slub.c 88.5 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
 * The allocator synchronizes using per slab locks and only
 * uses a centralized lock to manage a pool of partial slabs.
 *
 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
#include <linux/kallsyms.h>

/*
 * Lock order:
 *   1. slab_lock(page)
 *   2. slab->list_lock
 *
 *   The slab_lock protects operations on the object of a particular
 *   slab and its metadata in the page struct. If the slab lock
 *   has been taken then no allocations nor frees can be performed
 *   on the objects in the slab nor can the slab be added or removed
 *   from the partial or full lists since this would mean modifying
 *   the page_struct of the slab.
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *
 *   The lock order is sometimes inverted when we are trying to get a slab
 *   off a list. We take the list_lock and then look for a page on the list
 *   to use. While we do that objects in the slabs may be freed. We can
 *   only operate on the slab if we have also taken the slab_lock. So we use
 *   a slab_trylock() on the slab. If trylock was successful then no frees
 *   can occur anymore and we can use the slab for allocations etc. If the
 *   slab_trylock() does not succeed then frees are in progress in the slab and
 *   we must stay away from it for a while since we may cause a bouncing
 *   cacheline if we try to acquire the lock. So go onto the next slab.
 *   If all pages are busy then we may allocate a new slab instead of reusing
 *   a partial slab. A new slab has noone operating on it and thus there is
 *   no danger of cacheline contention.
 *
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
69 70
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
71
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
72 73
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
74 75 76 77 78 79 80
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
81 82 83 84 85 86 87 88 89 90 91 92
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
93 94 95
 * 			lockless_freelist that allows lockless access to
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
96 97 98
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
99
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
100 101
 */

102 103 104 105 106 107 108 109
#define FROZEN (1 << PG_active)

#ifdef CONFIG_SLUB_DEBUG
#define SLABDEBUG (1 << PG_error)
#else
#define SLABDEBUG 0
#endif

110 111
static inline int SlabFrozen(struct page *page)
{
112
	return page->flags & FROZEN;
113 114 115 116
}

static inline void SetSlabFrozen(struct page *page)
{
117
	page->flags |= FROZEN;
118 119 120 121
}

static inline void ClearSlabFrozen(struct page *page)
{
122
	page->flags &= ~FROZEN;
123 124
}

125 126
static inline int SlabDebug(struct page *page)
{
127
	return page->flags & SLABDEBUG;
128 129 130 131
}

static inline void SetSlabDebug(struct page *page)
{
132
	page->flags |= SLABDEBUG;
133 134 135 136
}

static inline void ClearSlabDebug(struct page *page)
{
137
	page->flags &= ~SLABDEBUG;
138 139
}

C
Christoph Lameter 已提交
140 141 142 143 144
/*
 * Issues still to be resolved:
 *
 * - The per cpu array is updated for each new slab and and is a remote
 *   cacheline for most nodes. This could become a bouncing cacheline given
C
Christoph Lameter 已提交
145 146
 *   enough frequent updates. There are 16 pointers in a cacheline, so at
 *   max 16 cpus could compete for the cacheline which may be okay.
C
Christoph Lameter 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

#if PAGE_SHIFT <= 12

/*
 * Small page size. Make sure that we do not fragment memory
 */
#define DEFAULT_MAX_ORDER 1
#define DEFAULT_MIN_OBJECTS 4

#else

/*
 * Large page machines are customarily able to handle larger
 * page orders.
 */
#define DEFAULT_MAX_ORDER 2
#define DEFAULT_MIN_OBJECTS 8

#endif

175 176 177 178
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
179 180
#define MIN_PARTIAL 2

181 182 183 184 185 186 187
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
 * sort the partial list by the number of objects in the.
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
188 189
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
190

C
Christoph Lameter 已提交
191 192 193 194 195 196 197 198 199 200
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DESTROY_BY_RCU)

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
		SLAB_CACHE_DMA)

#ifndef ARCH_KMALLOC_MINALIGN
201
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
202 203 204
#endif

#ifndef ARCH_SLAB_MINALIGN
205
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
206 207
#endif

208 209 210 211 212
/*
 * The page->inuse field is 16 bit thus we have this limitation
 */
#define MAX_OBJECTS_PER_SLAB 65535

C
Christoph Lameter 已提交
213 214 215
/* Internal SLUB flags */
#define __OBJECT_POISON 0x80000000	/* Poison object */

216 217 218 219 220
/* Not all arches define cache_line_size */
#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

C
Christoph Lameter 已提交
221 222 223 224 225 226 227 228 229
static int kmem_size = sizeof(struct kmem_cache);

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

static enum {
	DOWN,		/* No slab functionality available */
	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
C
Christoph Lameter 已提交
230
	UP,		/* Everything works but does not show up in sysfs */
C
Christoph Lameter 已提交
231 232 233 234 235
	SYSFS		/* Sysfs up */
} slab_state = DOWN;

/* A list of all slab caches on the system */
static DECLARE_RWSEM(slub_lock);
A
Adrian Bunk 已提交
236
static LIST_HEAD(slab_caches);
C
Christoph Lameter 已提交
237

238 239 240 241 242 243 244 245 246 247 248 249
/*
 * Tracking user of a slab.
 */
struct track {
	void *addr;		/* Called from address */
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

C
Christoph Lameter 已提交
250
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
C
Christoph Lameter 已提交
251 252 253 254
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
#else
255 256 257 258
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
static inline void sysfs_slab_remove(struct kmem_cache *s) {}
C
Christoph Lameter 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
#endif

/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

int slab_is_available(void)
{
	return slab_state >= UP;
}

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
#ifdef CONFIG_NUMA
	return s->node[node];
#else
	return &s->local_node;
#endif
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

	if (!object)
		return 1;

	base = page_address(page);
	if (object < base || object >= base + s->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
/*
 * Slow version of get and set free pointer.
 *
 * This version requires touching the cache lines of kmem_cache which
 * we avoid to do in the fast alloc free paths. There we obtain the offset
 * from the page struct.
 */
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
#define for_each_object(__p, __s, __addr) \
	for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
			__p += (__s)->size)

/* Scan freelist */
#define for_each_free_object(__p, __s, __free) \
	for (__p = (__free); __p; __p = get_freepointer((__s), __p))

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

C
Christoph Lameter 已提交
328 329 330 331
#ifdef CONFIG_SLUB_DEBUG
/*
 * Debug settings:
 */
332 333 334
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
335
static int slub_debug;
336
#endif
C
Christoph Lameter 已提交
337 338 339

static char *slub_debug_slabs;

C
Christoph Lameter 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
	int i, offset;
	int newline = 1;
	char ascii[17];

	ascii[16] = 0;

	for (i = 0; i < length; i++) {
		if (newline) {
353
			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
C
Christoph Lameter 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
			newline = 0;
		}
		printk(" %02x", addr[i]);
		offset = i % 16;
		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
		if (offset == 15) {
			printk(" %s\n",ascii);
			newline = 1;
		}
	}
	if (!newline) {
		i %= 16;
		while (i < 16) {
			printk("   ");
			ascii[i] = ' ';
			i++;
		}
		printk(" %s\n", ascii);
	}
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
				enum track_item alloc, void *addr)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	p += alloc;
	if (addr) {
		p->addr = addr;
		p->cpu = smp_processor_id();
		p->pid = current ? current->pid : -1;
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
410 411 412 413 414
	if (!(s->flags & SLAB_STORE_USER))
		return;

	set_track(s, object, TRACK_FREE, NULL);
	set_track(s, object, TRACK_ALLOC, NULL);
C
Christoph Lameter 已提交
415 416 417 418 419 420 421
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

422
	printk(KERN_ERR "INFO: %s in ", s);
C
Christoph Lameter 已提交
423
	__print_symbol("%s", (unsigned long)t->addr);
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
	printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
		page, page->inuse, page->freelist, page->flags);

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "========================================"
			"=====================================\n");
	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
	printk(KERN_ERR "----------------------------------------"
			"-------------------------------------\n\n");
C
Christoph Lameter 已提交
456 457
}

458 459 460 461 462 463 464 465 466 467 468 469
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
470 471
{
	unsigned int off;	/* Offset of last byte */
472 473 474 475 476 477 478 479 480 481 482 483 484
	u8 *addr = page_address(page);

	print_tracking(s, p);

	print_page_info(page);

	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
			p, p - addr, get_freepointer(s, p));

	if (p > addr + 16)
		print_section("Bytes b4", p - 16, 16);

	print_section("Object", p, min(s->objsize, 128));
C
Christoph Lameter 已提交
485 486 487 488 489 490 491 492 493 494

	if (s->flags & SLAB_RED_ZONE)
		print_section("Redzone", p + s->objsize,
			s->inuse - s->objsize);

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

495
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
496 497 498 499
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
500 501 502
		print_section("Padding", p + off, s->size - off);

	dump_stack();
C
Christoph Lameter 已提交
503 504 505 506 507
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
508 509
	slab_bug(s, reason);
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
510 511
}

512
static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
C
Christoph Lameter 已提交
513 514 515 516
{
	va_list args;
	char buf[100];

517 518
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
519
	va_end(args);
520 521
	slab_bug(s, fmt);
	print_page_info(page);
C
Christoph Lameter 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
	dump_stack();
}

static void init_object(struct kmem_cache *s, void *object, int active)
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
		memset(p, POISON_FREE, s->objsize - 1);
		p[s->objsize -1] = POISON_END;
	}

	if (s->flags & SLAB_RED_ZONE)
		memset(p + s->objsize,
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
			s->inuse - s->objsize);
}

540
static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
C
Christoph Lameter 已提交
541 542 543
{
	while (bytes) {
		if (*start != (u8)value)
544
			return start;
C
Christoph Lameter 已提交
545 546 547
		start++;
		bytes--;
	}
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	return NULL;
}

static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
			u8* start, unsigned int value, unsigned int bytes)
{
	u8 *fault;
	u8 *end;

	fault = check_bytes(start, value, bytes);
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
580 581 582 583 584 585 586 587 588
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
589
 *
C
Christoph Lameter 已提交
590 591 592 593 594
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
 * object + s->objsize
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
595 596 597
 * 	Padding is extended by another word if Redzoning is enabled and
 * 	objsize == inuse.
 *
C
Christoph Lameter 已提交
598 599 600 601
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
602 603
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
604 605
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
606 607 608 609 610
 * 	C. Padding to reach required alignment boundary or at mininum
 * 		one word if debuggin is on to be able to detect writes
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
611 612
 *
 * object + s->size
C
Christoph Lameter 已提交
613
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
614
 *
C
Christoph Lameter 已提交
615 616
 * If slabcaches are merged then the objsize and inuse boundaries are mostly
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

635 636
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
637 638 639 640
}

static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
641 642 643 644 645
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
646 647 648 649

	if (!(s->flags & SLAB_POISON))
		return 1;

650 651
	start = page_address(page);
	end = start + (PAGE_SIZE << s->order);
C
Christoph Lameter 已提交
652
	length = s->objects * s->size;
653
	remainder = end - (start + length);
C
Christoph Lameter 已提交
654 655 656
	if (!remainder)
		return 1;

657 658 659 660 661 662 663 664 665 666 667
	fault = check_bytes(start + length, POISON_INUSE, remainder);
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
	print_section("Padding", start, length);

	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
	return 0;
C
Christoph Lameter 已提交
668 669 670 671 672 673 674 675 676 677 678 679
}

static int check_object(struct kmem_cache *s, struct page *page,
					void *object, int active)
{
	u8 *p = object;
	u8 *endobject = object + s->objsize;

	if (s->flags & SLAB_RED_ZONE) {
		unsigned int red =
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;

680 681
		if (!check_bytes_and_report(s, page, object, "Redzone",
			endobject, red, s->inuse - s->objsize))
C
Christoph Lameter 已提交
682 683
			return 0;
	} else {
684 685 686
		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
			check_bytes_and_report(s, page, p, "Alignment padding", endobject,
				POISON_INUSE, s->inuse - s->objsize);
C
Christoph Lameter 已提交
687 688 689 690
	}

	if (s->flags & SLAB_POISON) {
		if (!active && (s->flags & __OBJECT_POISON) &&
691 692 693 694
			(!check_bytes_and_report(s, page, p, "Poison", p,
					POISON_FREE, s->objsize - 1) ||
			 !check_bytes_and_report(s, page, p, "Poison",
			 	p + s->objsize -1, POISON_END, 1)))
C
Christoph Lameter 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

	if (!s->offset && active)
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
		 * No choice but to zap it and thus loose the remainder
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
715
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
716 717 718 719 720 721 722 723 724 725 726 727
		 */
		set_freepointer(s, p, NULL);
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
728
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
729 730 731
		return 0;
	}
	if (page->offset * sizeof(void *) != s->offset) {
732 733
		slab_err(s, page, "Corrupted offset %lu",
			(unsigned long)(page->offset * sizeof(void *)));
C
Christoph Lameter 已提交
734 735 736
		return 0;
	}
	if (page->inuse > s->objects) {
737 738
		slab_err(s, page, "inuse %u > max %u",
			s->name, page->inuse, s->objects);
C
Christoph Lameter 已提交
739 740 741 742 743 744 745 746
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
747 748
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
	void *fp = page->freelist;
	void *object = NULL;

	while (fp && nr <= s->objects) {
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
				set_freepointer(s, object, NULL);
				break;
			} else {
766
				slab_err(s, page, "Freepointer corrupt");
C
Christoph Lameter 已提交
767 768
				page->freelist = NULL;
				page->inuse = s->objects;
769
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
770 771 772 773 774 775 776 777 778 779
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

	if (page->inuse != s->objects - nr) {
780
		slab_err(s, page, "Wrong object count. Counter is %d but "
781
			"counted were %d", page->inuse, s->objects - nr);
C
Christoph Lameter 已提交
782
		page->inuse = s->objects - nr;
783
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
784 785 786 787
	}
	return search == NULL;
}

C
Christoph Lameter 已提交
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
			print_section("Object", (void *)object, s->objsize);

		dump_stack();
	}
}

804
/*
C
Christoph Lameter 已提交
805
 * Tracking of fully allocated slabs for debugging purposes.
806
 */
C
Christoph Lameter 已提交
807
static void add_full(struct kmem_cache_node *n, struct page *page)
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
{
	spin_lock(&n->list_lock);
	list_add(&page->lru, &n->full);
	spin_unlock(&n->list_lock);
}

static void remove_full(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n;

	if (!(s->flags & SLAB_STORE_USER))
		return;

	n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	spin_unlock(&n->list_lock);
}

C
Christoph Lameter 已提交
828 829 830 831 832 833 834 835 836 837 838 839
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

	init_object(s, object, 0);
	init_tracking(s, object);
}

static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
						void *object, void *addr)
C
Christoph Lameter 已提交
840 841 842 843 844
{
	if (!check_slab(s, page))
		goto bad;

	if (object && !on_freelist(s, page, object)) {
845
		object_err(s, page, object, "Object already allocated");
846
		goto bad;
C
Christoph Lameter 已提交
847 848 849 850
	}

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
851
		goto bad;
C
Christoph Lameter 已提交
852 853
	}

C
Christoph Lameter 已提交
854
	if (object && !check_object(s, page, object, 0))
C
Christoph Lameter 已提交
855 856
		goto bad;

C
Christoph Lameter 已提交
857 858 859 860 861
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
	init_object(s, object, 1);
C
Christoph Lameter 已提交
862
	return 1;
C
Christoph Lameter 已提交
863

C
Christoph Lameter 已提交
864 865 866 867 868
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
869
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
870
		 */
871
		slab_fix(s, "Marking all objects used");
C
Christoph Lameter 已提交
872 873 874 875 876 877 878 879
		page->inuse = s->objects;
		page->freelist = NULL;
		/* Fix up fields that may be corrupted */
		page->offset = s->offset / sizeof(void *);
	}
	return 0;
}

C
Christoph Lameter 已提交
880 881
static int free_debug_processing(struct kmem_cache *s, struct page *page,
						void *object, void *addr)
C
Christoph Lameter 已提交
882 883 884 885 886
{
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
887
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
888 889 890 891
		goto fail;
	}

	if (on_freelist(s, page, object)) {
892
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
893 894 895 896 897 898 899 900
		goto fail;
	}

	if (!check_object(s, page, object, 1))
		return 0;

	if (unlikely(s != page->slab)) {
		if (!PageSlab(page))
901 902
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
C
Christoph Lameter 已提交
903
		else
904
		if (!page->slab) {
C
Christoph Lameter 已提交
905
			printk(KERN_ERR
906
				"SLUB <none>: no slab for object 0x%p.\n",
C
Christoph Lameter 已提交
907
						object);
908 909
			dump_stack();
		}
C
Christoph Lameter 已提交
910
		else
911 912
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
913 914
		goto fail;
	}
C
Christoph Lameter 已提交
915 916 917 918 919 920 921 922

	/* Special debug activities for freeing objects */
	if (!SlabFrozen(page) && !page->freelist)
		remove_full(s, page);
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
	init_object(s, object, 0);
C
Christoph Lameter 已提交
923
	return 1;
C
Christoph Lameter 已提交
924

C
Christoph Lameter 已提交
925
fail:
926
	slab_fix(s, "Object at 0x%p not freed", object);
C
Christoph Lameter 已提交
927 928 929
	return 0;
}

C
Christoph Lameter 已提交
930 931
static int __init setup_slub_debug(char *str)
{
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
	for ( ;*str && *str != ','; str++) {
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
		default:
			printk(KERN_ERR "slub_debug option '%c' "
				"unknown. skipped\n",*str);
		}
C
Christoph Lameter 已提交
977 978
	}

979
check_slabs:
C
Christoph Lameter 已提交
980 981
	if (*str == ',')
		slub_debug_slabs = str + 1;
982
out:
C
Christoph Lameter 已提交
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
	return 1;
}

__setup("slub_debug", setup_slub_debug);

static void kmem_cache_open_debug_check(struct kmem_cache *s)
{
	/*
	 * The page->offset field is only 16 bit wide. This is an offset
	 * in units of words from the beginning of an object. If the slab
	 * size is bigger then we cannot move the free pointer behind the
	 * object anymore.
	 *
	 * On 32 bit platforms the limit is 256k. On 64bit platforms
	 * the limit is 512k.
	 *
999
	 * Debugging or ctor may create a need to move the free
C
Christoph Lameter 已提交
1000 1001
	 * pointer. Fail if this happens.
	 */
1002
	if (s->objsize >= 65535 * sizeof(void *)) {
C
Christoph Lameter 已提交
1003 1004
		BUG_ON(s->flags & (SLAB_RED_ZONE | SLAB_POISON |
				SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1005
		BUG_ON(s->ctor);
C
Christoph Lameter 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	}
	else
		/*
		 * Enable debugging if selected on the kernel commandline.
		 */
		if (slub_debug && (!slub_debug_slabs ||
		    strncmp(slub_debug_slabs, s->name,
		    	strlen(slub_debug_slabs)) == 0))
				s->flags |= slub_debug;
}
#else
C
Christoph Lameter 已提交
1017 1018
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1019

C
Christoph Lameter 已提交
1020 1021
static inline int alloc_debug_processing(struct kmem_cache *s,
	struct page *page, void *object, void *addr) { return 0; }
C
Christoph Lameter 已提交
1022

C
Christoph Lameter 已提交
1023 1024
static inline int free_debug_processing(struct kmem_cache *s,
	struct page *page, void *object, void *addr) { return 0; }
C
Christoph Lameter 已提交
1025 1026 1027 1028 1029

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
			void *object, int active) { return 1; }
C
Christoph Lameter 已提交
1030
static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
C
Christoph Lameter 已提交
1031 1032 1033
static inline void kmem_cache_open_debug_check(struct kmem_cache *s) {}
#define slub_debug 0
#endif
C
Christoph Lameter 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
/*
 * Slab allocation and freeing
 */
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page * page;
	int pages = 1 << s->order;

	if (s->order)
		flags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
		flags |= SLUB_DMA;

	if (node == -1)
		page = alloc_pages(flags, s->order);
	else
		page = alloc_pages_node(node, flags, s->order);

	if (!page)
		return NULL;

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		pages);

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1067
	setup_object_debug(s, page, object);
1068
	if (unlikely(s->ctor))
C
Christoph Lameter 已提交
1069
		s->ctor(object, s, 0);
C
Christoph Lameter 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	struct kmem_cache_node *n;
	void *start;
	void *end;
	void *last;
	void *p;

1081
	BUG_ON(flags & ~(GFP_DMA | __GFP_ZERO | GFP_LEVEL_MASK));
C
Christoph Lameter 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097

	if (flags & __GFP_WAIT)
		local_irq_enable();

	page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
	if (!page)
		goto out;

	n = get_node(s, page_to_nid(page));
	if (n)
		atomic_long_inc(&n->nr_slabs);
	page->offset = s->offset / sizeof(void *);
	page->slab = s;
	page->flags |= 1 << PG_slab;
	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
			SLAB_STORE_USER | SLAB_TRACE))
1098
		SetSlabDebug(page);
C
Christoph Lameter 已提交
1099 1100 1101 1102 1103 1104 1105 1106

	start = page_address(page);
	end = start + s->objects * s->size;

	if (unlikely(s->flags & SLAB_POISON))
		memset(start, POISON_INUSE, PAGE_SIZE << s->order);

	last = start;
1107
	for_each_object(p, s, start) {
C
Christoph Lameter 已提交
1108 1109 1110 1111 1112 1113 1114 1115
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
	set_freepointer(s, last, NULL);

	page->freelist = start;
1116
	page->lockless_freelist = NULL;
C
Christoph Lameter 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	page->inuse = 0;
out:
	if (flags & __GFP_WAIT)
		local_irq_disable();
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
	int pages = 1 << s->order;

1128
	if (unlikely(SlabDebug(page))) {
C
Christoph Lameter 已提交
1129 1130 1131
		void *p;

		slab_pad_check(s, page);
1132
		for_each_object(p, s, page_address(page))
C
Christoph Lameter 已提交
1133
			check_object(s, page, p, 0);
1134
		ClearSlabDebug(page);
C
Christoph Lameter 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	}

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		- pages);

	page->mapping = NULL;
	__free_pages(page, s->order);
}

static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

	page = container_of((struct list_head *)h, struct page, lru);
	__free_slab(page->slab, page);
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
		/*
		 * RCU free overloads the RCU head over the LRU
		 */
		struct rcu_head *head = (void *)&page->lru;

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	atomic_long_dec(&n->nr_slabs);
	reset_page_mapcount(page);
1173
	__ClearPageSlab(page);
C
Christoph Lameter 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	free_slab(s, page);
}

/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	bit_spin_unlock(PG_locked, &page->flags);
}

static __always_inline int slab_trylock(struct page *page)
{
	int rc = 1;

	rc = bit_spin_trylock(PG_locked, &page->flags);
	return rc;
}

/*
 * Management of partially allocated slabs
 */
C
Christoph Lameter 已提交
1201
static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
C
Christoph Lameter 已提交
1202
{
C
Christoph Lameter 已提交
1203 1204 1205 1206 1207
	spin_lock(&n->list_lock);
	n->nr_partial++;
	list_add_tail(&page->lru, &n->partial);
	spin_unlock(&n->list_lock);
}
C
Christoph Lameter 已提交
1208

C
Christoph Lameter 已提交
1209 1210
static void add_partial(struct kmem_cache_node *n, struct page *page)
{
C
Christoph Lameter 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	spin_lock(&n->list_lock);
	n->nr_partial++;
	list_add(&page->lru, &n->partial);
	spin_unlock(&n->list_lock);
}

static void remove_partial(struct kmem_cache *s,
						struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	n->nr_partial--;
	spin_unlock(&n->list_lock);
}

/*
C
Christoph Lameter 已提交
1229
 * Lock slab and remove from the partial list.
C
Christoph Lameter 已提交
1230
 *
C
Christoph Lameter 已提交
1231
 * Must hold list_lock.
C
Christoph Lameter 已提交
1232
 */
1233
static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
C
Christoph Lameter 已提交
1234 1235 1236 1237
{
	if (slab_trylock(page)) {
		list_del(&page->lru);
		n->nr_partial--;
1238
		SetSlabFrozen(page);
C
Christoph Lameter 已提交
1239 1240 1241 1242 1243 1244
		return 1;
	}
	return 0;
}

/*
C
Christoph Lameter 已提交
1245
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1246 1247 1248 1249 1250 1251 1252 1253
 */
static struct page *get_partial_node(struct kmem_cache_node *n)
{
	struct page *page;

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1254 1255
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1256 1257 1258 1259 1260 1261
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
	list_for_each_entry(page, &n->partial, lru)
1262
		if (lock_and_freeze_slab(n, page))
C
Christoph Lameter 已提交
1263 1264 1265 1266 1267 1268 1269 1270
			goto out;
	page = NULL;
out:
	spin_unlock(&n->list_lock);
	return page;
}

/*
C
Christoph Lameter 已提交
1271
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280
 */
static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
	struct zone **z;
	struct page *page;

	/*
C
Christoph Lameter 已提交
1281 1282 1283 1284
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1285
	 *
C
Christoph Lameter 已提交
1286 1287 1288 1289
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1290 1291
	 *
	 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1292 1293 1294 1295 1296
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	 */
	if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
		return NULL;

	zonelist = &NODE_DATA(slab_node(current->mempolicy))
					->node_zonelists[gfp_zone(flags)];
	for (z = zonelist->zones; *z; z++) {
		struct kmem_cache_node *n;

		n = get_node(s, zone_to_nid(*z));

		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
C
Christoph Lameter 已提交
1309
				n->nr_partial > MIN_PARTIAL) {
C
Christoph Lameter 已提交
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
			page = get_partial_node(n);
			if (page)
				return page;
		}
	}
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	int searchnode = (node == -1) ? numa_node_id() : node;

	page = get_partial_node(get_node(s, searchnode));
	if (page || (flags & __GFP_THISNODE))
		return page;

	return get_any_partial(s, flags);
}

/*
 * Move a page back to the lists.
 *
 * Must be called with the slab lock held.
 *
 * On exit the slab lock will have been dropped.
 */
1341
static void unfreeze_slab(struct kmem_cache *s, struct page *page)
C
Christoph Lameter 已提交
1342
{
C
Christoph Lameter 已提交
1343 1344
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

1345
	ClearSlabFrozen(page);
C
Christoph Lameter 已提交
1346
	if (page->inuse) {
C
Christoph Lameter 已提交
1347

C
Christoph Lameter 已提交
1348
		if (page->freelist)
C
Christoph Lameter 已提交
1349
			add_partial(n, page);
1350
		else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
C
Christoph Lameter 已提交
1351
			add_full(n, page);
C
Christoph Lameter 已提交
1352
		slab_unlock(page);
C
Christoph Lameter 已提交
1353

C
Christoph Lameter 已提交
1354
	} else {
C
Christoph Lameter 已提交
1355 1356
		if (n->nr_partial < MIN_PARTIAL) {
			/*
C
Christoph Lameter 已提交
1357 1358 1359 1360 1361 1362
			 * Adding an empty slab to the partial slabs in order
			 * to avoid page allocator overhead. This slab needs
			 * to come after the other slabs with objects in
			 * order to fill them up. That way the size of the
			 * partial list stays small. kmem_cache_shrink can
			 * reclaim empty slabs from the partial list.
C
Christoph Lameter 已提交
1363 1364 1365 1366 1367 1368 1369
			 */
			add_partial_tail(n, page);
			slab_unlock(page);
		} else {
			slab_unlock(page);
			discard_slab(s, page);
		}
C
Christoph Lameter 已提交
1370 1371 1372 1373 1374 1375 1376 1377
	}
}

/*
 * Remove the cpu slab
 */
static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
{
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
	/*
	 * Merge cpu freelist into freelist. Typically we get here
	 * because both freelists are empty. So this is unlikely
	 * to occur.
	 */
	while (unlikely(page->lockless_freelist)) {
		void **object;

		/* Retrieve object from cpu_freelist */
		object = page->lockless_freelist;
		page->lockless_freelist = page->lockless_freelist[page->offset];

		/* And put onto the regular freelist */
		object[page->offset] = page->freelist;
		page->freelist = object;
		page->inuse--;
	}
C
Christoph Lameter 已提交
1395
	s->cpu_slab[cpu] = NULL;
1396
	unfreeze_slab(s, page);
C
Christoph Lameter 已提交
1397 1398
}

1399
static inline void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
C
Christoph Lameter 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408
{
	slab_lock(page);
	deactivate_slab(s, page, cpu);
}

/*
 * Flush cpu slab.
 * Called from IPI handler with interrupts disabled.
 */
1409
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
{
	struct page *page = s->cpu_slab[cpu];

	if (likely(page))
		flush_slab(s, page, cpu);
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;
	int cpu = smp_processor_id();

	__flush_cpu_slab(s, cpu);
}

static void flush_all(struct kmem_cache *s)
{
#ifdef CONFIG_SMP
	on_each_cpu(flush_cpu_slab, s, 1, 1);
#else
	unsigned long flags;

	local_irq_save(flags);
	flush_cpu_slab(s);
	local_irq_restore(flags);
#endif
}

/*
1439 1440 1441 1442
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Interrupts are disabled.
C
Christoph Lameter 已提交
1443
 *
1444 1445 1446
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
1447
 *
1448 1449 1450
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
1451
 *
1452 1453
 * And if we were unable to get a new slab from the partial slab lists then
 * we need to allocate a new slab. This is slowest path since we may sleep.
C
Christoph Lameter 已提交
1454
 */
1455 1456
static void *__slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, int node, void *addr, struct page *page)
C
Christoph Lameter 已提交
1457 1458
{
	void **object;
1459
	int cpu = smp_processor_id();
C
Christoph Lameter 已提交
1460 1461 1462 1463 1464 1465 1466

	if (!page)
		goto new_slab;

	slab_lock(page);
	if (unlikely(node != -1 && page_to_nid(page) != node))
		goto another_slab;
1467
load_freelist:
C
Christoph Lameter 已提交
1468 1469 1470
	object = page->freelist;
	if (unlikely(!object))
		goto another_slab;
1471
	if (unlikely(SlabDebug(page)))
C
Christoph Lameter 已提交
1472 1473
		goto debug;

1474 1475 1476 1477
	object = page->freelist;
	page->lockless_freelist = object[page->offset];
	page->inuse = s->objects;
	page->freelist = NULL;
C
Christoph Lameter 已提交
1478 1479 1480 1481 1482 1483 1484 1485
	slab_unlock(page);
	return object;

another_slab:
	deactivate_slab(s, page, cpu);

new_slab:
	page = get_partial(s, gfpflags, node);
1486
	if (page) {
C
Christoph Lameter 已提交
1487
		s->cpu_slab[cpu] = page;
1488
		goto load_freelist;
C
Christoph Lameter 已提交
1489 1490 1491 1492 1493 1494 1495
	}

	page = new_slab(s, gfpflags, node);
	if (page) {
		cpu = smp_processor_id();
		if (s->cpu_slab[cpu]) {
			/*
C
Christoph Lameter 已提交
1496 1497 1498 1499 1500
			 * Someone else populated the cpu_slab while we
			 * enabled interrupts, or we have gotten scheduled
			 * on another cpu. The page may not be on the
			 * requested node even if __GFP_THISNODE was
			 * specified. So we need to recheck.
C
Christoph Lameter 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
			 */
			if (node == -1 ||
				page_to_nid(s->cpu_slab[cpu]) == node) {
				/*
				 * Current cpuslab is acceptable and we
				 * want the current one since its cache hot
				 */
				discard_slab(s, page);
				page = s->cpu_slab[cpu];
				slab_lock(page);
1511
				goto load_freelist;
C
Christoph Lameter 已提交
1512
			}
C
Christoph Lameter 已提交
1513
			/* New slab does not fit our expectations */
C
Christoph Lameter 已提交
1514 1515 1516
			flush_slab(s, s->cpu_slab[cpu], cpu);
		}
		slab_lock(page);
1517 1518 1519
		SetSlabFrozen(page);
		s->cpu_slab[cpu] = page;
		goto load_freelist;
C
Christoph Lameter 已提交
1520 1521 1522
	}
	return NULL;
debug:
1523
	object = page->freelist;
C
Christoph Lameter 已提交
1524
	if (!alloc_debug_processing(s, page, object, addr))
C
Christoph Lameter 已提交
1525
		goto another_slab;
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

	page->inuse++;
	page->freelist = object[page->offset];
	slab_unlock(page);
	return object;
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
static void __always_inline *slab_alloc(struct kmem_cache *s,
1544
		gfp_t gfpflags, int node, void *addr)
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
{
	struct page *page;
	void **object;
	unsigned long flags;

	local_irq_save(flags);
	page = s->cpu_slab[smp_processor_id()];
	if (unlikely(!page || !page->lockless_freelist ||
			(node != -1 && page_to_nid(page) != node)))

		object = __slab_alloc(s, gfpflags, node, addr, page);

	else {
		object = page->lockless_freelist;
		page->lockless_freelist = object[page->offset];
	}
	local_irq_restore(flags);
1562 1563

	if (unlikely((gfpflags & __GFP_ZERO) && object))
1564
		memset(object, 0, s->objsize);
1565

1566
	return object;
C
Christoph Lameter 已提交
1567 1568 1569 1570
}

void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
1571
	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
1572 1573 1574 1575 1576 1577
}
EXPORT_SYMBOL(kmem_cache_alloc);

#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
1578
	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
C
Christoph Lameter 已提交
1579 1580 1581 1582 1583
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
#endif

/*
1584 1585
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
1586
 *
1587 1588 1589
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
1590
 */
1591
static void __slab_free(struct kmem_cache *s, struct page *page,
C
Christoph Lameter 已提交
1592
					void *x, void *addr)
C
Christoph Lameter 已提交
1593 1594 1595 1596 1597 1598
{
	void *prior;
	void **object = (void *)x;

	slab_lock(page);

1599
	if (unlikely(SlabDebug(page)))
C
Christoph Lameter 已提交
1600 1601 1602 1603 1604 1605
		goto debug;
checks_ok:
	prior = object[page->offset] = page->freelist;
	page->freelist = object;
	page->inuse--;

1606
	if (unlikely(SlabFrozen(page)))
C
Christoph Lameter 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
		goto out_unlock;

	if (unlikely(!page->inuse))
		goto slab_empty;

	/*
	 * Objects left in the slab. If it
	 * was not on the partial list before
	 * then add it.
	 */
	if (unlikely(!prior))
C
Christoph Lameter 已提交
1618
		add_partial(get_node(s, page_to_nid(page)), page);
C
Christoph Lameter 已提交
1619 1620 1621 1622 1623 1624 1625 1626

out_unlock:
	slab_unlock(page);
	return;

slab_empty:
	if (prior)
		/*
C
Christoph Lameter 已提交
1627
		 * Slab still on the partial list.
C
Christoph Lameter 已提交
1628 1629 1630 1631 1632 1633 1634 1635
		 */
		remove_partial(s, page);

	slab_unlock(page);
	discard_slab(s, page);
	return;

debug:
C
Christoph Lameter 已提交
1636
	if (!free_debug_processing(s, page, x, addr))
C
Christoph Lameter 已提交
1637 1638
		goto out_unlock;
	goto checks_ok;
C
Christoph Lameter 已提交
1639 1640
}

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
static void __always_inline slab_free(struct kmem_cache *s,
			struct page *page, void *x, void *addr)
{
	void **object = (void *)x;
	unsigned long flags;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1659
	debug_check_no_locks_freed(object, s->objsize);
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	if (likely(page == s->cpu_slab[smp_processor_id()] &&
						!SlabDebug(page))) {
		object[page->offset] = page->lockless_freelist;
		page->lockless_freelist = object;
	} else
		__slab_free(s, page, x, addr);

	local_irq_restore(flags);
}

C
Christoph Lameter 已提交
1670 1671
void kmem_cache_free(struct kmem_cache *s, void *x)
{
C
Christoph Lameter 已提交
1672
	struct page *page;
C
Christoph Lameter 已提交
1673

1674
	page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1675

C
Christoph Lameter 已提交
1676
	slab_free(s, page, x, __builtin_return_address(0));
C
Christoph Lameter 已提交
1677 1678 1679 1680 1681 1682
}
EXPORT_SYMBOL(kmem_cache_free);

/* Figure out on which slab object the object resides */
static struct page *get_object_page(const void *x)
{
1683
	struct page *page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1684 1685 1686 1687 1688 1689 1690 1691

	if (!PageSlab(page))
		return NULL;

	return page;
}

/*
C
Christoph Lameter 已提交
1692 1693 1694 1695
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
1696 1697 1698 1699
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
1700
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
static int slub_max_order = DEFAULT_MAX_ORDER;
static int slub_min_objects = DEFAULT_MIN_OBJECTS;

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
1716
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
1717 1718 1719 1720 1721 1722
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
 * unused space left. We go to a higher order if more than 1/8th of the slab
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
1734
 *
C
Christoph Lameter 已提交
1735 1736 1737 1738
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
1739
 *
C
Christoph Lameter 已提交
1740 1741 1742 1743
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
1744
 */
1745 1746
static inline int slab_order(int size, int min_objects,
				int max_order, int fract_leftover)
C
Christoph Lameter 已提交
1747 1748 1749
{
	int order;
	int rem;
1750
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
1751

1752 1753 1754 1755 1756 1757 1758 1759 1760
	/*
	 * If we would create too many object per slab then reduce
	 * the slab order even if it goes below slub_min_order.
	 */
	while (min_order > 0 &&
		(PAGE_SIZE << min_order) >= MAX_OBJECTS_PER_SLAB * size)
			min_order--;

	for (order = max(min_order,
1761 1762
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
1763

1764
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
1765

1766
		if (slab_size < min_objects * size)
C
Christoph Lameter 已提交
1767 1768 1769 1770
			continue;

		rem = slab_size % size;

1771
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
1772 1773
			break;

1774 1775 1776
		/* If the next size is too high then exit now */
		if (slab_size * 2 >= MAX_OBJECTS_PER_SLAB * size)
			break;
C
Christoph Lameter 已提交
1777
	}
C
Christoph Lameter 已提交
1778

C
Christoph Lameter 已提交
1779 1780 1781
	return order;
}

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
static inline int calculate_order(int size)
{
	int order;
	int min_objects;
	int fraction;

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
	while (min_objects > 1) {
		fraction = 8;
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
						slub_max_order, fraction);
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
		min_objects /= 2;
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
	order = slab_order(size, 1, slub_max_order, 1);
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
	order = slab_order(size, 1, MAX_ORDER, 1);
	if (order <= MAX_ORDER)
		return order;
	return -ENOSYS;
}

C
Christoph Lameter 已提交
1826
/*
C
Christoph Lameter 已提交
1827
 * Figure out what the alignment of the objects will be.
C
Christoph Lameter 已提交
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
 */
static unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then
	 * follow that suggestion if the object is sufficiently
	 * large.
	 *
	 * The hardware cache alignment cannot override the
	 * specified alignment though. If that is greater
	 * then use it.
	 */
1841
	if ((flags & SLAB_HWCACHE_ALIGN) &&
1842 1843
			size > cache_line_size() / 2)
		return max_t(unsigned long, align, cache_line_size());
C
Christoph Lameter 已提交
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856

	if (align < ARCH_SLAB_MINALIGN)
		return ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

static void init_kmem_cache_node(struct kmem_cache_node *n)
{
	n->nr_partial = 0;
	atomic_long_set(&n->nr_slabs, 0);
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
1857
#ifdef CONFIG_SLUB_DEBUG
1858
	INIT_LIST_HEAD(&n->full);
1859
#endif
C
Christoph Lameter 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
}

#ifdef CONFIG_NUMA
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
 * Note that this function only works on the kmalloc_node_cache
 * when allocating for the kmalloc_node_cache.
 */
static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
								int node)
{
	struct page *page;
	struct kmem_cache_node *n;

	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));

	page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);

	BUG_ON(!page);
	n = page->freelist;
	BUG_ON(!n);
	page->freelist = get_freepointer(kmalloc_caches, n);
	page->inuse++;
	kmalloc_caches->node[node] = n;
1887
#ifdef CONFIG_SLUB_DEBUG
1888 1889
	init_object(kmalloc_caches, n, 1);
	init_tracking(kmalloc_caches, n);
1890
#endif
C
Christoph Lameter 已提交
1891 1892
	init_kmem_cache_node(n);
	atomic_long_inc(&n->nr_slabs);
C
Christoph Lameter 已提交
1893
	add_partial(n, page);
1894 1895 1896 1897 1898 1899

	/*
	 * new_slab() disables interupts. If we do not reenable interrupts here
	 * then bootup would continue with interrupts disabled.
	 */
	local_irq_enable();
C
Christoph Lameter 已提交
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	return n;
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

	for_each_online_node(node) {
		struct kmem_cache_node *n = s->node[node];
		if (n && n != &s->local_node)
			kmem_cache_free(kmalloc_caches, n);
		s->node[node] = NULL;
	}
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	int node;
	int local_node;

	if (slab_state >= UP)
		local_node = page_to_nid(virt_to_page(s));
	else
		local_node = 0;

	for_each_online_node(node) {
		struct kmem_cache_node *n;

		if (local_node == node)
			n = &s->local_node;
		else {
			if (slab_state == DOWN) {
				n = early_kmem_cache_node_alloc(gfpflags,
								node);
				continue;
			}
			n = kmem_cache_alloc_node(kmalloc_caches,
							gfpflags, node);

			if (!n) {
				free_kmem_cache_nodes(s);
				return 0;
			}

		}
		s->node[node] = n;
		init_kmem_cache_node(n);
	}
	return 1;
}
#else
static void free_kmem_cache_nodes(struct kmem_cache *s)
{
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	init_kmem_cache_node(&s->local_node);
	return 1;
}
#endif

/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
static int calculate_sizes(struct kmem_cache *s)
{
	unsigned long flags = s->flags;
	unsigned long size = s->objsize;
	unsigned long align = s->align;

	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
1978
			!s->ctor)
C
Christoph Lameter 已提交
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;

	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

C
Christoph Lameter 已提交
1990
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
1991
	/*
C
Christoph Lameter 已提交
1992
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
1993
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
1994
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
1995 1996 1997
	 */
	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
		size += sizeof(void *);
C
Christoph Lameter 已提交
1998
#endif
C
Christoph Lameter 已提交
1999 2000

	/*
C
Christoph Lameter 已提交
2001 2002
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
2003 2004 2005 2006
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2007
		s->ctor)) {
C
Christoph Lameter 已提交
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

2020
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2021 2022 2023 2024 2025 2026 2027
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

2028
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
2029 2030 2031 2032 2033 2034 2035 2036
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
		 * corrupted if an user writes before the start
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
2037
#endif
C
Christoph Lameter 已提交
2038

C
Christoph Lameter 已提交
2039 2040
	/*
	 * Determine the alignment based on various parameters that the
2041 2042
	 * user specified and the dynamic determination of cache line size
	 * on bootup.
C
Christoph Lameter 已提交
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	 */
	align = calculate_alignment(flags, align, s->objsize);

	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
	size = ALIGN(size, align);
	s->size = size;

	s->order = calculate_order(size);
	if (s->order < 0)
		return 0;

	/*
	 * Determine the number of objects per slab
	 */
	s->objects = (PAGE_SIZE << s->order) / size;

	/*
	 * Verify that the number of objects is within permitted limits.
	 * The page->inuse field is only 16 bit wide! So we cannot have
	 * more than 64k objects per slab.
	 */
2068
	if (!s->objects || s->objects > MAX_OBJECTS_PER_SLAB)
C
Christoph Lameter 已提交
2069 2070 2071 2072 2073 2074 2075 2076
		return 0;
	return 1;

}

static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
		const char *name, size_t size,
		size_t align, unsigned long flags,
2077
		void (*ctor)(void *, struct kmem_cache *, unsigned long))
C
Christoph Lameter 已提交
2078 2079 2080 2081 2082 2083 2084
{
	memset(s, 0, kmem_size);
	s->name = name;
	s->ctor = ctor;
	s->objsize = size;
	s->flags = flags;
	s->align = align;
C
Christoph Lameter 已提交
2085
	kmem_cache_open_debug_check(s);
C
Christoph Lameter 已提交
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118

	if (!calculate_sizes(s))
		goto error;

	s->refcount = 1;
#ifdef CONFIG_NUMA
	s->defrag_ratio = 100;
#endif

	if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
		return 1;
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
			s->name, (unsigned long)size, s->size, s->order,
			s->offset, flags);
	return 0;
}

/*
 * Check if a given pointer is valid
 */
int kmem_ptr_validate(struct kmem_cache *s, const void *object)
{
	struct page * page;

	page = get_object_page(object);

	if (!page || s != page->slab)
		/* No slab or wrong slab */
		return 0;

2119
	if (!check_valid_pointer(s, page, object))
C
Christoph Lameter 已提交
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
		return 0;

	/*
	 * We could also check if the object is on the slabs freelist.
	 * But this would be too expensive and it seems that the main
	 * purpose of kmem_ptr_valid is to check if the object belongs
	 * to a certain slab.
	 */
	return 1;
}
EXPORT_SYMBOL(kmem_ptr_validate);

/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->objsize;
}
EXPORT_SYMBOL(kmem_cache_size);

const char *kmem_cache_name(struct kmem_cache *s)
{
	return s->name;
}
EXPORT_SYMBOL(kmem_cache_name);

/*
C
Christoph Lameter 已提交
2148 2149
 * Attempt to free all slabs on a node. Return the number of slabs we
 * were unable to free.
C
Christoph Lameter 已提交
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
 */
static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
			struct list_head *list)
{
	int slabs_inuse = 0;
	unsigned long flags;
	struct page *page, *h;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry_safe(page, h, list, lru)
		if (!page->inuse) {
			list_del(&page->lru);
			discard_slab(s, page);
		} else
			slabs_inuse++;
	spin_unlock_irqrestore(&n->list_lock, flags);
	return slabs_inuse;
}

/*
C
Christoph Lameter 已提交
2170
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
2171
 */
2172
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
2173 2174 2175 2176 2177 2178 2179 2180 2181
{
	int node;

	flush_all(s);

	/* Attempt to free all objects */
	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

2182
		n->nr_partial -= free_list(s, n, &n->partial);
C
Christoph Lameter 已提交
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
		if (atomic_long_read(&n->nr_slabs))
			return 1;
	}
	free_kmem_cache_nodes(s);
	return 0;
}

/*
 * Close a cache and release the kmem_cache structure
 * (must be used for caches created using kmem_cache_create)
 */
void kmem_cache_destroy(struct kmem_cache *s)
{
	down_write(&slub_lock);
	s->refcount--;
	if (!s->refcount) {
		list_del(&s->list);
2200
		up_write(&slub_lock);
C
Christoph Lameter 已提交
2201 2202 2203 2204
		if (kmem_cache_close(s))
			WARN_ON(1);
		sysfs_slab_remove(s);
		kfree(s);
2205 2206
	} else
		up_write(&slub_lock);
C
Christoph Lameter 已提交
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
}
EXPORT_SYMBOL(kmem_cache_destroy);

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
#endif

static int __init setup_slub_min_order(char *str)
{
	get_option (&str, &slub_min_order);

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
	get_option (&str, &slub_max_order);

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
	get_option (&str, &slub_min_objects);

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
		const char *name, int size, gfp_t gfp_flags)
{
	unsigned int flags = 0;

	if (gfp_flags & SLUB_DMA)
		flags = SLAB_CACHE_DMA;

	down_write(&slub_lock);
	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2266
			flags, NULL))
C
Christoph Lameter 已提交
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
		goto panic;

	list_add(&s->list, &slab_caches);
	up_write(&slub_lock);
	if (sysfs_slab_add(s))
		goto panic;
	return s;

panic:
	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
}

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
#ifdef CONFIG_ZONE_DMA
static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
{
	struct kmem_cache *s;
	struct kmem_cache *x;
	char *text;
	size_t realsize;

	s = kmalloc_caches_dma[index];
	if (s)
		return s;

	/* Dynamically create dma cache */
	x = kmalloc(kmem_size, flags & ~SLUB_DMA);
	if (!x)
		panic("Unable to allocate memory for dma cache\n");

2296
	realsize = kmalloc_caches[index].objsize;
2297 2298 2299
	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
			(unsigned int)realsize);
	s = create_kmalloc_cache(x, text, realsize, flags);
2300 2301 2302 2303 2304 2305 2306 2307 2308
	down_write(&slub_lock);
	if (!kmalloc_caches_dma[index]) {
		kmalloc_caches_dma[index] = s;
		up_write(&slub_lock);
		return s;
	}
	up_write(&slub_lock);
	kmem_cache_destroy(s);
	return kmalloc_caches_dma[index];
2309 2310 2311
}
#endif

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

C
Christoph Lameter 已提交
2345 2346
static struct kmem_cache *get_slab(size_t size, gfp_t flags)
{
2347
	int index;
C
Christoph Lameter 已提交
2348

2349 2350 2351
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;
C
Christoph Lameter 已提交
2352

2353 2354 2355 2356 2357 2358 2359
		index = size_index[(size - 1) / 8];
	} else {
		if (size > KMALLOC_MAX_SIZE)
			return NULL;

		index = fls(size - 1);
	}
C
Christoph Lameter 已提交
2360 2361

#ifdef CONFIG_ZONE_DMA
2362
	if (unlikely((flags & SLUB_DMA)))
2363
		return dma_kmalloc_cache(index, flags);
2364

C
Christoph Lameter 已提交
2365 2366 2367 2368 2369 2370 2371 2372
#endif
	return &kmalloc_caches[index];
}

void *__kmalloc(size_t size, gfp_t flags)
{
	struct kmem_cache *s = get_slab(size, flags);

2373 2374 2375
	if (ZERO_OR_NULL_PTR(s))
		return s;

2376
	return slab_alloc(s, flags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
2377 2378 2379 2380 2381 2382 2383 2384
}
EXPORT_SYMBOL(__kmalloc);

#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	struct kmem_cache *s = get_slab(size, flags);

2385 2386 2387
	if (ZERO_OR_NULL_PTR(s))
		return s;

2388
	return slab_alloc(s, flags, node, __builtin_return_address(0));
C
Christoph Lameter 已提交
2389 2390 2391 2392 2393 2394
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
2395
	struct page *page;
C
Christoph Lameter 已提交
2396 2397
	struct kmem_cache *s;

2398
	if (ZERO_OR_NULL_PTR(object))
2399 2400 2401
		return 0;

	page = get_object_page(object);
C
Christoph Lameter 已提交
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
	BUG_ON(!page);
	s = page->slab;
	BUG_ON(!s);

	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
		return s->objsize;

	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;

	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}
EXPORT_SYMBOL(ksize);

void kfree(const void *x)
{
	struct kmem_cache *s;
	struct page *page;

2433 2434 2435 2436 2437 2438
	/*
	 * This has to be an unsigned comparison. According to Linus
	 * some gcc version treat a pointer as a signed entity. Then
	 * this comparison would be true for all "negative" pointers
	 * (which would cover the whole upper half of the address space).
	 */
2439
	if (ZERO_OR_NULL_PTR(x))
C
Christoph Lameter 已提交
2440 2441
		return;

2442
	page = virt_to_head_page(x);
C
Christoph Lameter 已提交
2443 2444
	s = page->slab;

C
Christoph Lameter 已提交
2445
	slab_free(s, page, (void *)x, __builtin_return_address(0));
C
Christoph Lameter 已提交
2446 2447 2448
}
EXPORT_SYMBOL(kfree);

2449
/*
C
Christoph Lameter 已提交
2450 2451 2452 2453 2454 2455 2456 2457
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
	struct list_head *slabs_by_inuse =
		kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
	for_each_online_node(node) {
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

		for (i = 0; i < s->objects; i++)
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
2486
		 * Build lists indexed by the items in use in each slab.
2487
		 *
C
Christoph Lameter 已提交
2488 2489
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
			if (!page->inuse && slab_trylock(page)) {
				/*
				 * Must hold slab lock here because slab_free
				 * may have freed the last object and be
				 * waiting to release the slab.
				 */
				list_del(&page->lru);
				n->nr_partial--;
				slab_unlock(page);
				discard_slab(s, page);
			} else {
2503 2504
				list_move(&page->lru,
				slabs_by_inuse + page->inuse);
2505 2506 2507 2508
			}
		}

		/*
C
Christoph Lameter 已提交
2509 2510
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
		 */
		for (i = s->objects - 1; i >= 0; i--)
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

C
Christoph Lameter 已提交
2523 2524 2525 2526 2527 2528 2529
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

void __init kmem_cache_init(void)
{
	int i;
2530
	int caches = 0;
C
Christoph Lameter 已提交
2531 2532 2533 2534

#ifdef CONFIG_NUMA
	/*
	 * Must first have the slab cache available for the allocations of the
C
Christoph Lameter 已提交
2535
	 * struct kmem_cache_node's. There is special bootstrap code in
C
Christoph Lameter 已提交
2536 2537 2538 2539
	 * kmem_cache_open for slab_state == DOWN.
	 */
	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
		sizeof(struct kmem_cache_node), GFP_KERNEL);
2540
	kmalloc_caches[0].refcount = -1;
2541
	caches++;
C
Christoph Lameter 已提交
2542 2543 2544 2545 2546 2547
#endif

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

	/* Caches that are not of the two-to-the-power-of size */
2548 2549
	if (KMALLOC_MIN_SIZE <= 64) {
		create_kmalloc_cache(&kmalloc_caches[1],
C
Christoph Lameter 已提交
2550
				"kmalloc-96", 96, GFP_KERNEL);
2551 2552 2553 2554
		caches++;
	}
	if (KMALLOC_MIN_SIZE <= 128) {
		create_kmalloc_cache(&kmalloc_caches[2],
C
Christoph Lameter 已提交
2555
				"kmalloc-192", 192, GFP_KERNEL);
2556 2557
		caches++;
	}
C
Christoph Lameter 已提交
2558

2559
	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
C
Christoph Lameter 已提交
2560 2561
		create_kmalloc_cache(&kmalloc_caches[i],
			"kmalloc", 1 << i, GFP_KERNEL);
2562 2563
		caches++;
	}
C
Christoph Lameter 已提交
2564

2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579

	/*
	 * Patch up the size_index table if we have strange large alignment
	 * requirements for the kmalloc array. This is only the case for
	 * mips it seems. The standard arches will not generate any code here.
	 *
	 * Largest permitted alignment is 256 bytes due to the way we
	 * handle the index determination for the smaller caches.
	 *
	 * Make sure that nothing crazy happens if someone starts tinkering
	 * around with ARCH_KMALLOC_MINALIGN
	 */
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

2580
	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2581 2582
		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;

C
Christoph Lameter 已提交
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
	slab_state = UP;

	/* Provide the correct kmalloc names now that the caches are up */
	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
		kmalloc_caches[i]. name =
			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
#endif

C
Christoph Lameter 已提交
2594 2595
	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
				nr_cpu_ids * sizeof(struct page *);
C
Christoph Lameter 已提交
2596 2597

	printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2598 2599
		" CPUs=%d, Nodes=%d\n",
		caches, cache_line_size(),
C
Christoph Lameter 已提交
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

2612
	if (s->ctor)
C
Christoph Lameter 已提交
2613 2614
		return 1;

2615 2616 2617 2618 2619 2620
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
2621 2622 2623 2624 2625
	return 0;
}

static struct kmem_cache *find_mergeable(size_t size,
		size_t align, unsigned long flags,
2626
		void (*ctor)(void *, struct kmem_cache *, unsigned long))
C
Christoph Lameter 已提交
2627
{
2628
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2629 2630 2631 2632

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

2633
	if (ctor)
C
Christoph Lameter 已提交
2634 2635 2636 2637 2638 2639
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);

2640
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
			(s->flags & SLUB_MERGE_SAME))
				continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align -1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

		return s;
	}
	return NULL;
}

struct kmem_cache *kmem_cache_create(const char *name, size_t size,
		size_t align, unsigned long flags,
2667
		void (*ctor)(void *, struct kmem_cache *, unsigned long))
C
Christoph Lameter 已提交
2668 2669 2670 2671
{
	struct kmem_cache *s;

	down_write(&slub_lock);
2672
	s = find_mergeable(size, align, flags, ctor);
C
Christoph Lameter 已提交
2673 2674 2675 2676 2677 2678 2679 2680
	if (s) {
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		s->objsize = max(s->objsize, (int)size);
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2681
		up_write(&slub_lock);
C
Christoph Lameter 已提交
2682 2683
		if (sysfs_slab_alias(s, name))
			goto err;
2684 2685 2686 2687 2688
		return s;
	}
	s = kmalloc(kmem_size, GFP_KERNEL);
	if (s) {
		if (kmem_cache_open(s, GFP_KERNEL, name,
2689
				size, align, flags, ctor)) {
C
Christoph Lameter 已提交
2690
			list_add(&s->list, &slab_caches);
2691 2692 2693 2694 2695 2696
			up_write(&slub_lock);
			if (sysfs_slab_add(s))
				goto err;
			return s;
		}
		kfree(s);
C
Christoph Lameter 已提交
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
	}
	up_write(&slub_lock);

err:
	if (flags & SLAB_PANIC)
		panic("Cannot create slabcache %s\n", name);
	else
		s = NULL;
	return s;
}
EXPORT_SYMBOL(kmem_cache_create);

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
2711 2712
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
2713 2714 2715 2716 2717
 */
static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
2718 2719
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
2720 2721 2722

	switch (action) {
	case CPU_UP_CANCELED:
2723
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
2724
	case CPU_DEAD:
2725
	case CPU_DEAD_FROZEN:
2726 2727 2728 2729 2730 2731 2732
		down_read(&slub_lock);
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
		up_read(&slub_lock);
C
Christoph Lameter 已提交
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata slab_notifier =
	{ &slab_cpuup_callback, NULL, 0 };

#endif

void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
{
	struct kmem_cache *s = get_slab(size, gfpflags);

2749 2750
	if (ZERO_OR_NULL_PTR(s))
		return s;
C
Christoph Lameter 已提交
2751

2752
	return slab_alloc(s, gfpflags, -1, caller);
C
Christoph Lameter 已提交
2753 2754 2755 2756 2757 2758 2759
}

void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
					int node, void *caller)
{
	struct kmem_cache *s = get_slab(size, gfpflags);

2760 2761
	if (ZERO_OR_NULL_PTR(s))
		return s;
C
Christoph Lameter 已提交
2762

2763
	return slab_alloc(s, gfpflags, node, caller);
C
Christoph Lameter 已提交
2764 2765
}

C
Christoph Lameter 已提交
2766
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
2767 2768
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
{
	void *p;
	void *addr = page_address(page);

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
	bitmap_zero(map, s->objects);

2780 2781
	for_each_free_object(p, s, page->freelist) {
		set_bit(slab_index(p, s, addr), map);
2782 2783 2784 2785
		if (!check_object(s, page, p, 0))
			return 0;
	}

2786 2787
	for_each_object(p, s, addr)
		if (!test_bit(slab_index(p, s, addr), map))
2788 2789 2790 2791 2792
			if (!check_object(s, page, p, 1))
				return 0;
	return 1;
}

2793 2794
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
2795 2796
{
	if (slab_trylock(page)) {
2797
		validate_slab(s, page, map);
2798 2799 2800 2801 2802 2803
		slab_unlock(page);
	} else
		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
			s->name, page);

	if (s->flags & DEBUG_DEFAULT_FLAGS) {
2804 2805
		if (!SlabDebug(page))
			printk(KERN_ERR "SLUB %s: SlabDebug not set "
2806 2807
				"on slab 0x%p\n", s->name, page);
	} else {
2808 2809
		if (SlabDebug(page))
			printk(KERN_ERR "SLUB %s: SlabDebug set on "
2810 2811 2812 2813
				"slab 0x%p\n", s->name, page);
	}
}

2814 2815
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
2816 2817 2818 2819 2820 2821 2822 2823
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
2824
		validate_slab_slab(s, page, map);
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
2835
		validate_slab_slab(s, page, map);
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

2848
static long validate_slab_cache(struct kmem_cache *s)
2849 2850 2851
{
	int node;
	unsigned long count = 0;
2852 2853 2854 2855 2856
	unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
2857 2858 2859 2860 2861

	flush_all(s);
	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

2862
		count += validate_slab_node(s, n, map);
2863
	}
2864
	kfree(map);
2865 2866 2867
	return count;
}

2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches + 4);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
		 	" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");

	validate_slab_cache(kmalloc_caches + 5);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
	validate_slab_cache(kmalloc_caches + 6);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 7);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 8);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 9);
}
#else
static void resiliency_test(void) {};
#endif

2923
/*
C
Christoph Lameter 已提交
2924
 * Generate lists of code addresses where slabcache objects are allocated
2925 2926 2927 2928 2929 2930
 * and freed.
 */

struct location {
	unsigned long count;
	void *addr;
2931 2932 2933 2934 2935 2936 2937
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
	cpumask_t cpus;
	nodemask_t nodes;
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

2953
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
2954 2955 2956 2957 2958 2959
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

2960
	l = (void *)__get_free_pages(flags, order);
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
2974
				const struct track *track)
2975 2976 2977 2978
{
	long start, end, pos;
	struct location *l;
	void *caddr;
2979
	unsigned long age = jiffies - track->when;
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

				cpu_set(track->cpu, l->cpus);
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3014 3015 3016
			return 1;
		}

3017
		if (track->addr < caddr)
3018 3019 3020 3021 3022 3023
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
3024
	 * Not found. Insert new tracking element.
3025
	 */
3026
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3027 3028 3029 3030 3031 3032 3033 3034
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
	cpus_clear(l->cpus);
	cpu_set(track->cpu, l->cpus);
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3045 3046 3047 3048 3049 3050 3051
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
		struct page *page, enum track_item alloc)
{
	void *addr = page_address(page);
3052
	DECLARE_BITMAP(map, s->objects);
3053 3054 3055
	void *p;

	bitmap_zero(map, s->objects);
3056 3057
	for_each_free_object(p, s, page->freelist)
		set_bit(slab_index(p, s, addr), map);
3058

3059
	for_each_object(p, s, addr)
3060 3061
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
3062 3063 3064 3065 3066 3067 3068
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
	int n = 0;
	unsigned long i;
3069
	struct loc_track t = { 0, 0, NULL };
3070 3071
	int node;

3072 3073 3074
	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
			GFP_KERNEL))
		return sprintf(buf, "Out of memory\n");
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095

	/* Push back cpu slabs */
	flush_all(s);

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

		if (!atomic_read(&n->nr_slabs))
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
			process_slab(&t, s, page, alloc);
		list_for_each_entry(page, &n->full, lru)
			process_slab(&t, s, page, alloc);
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
3096
		struct location *l = &t.loc[i];
3097 3098 3099

		if (n > PAGE_SIZE - 100)
			break;
3100 3101 3102 3103
		n += sprintf(buf + n, "%7ld ", l->count);

		if (l->addr)
			n += sprint_symbol(buf + n, (unsigned long)l->addr);
3104 3105
		else
			n += sprintf(buf + n, "<not-available>");
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124

		if (l->sum_time != l->min_time) {
			unsigned long remainder;

			n += sprintf(buf + n, " age=%ld/%ld/%ld",
			l->min_time,
			div_long_long_rem(l->sum_time, l->count, &remainder),
			l->max_time);
		} else
			n += sprintf(buf + n, " age=%ld",
				l->min_time);

		if (l->min_pid != l->max_pid)
			n += sprintf(buf + n, " pid=%ld-%ld",
				l->min_pid, l->max_pid);
		else
			n += sprintf(buf + n, " pid=%ld",
				l->min_pid);

3125 3126
		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
				n < PAGE_SIZE - 60) {
3127 3128 3129 3130 3131
			n += sprintf(buf + n, " cpus=");
			n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
					l->cpus);
		}

3132 3133
		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
				n < PAGE_SIZE - 60) {
3134 3135 3136 3137 3138
			n += sprintf(buf + n, " nodes=");
			n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
					l->nodes);
		}

3139 3140 3141 3142 3143 3144 3145 3146 3147
		n += sprintf(buf + n, "\n");
	}

	free_loc_track(&t);
	if (!t.count)
		n += sprintf(buf, "No data\n");
	return n;
}

C
Christoph Lameter 已提交
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
static unsigned long count_partial(struct kmem_cache_node *n)
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += page->inuse;
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}

enum slab_stat_type {
	SL_FULL,
	SL_PARTIAL,
	SL_CPU,
	SL_OBJECTS
};

#define SO_FULL		(1 << SL_FULL)
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)

static unsigned long slab_objects(struct kmem_cache *s,
			char *buf, unsigned long flags)
{
	unsigned long total = 0;
	int cpu;
	int node;
	int x;
	unsigned long *nodes;
	unsigned long *per_cpu;

	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
	per_cpu = nodes + nr_node_ids;

	for_each_possible_cpu(cpu) {
		struct page *page = s->cpu_slab[cpu];
		int node;

		if (page) {
			node = page_to_nid(page);
			if (flags & SO_CPU) {
				int x = 0;

				if (flags & SO_OBJECTS)
					x = page->inuse;
				else
					x = 1;
				total += x;
				nodes[node] += x;
			}
			per_cpu[node]++;
		}
	}

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (flags & SO_PARTIAL) {
			if (flags & SO_OBJECTS)
				x = count_partial(n);
			else
				x = n->nr_partial;
			total += x;
			nodes[node] += x;
		}

		if (flags & SO_FULL) {
			int full_slabs = atomic_read(&n->nr_slabs)
					- per_cpu[node]
					- n->nr_partial;

			if (flags & SO_OBJECTS)
				x = full_slabs * s->objects;
			else
				x = full_slabs;
			total += x;
			nodes[node] += x;
		}
	}

	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
	for_each_online_node(node)
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

static int any_slab_objects(struct kmem_cache *s)
{
	int node;
	int cpu;

	for_each_possible_cpu(cpu)
		if (s->cpu_slab[cpu])
			return 1;

	for_each_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (n->nr_partial || atomic_read(&n->nr_slabs))
			return 1;
	}
	return 0;
}

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
#define to_slab(n) container_of(n, struct kmem_cache, kobj);

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
	static struct slab_attribute _name##_attr = __ATTR_RO(_name)

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
	__ATTR(_name, 0644, _name##_show, _name##_store)

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objsize);
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objects);
}
SLAB_ATTR_RO(objs_per_slab);

static ssize_t order_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->order);
}
SLAB_ATTR_RO(order);

static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
	if (s->ctor) {
		int n = sprint_symbol(buf, (unsigned long)s->ctor);

		return n + sprintf(buf + n, "\n");
	}
	return 0;
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
}
SLAB_ATTR_RO(slabs);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_PARTIAL);
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_CPU);
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
}
SLAB_ATTR_RO(objects);

static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
	if (buf[0] == '1')
		s->flags |= SLAB_DEBUG_FREE;
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
	if (buf[0] == '1')
		s->flags |= SLAB_TRACE;
	return length;
}
SLAB_ATTR(trace);

static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
3395
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
C
Christoph Lameter 已提交
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
	if (buf[0] == '1')
		s->flags |= SLAB_RED_ZONE;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
	if (buf[0] == '1')
		s->flags |= SLAB_POISON;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
	if (buf[0] == '1')
		s->flags |= SLAB_STORE_USER;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(store_user);

3470 3471 3472 3473 3474 3475 3476 3477
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
3478 3479 3480 3481 3482 3483 3484 3485
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
3486 3487 3488
}
SLAB_ATTR(validate);

3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);

C
Christoph Lameter 已提交
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
#ifdef CONFIG_NUMA
static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->defrag_ratio / 10);
}

static ssize_t defrag_ratio_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	int n = simple_strtoul(buf, NULL, 10);

	if (n < 100)
		s->defrag_ratio = n * 10;
	return length;
}
SLAB_ATTR(defrag_ratio);
#endif

static struct attribute * slab_attrs[] = {
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
	&objects_attr.attr,
	&slabs_attr.attr,
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
3562
	&validate_attr.attr,
3563
	&shrink_attr.attr,
3564 3565
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
C
Christoph Lameter 已提交
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
	&defrag_ratio_attr.attr,
#endif
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);

	return err;
}

static struct sysfs_ops slab_sysfs_ops = {
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

static struct kset_uevent_ops slab_uevent_ops = {
	.filter = uevent_filter,
};

A
Adrian Bunk 已提交
3639
static decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
C
Christoph Lameter 已提交
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
 * format
 * :[flags-]size:[memory address of kmemcache]
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
	int unmergeable;

	if (slab_state < SYSFS)
		/* Defer until later */
		return 0;

	unmergeable = slab_unmergeable(s);
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
L
Linus Torvalds 已提交
3692
		sysfs_remove_link(&slab_subsys.kobj, s->name);
C
Christoph Lameter 已提交
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

	kobj_set_kset_s(s, slab_subsys);
	kobject_set_name(&s->kobj, name);
	kobject_init(&s->kobj);
	err = kobject_add(&s->kobj);
	if (err)
		return err;

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
	if (err)
		return err;
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
 * available lest we loose that information.
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
3737
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
3738 3739 3740 3741 3742 3743 3744 3745 3746

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

	if (slab_state == SYSFS) {
		/*
		 * If we have a leftover link then remove it.
		 */
L
Linus Torvalds 已提交
3747 3748
		sysfs_remove_link(&slab_subsys.kobj, name);
		return sysfs_create_link(&slab_subsys.kobj,
C
Christoph Lameter 已提交
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
						&s->kobj, name);
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
3765
	struct kmem_cache *s;
C
Christoph Lameter 已提交
3766 3767 3768 3769 3770 3771 3772 3773
	int err;

	err = subsystem_register(&slab_subsys);
	if (err) {
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

3774 3775
	slab_state = SYSFS;

3776
	list_for_each_entry(s, &slab_caches, list) {
3777 3778 3779
		err = sysfs_slab_add(s);
		BUG_ON(err);
	}
C
Christoph Lameter 已提交
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
		BUG_ON(err);
		kfree(al);
	}

	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
#endif