtoul(buf, NULL, 10);

	if (n < 100)
4019
		s->remote_node_defrag_ratio = n * 10;
C
Christoph Lameter 已提交
4020 4021
	return length;
}
4022
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4023 4024
#endif

4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
#ifdef CONFIG_SLUB_STATS

static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
		unsigned x = get_cpu_slab(s, cpu)->stat[si];

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " c%d=%u", cpu, data[cpu]);
	}
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
SLAB_ATTR_RO(text);						\

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);

#endif

P
Pekka Enberg 已提交
4081
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
	&objects_attr.attr,
	&slabs_attr.attr,
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4101
	&validate_attr.attr,
4102
	&shrink_attr.attr,
4103 4104
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
C
Christoph Lameter 已提交
4105 4106 4107 4108
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4109
	&remote_node_defrag_ratio_attr.attr,
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
C
Christoph Lameter 已提交
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
#endif
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);

	return err;
}

C
Christoph Lameter 已提交
4175 4176 4177 4178 4179 4180 4181
static void kmem_cache_release(struct kobject *kobj)
{
	struct kmem_cache *s = to_slab(kobj);

	kfree(s);
}

C
Christoph Lameter 已提交
4182 4183 4184 4185 4186 4187 4188
static struct sysfs_ops slab_sysfs_ops = {
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
C
Christoph Lameter 已提交
4189
	.release = kmem_cache_release
C
Christoph Lameter 已提交
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

static struct kset_uevent_ops slab_uevent_ops = {
	.filter = uevent_filter,
};

4205
static struct kset *slab_kset;
C
Christoph Lameter 已提交
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
 * format
 * :[flags-]size:[memory address of kmemcache]
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
	int unmergeable;

	if (slab_state < SYSFS)
		/* Defer until later */
		return 0;

	unmergeable = slab_unmergeable(s);
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
4258
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
4259 4260 4261 4262 4263 4264 4265 4266 4267
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

4268
	s->kobj.kset = slab_kset;
4269 4270 4271
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
	if (err) {
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
4272
		return err;
4273
	}
C
Christoph Lameter 已提交
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
	if (err)
		return err;
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
4291
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
 * available lest we loose that information.
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
4304
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
4305 4306 4307 4308 4309 4310 4311 4312 4313

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

	if (slab_state == SYSFS) {
		/*
		 * If we have a leftover link then remove it.
		 */
4314 4315
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
4331
	struct kmem_cache *s;
C
Christoph Lameter 已提交
4332 4333
	int err;

4334
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4335
	if (!slab_kset) {
C
Christoph Lameter 已提交
4336 4337 4338 4339
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

4340 4341
	slab_state = SYSFS;

4342
	list_for_each_entry(s, &slab_caches, list) {
4343
		err = sysfs_slab_add(s);
4344 4345 4346
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
						" to sysfs\n", s->name);
4347
	}
C
Christoph Lameter 已提交
4348 4349 4350 4351 4352 4353

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
4354 4355 4356
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
					" %s to sysfs\n", s->name);
C
Christoph Lameter 已提交
4357 4358 4359 4360 4361 4362 4363 4364 4365
		kfree(al);
	}

	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
#endif
P
Pekka J Enberg 已提交
4366 4367 4368 4369

/*
 * The /proc/slabinfo ABI
 */
4370 4371 4372 4373 4374 4375 4376 4377
#ifdef CONFIG_SLABINFO

ssize_t slabinfo_write(struct file *file, const char __user * buffer,
                       size_t count, loff_t *ppos)
{
	return -EINVAL;
}

P
Pekka J Enberg 已提交
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450

static void print_slabinfo_header(struct seq_file *m)
{
	seq_puts(m, "slabinfo - version: 2.1\n");
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

	down_read(&slub_lock);
	if (!n)
		print_slabinfo_header(m);

	return seq_list_start(&slab_caches, *pos);
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
	return seq_list_next(p, &slab_caches, pos);
}

static void s_stop(struct seq_file *m, void *p)
{
	up_read(&slub_lock);
}

static int s_show(struct seq_file *m, void *p)
{
	unsigned long nr_partials = 0;
	unsigned long nr_slabs = 0;
	unsigned long nr_inuse = 0;
	unsigned long nr_objs;
	struct kmem_cache *s;
	int node;

	s = list_entry(p, struct kmem_cache, list);

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (!n)
			continue;

		nr_partials += n->nr_partial;
		nr_slabs += atomic_long_read(&n->nr_slabs);
		nr_inuse += count_partial(n);
	}

	nr_objs = nr_slabs * s->objects;
	nr_inuse += (nr_slabs - nr_partials) * s->objects;

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
		   nr_objs, s->size, s->objects, (1 << s->order));
	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
		   0UL);
	seq_putc(m, '\n');
	return 0;
}

const struct seq_operations slabinfo_op = {
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};

4451
#endif /* CONFIG_SLABINFO */