raid5.c 138.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
 * conf->bm_write is the number of the last batch successfully written.
 * conf->bm_flush is the number of the last batch that was closed to
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
 * the number of the batch it will be in. This is bm_flush+1.
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45 46 47 48 49

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/bitops.h>
50
#include <linux/kthread.h>
L
Linus Torvalds 已提交
51
#include <asm/atomic.h>
52
#include "raid6.h"
L
Linus Torvalds 已提交
53

54
#include <linux/raid/bitmap.h>
55
#include <linux/async_tx.h>
56

L
Linus Torvalds 已提交
57 58 59 60 61 62 63 64 65
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
66
#define BYPASS_THRESHOLD	1
67
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
68 69
#define HASH_MASK		(NR_HASH - 1)

70
#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
L
Linus Torvalds 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This macro is used to determine the 'next' bio in the list, given the sector
 * of the current stripe+device
 */
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
 * The following can be used to debug the driver
 */
#define RAID5_PARANOIA	1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif

92
#ifdef DEBUG
L
Linus Torvalds 已提交
93 94 95 96
#define inline
#define __inline__
#endif

97 98
#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))

99 100 101 102 103 104 105 106 107 108
#if !RAID6_USE_EMPTY_ZERO_PAGE
/* In .bss so it's zeroed */
const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
#endif

static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
109 110 111 112 113 114 115 116 117

static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
118
		bi->bi_end_io(bi,
119 120 121 122 123 124
			      test_bit(BIO_UPTODATE, &bi->bi_flags)
			        ? 0 : -EIO);
		bi = return_bi;
	}
}

L
Linus Torvalds 已提交
125 126
static void print_raid5_conf (raid5_conf_t *conf);

127
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
128 129
{
	if (atomic_dec_and_test(&sh->count)) {
130 131
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
132
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
133
			if (test_bit(STRIPE_DELAYED, &sh->state)) {
L
Linus Torvalds 已提交
134
				list_add_tail(&sh->lru, &conf->delayed_list);
135 136
				blk_plug_device(conf->mddev->queue);
			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
137
				   sh->bm_seq - conf->seq_write > 0) {
138
				list_add_tail(&sh->lru, &conf->bitmap_list);
139 140
				blk_plug_device(conf->mddev->queue);
			} else {
141
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
142
				list_add_tail(&sh->lru, &conf->handle_list);
143
			}
L
Linus Torvalds 已提交
144 145
			md_wakeup_thread(conf->mddev->thread);
		} else {
146
			BUG_ON(sh->ops.pending);
L
Linus Torvalds 已提交
147 148 149 150 151 152
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				atomic_dec(&conf->preread_active_stripes);
				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
					md_wakeup_thread(conf->mddev->thread);
			}
			atomic_dec(&conf->active_stripes);
153 154
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
155
				wake_up(&conf->wait_for_stripe);
156 157
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
158
			}
L
Linus Torvalds 已提交
159 160 161 162 163 164 165
		}
	}
}
static void release_stripe(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	unsigned long flags;
166

L
Linus Torvalds 已提交
167 168 169 170 171
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

172
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
173
{
174 175
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
176

177
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
178 179
}

180
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
181
{
182
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
183

184 185
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
186 187

	CHECK_DEVLOCK();
188
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
}


/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	CHECK_DEVLOCK();
	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

static void shrink_buffers(struct stripe_head *sh, int num)
{
	struct page *p;
	int i;

	for (i=0; i<num ; i++) {
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
220
		put_page(p);
L
Linus Torvalds 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	}
}

static int grow_buffers(struct stripe_head *sh, int num)
{
	int i;

	for (i=0; i<num; i++) {
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

static void raid5_build_block (struct stripe_head *sh, int i);

241
static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
L
Linus Torvalds 已提交
242 243
{
	raid5_conf_t *conf = sh->raid_conf;
244
	int i;
L
Linus Torvalds 已提交
245

246 247
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
248 249
	BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);

L
Linus Torvalds 已提交
250
	CHECK_DEVLOCK();
251
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
252 253 254
		(unsigned long long)sh->sector);

	remove_hash(sh);
255

L
Linus Torvalds 已提交
256 257 258 259
	sh->sector = sector;
	sh->pd_idx = pd_idx;
	sh->state = 0;

260 261 262
	sh->disks = disks;

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
263 264
		struct r5dev *dev = &sh->dev[i];

265
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
266
		    test_bit(R5_LOCKED, &dev->flags)) {
267
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
268
			       (unsigned long long)sh->sector, i, dev->toread,
269
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
270 271 272 273 274 275 276 277 278
			       test_bit(R5_LOCKED, &dev->flags));
			BUG();
		}
		dev->flags = 0;
		raid5_build_block(sh, i);
	}
	insert_hash(conf, sh);
}

279
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
L
Linus Torvalds 已提交
280 281
{
	struct stripe_head *sh;
282
	struct hlist_node *hn;
L
Linus Torvalds 已提交
283 284

	CHECK_DEVLOCK();
285
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
286
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
287
		if (sh->sector == sector && sh->disks == disks)
L
Linus Torvalds 已提交
288
			return sh;
289
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
290 291 292 293
	return NULL;
}

static void unplug_slaves(mddev_t *mddev);
294
static void raid5_unplug_device(struct request_queue *q);
L
Linus Torvalds 已提交
295

296 297
static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
					     int pd_idx, int noblock)
L
Linus Torvalds 已提交
298 299 300
{
	struct stripe_head *sh;

301
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
302 303 304 305

	spin_lock_irq(&conf->device_lock);

	do {
306 307 308
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
309
		sh = __find_stripe(conf, sector, disks);
L
Linus Torvalds 已提交
310 311 312 313 314 315 316 317 318
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
319 320
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
321 322
						     || !conf->inactive_blocked),
						    conf->device_lock,
323
						    raid5_unplug_device(conf->mddev->queue)
L
Linus Torvalds 已提交
324 325 326
					);
				conf->inactive_blocked = 0;
			} else
327
				init_stripe(sh, sector, pd_idx, disks);
L
Linus Torvalds 已提交
328 329
		} else {
			if (atomic_read(&sh->count)) {
330
			  BUG_ON(!list_empty(&sh->lru));
L
Linus Torvalds 已提交
331 332 333
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
334 335
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
336 337
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
338 339 340 341 342 343 344 345 346 347 348
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
/* test_and_ack_op() ensures that we only dequeue an operation once */
#define test_and_ack_op(op, pend) \
do {							\
	if (test_bit(op, &sh->ops.pending) &&		\
		!test_bit(op, &sh->ops.complete)) {	\
		if (test_and_set_bit(op, &sh->ops.ack)) \
			clear_bit(op, &pend);		\
		else					\
			ack++;				\
	} else						\
		clear_bit(op, &pend);			\
} while (0)

/* find new work to run, do not resubmit work that is already
 * in flight
 */
static unsigned long get_stripe_work(struct stripe_head *sh)
{
	unsigned long pending;
	int ack = 0;

	pending = sh->ops.pending;

	test_and_ack_op(STRIPE_OP_BIOFILL, pending);
	test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
	test_and_ack_op(STRIPE_OP_PREXOR, pending);
	test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
	test_and_ack_op(STRIPE_OP_POSTXOR, pending);
	test_and_ack_op(STRIPE_OP_CHECK, pending);
	if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
		ack++;

	sh->ops.count -= ack;
382 383 384 385 386 387
	if (unlikely(sh->ops.count < 0)) {
		printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx "
			"ops.complete: %#lx\n", pending, sh->ops.pending,
			sh->ops.ack, sh->ops.complete);
		BUG();
	}
388 389 390 391

	return pending;
}

392 393 394 395
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
396 397 398 399 400 401 402 403

static void ops_run_io(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	int i, disks = sh->disks;

	might_sleep();

404
	set_bit(STRIPE_IO_STARTED, &sh->state);
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
	for (i = disks; i--; ) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
			rw = WRITE;
		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
			rw = READ;
		else
			continue;

		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
		if (rw == WRITE)
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
			if (test_bit(STRIPE_SYNCING, &sh->state) ||
				test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
				test_bit(STRIPE_EXPAND_READY, &sh->state))
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
440
				__func__, (unsigned long long)sh->sector,
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
			if (rw == WRITE &&
			    test_bit(R5_ReWrite, &sh->dev[i].flags))
				atomic_add(STRIPE_SECTORS,
					&rdev->corrected_errors);
			generic_make_request(bi);
		} else {
			if (rw == WRITE)
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio, i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
			b_offset += bio_iovec_idx(bio, i)->bv_offset;
			bio_page = bio_iovec_idx(bio, i)->bv_page;
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
					b_offset, clen,
504
					ASYNC_TX_DEP_ACK,
505 506 507 508
					tx, NULL, NULL);
			else
				tx = async_memcpy(bio_page, page, b_offset,
					page_offset, clen,
509
					ASYNC_TX_DEP_ACK,
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
					tx, NULL, NULL);
		}
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
	raid5_conf_t *conf = sh->raid_conf;
525
	int i;
526

527
	pr_debug("%s: stripe %llu\n", __func__,
528 529 530 531 532 533 534
		(unsigned long long)sh->sector);

	/* clear completed biofills */
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
535 536 537 538 539
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
		 * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
			struct bio *rbi, *rbi2;

			/* The access to dev->read is outside of the
			 * spin_lock_irq(&conf->device_lock), but is protected
			 * by the STRIPE_OP_BIOFILL pending bit
			 */
			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
				spin_lock_irq(&conf->device_lock);
				if (--rbi->bi_phys_segments == 0) {
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				spin_unlock_irq(&conf->device_lock);
				rbi = rbi2;
			}
		}
	}
562
	set_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
563 564 565

	return_io(return_bi);

566
	set_bit(STRIPE_HANDLE, &sh->state);
567 568 569 570 571 572 573 574 575
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
	raid5_conf_t *conf = sh->raid_conf;
	int i;

576
	pr_debug("%s: stripe %llu\n", __func__,
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
	async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
		ops_complete_biofill, sh);
}

static void ops_complete_compute5(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];

607
	pr_debug("%s: stripe %llu\n", __func__,
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
		(unsigned long long)sh->sector);

	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
	set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, unsigned long pending)
{
	/* kernel stack size limits the total number of disks */
	int disks = sh->disks;
	struct page *xor_srcs[disks];
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
632
		__func__, (unsigned long long)sh->sector, target);
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
			0, NULL, ops_complete_compute5, sh);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
			ASYNC_TX_XOR_ZERO_DST, NULL,
			ops_complete_compute5, sh);

	/* ack now if postxor is not set to be run */
	if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
		async_tx_ack(tx);

	return tx;
}

static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

660
	pr_debug("%s: stripe %llu\n", __func__,
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
		(unsigned long long)sh->sector);

	set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
}

static struct dma_async_tx_descriptor *
ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
{
	/* kernel stack size limits the total number of disks */
	int disks = sh->disks;
	struct page *xor_srcs[disks];
	int count = 0, pd_idx = sh->pd_idx, i;

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

677
	pr_debug("%s: stripe %llu\n", __func__,
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
		if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
			xor_srcs[count++] = dev->page;
	}

	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
		ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
		ops_complete_prexor, sh);

	return tx;
}

static struct dma_async_tx_descriptor *
D
Dan Williams 已提交
695 696
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
		 unsigned long pending)
697 698 699 700 701 702 703
{
	int disks = sh->disks;
	int pd_idx = sh->pd_idx, i;

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (Wantprexor)
	 */
D
Dan Williams 已提交
704
	int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
705

706
	pr_debug("%s: stripe %llu\n", __func__,
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;
		int towrite;

		towrite = 0;
		if (prexor) { /* rmw */
			if (dev->towrite &&
			    test_bit(R5_Wantprexor, &dev->flags))
				towrite = 1;
		} else { /* rcw */
			if (i != pd_idx && dev->towrite &&
				test_bit(R5_LOCKED, &dev->flags))
				towrite = 1;
		}

		if (towrite) {
			struct bio *wbi;

			spin_lock(&sh->lock);
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
			spin_unlock(&sh->lock);

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

static void ops_complete_postxor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

751
	pr_debug("%s: stripe %llu\n", __func__,
752 753 754 755 756 757 758 759 760 761 762 763
		(unsigned long long)sh->sector);

	set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void ops_complete_write(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	int disks = sh->disks, i, pd_idx = sh->pd_idx;

764
	pr_debug("%s: stripe %llu\n", __func__,
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (dev->written || i == pd_idx)
			set_bit(R5_UPTODATE, &dev->flags);
	}

	set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
	set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
D
Dan Williams 已提交
781 782
ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
		unsigned long pending)
783 784 785 786 787 788 789
{
	/* kernel stack size limits the total number of disks */
	int disks = sh->disks;
	struct page *xor_srcs[disks];

	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
D
Dan Williams 已提交
790
	int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
791 792 793
	unsigned long flags;
	dma_async_tx_callback callback;

794
	pr_debug("%s: stripe %llu\n", __func__,
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
	if (prexor) {
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* check whether this postxor is part of a write */
D
Dan Williams 已提交
817
	callback = test_bit(STRIPE_OP_BIODRAIN, &pending) ?
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
		ops_complete_write : ops_complete_postxor;

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
	flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

	if (unlikely(count == 1)) {
		flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
			flags, tx, callback, sh);
	} else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
			flags, tx, callback, sh);
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	int pd_idx = sh->pd_idx;

844
	pr_debug("%s: stripe %llu\n", __func__,
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
		(unsigned long long)sh->sector);

	if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
		sh->ops.zero_sum_result == 0)
		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);

	set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void ops_run_check(struct stripe_head *sh)
{
	/* kernel stack size limits the total number of disks */
	int disks = sh->disks;
	struct page *xor_srcs[disks];
	struct dma_async_tx_descriptor *tx;

	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

866
	pr_debug("%s: stripe %llu\n", __func__,
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (i != pd_idx)
			xor_srcs[count++] = dev->page;
	}

	tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
		&sh->ops.zero_sum_result, 0, NULL, NULL, NULL);

	if (tx)
		set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
	else
		clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);

	atomic_inc(&sh->count);
	tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
		ops_complete_check, sh);
}

static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;

	if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
		ops_run_biofill(sh);
		overlap_clear++;
	}

	if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
		tx = ops_run_compute5(sh, pending);

	if (test_bit(STRIPE_OP_PREXOR, &pending))
		tx = ops_run_prexor(sh, tx);

	if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
D
Dan Williams 已提交
905
		tx = ops_run_biodrain(sh, tx, pending);
906 907 908 909
		overlap_clear++;
	}

	if (test_bit(STRIPE_OP_POSTXOR, &pending))
D
Dan Williams 已提交
910
		ops_run_postxor(sh, tx, pending);
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925

	if (test_bit(STRIPE_OP_CHECK, &pending))
		ops_run_check(sh);

	if (test_bit(STRIPE_OP_IO, &pending))
		ops_run_io(sh);

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
}

926
static int grow_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
927 928
{
	struct stripe_head *sh;
929 930 931 932 933 934 935 936 937 938 939 940
	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
	if (!sh)
		return 0;
	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
	sh->raid_conf = conf;
	spin_lock_init(&sh->lock);

	if (grow_buffers(sh, conf->raid_disks)) {
		shrink_buffers(sh, conf->raid_disks);
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
941
	sh->disks = conf->raid_disks;
942 943 944 945 946 947 948 949 950 951
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

static int grow_stripes(raid5_conf_t *conf, int num)
{
952
	struct kmem_cache *sc;
L
Linus Torvalds 已提交
953 954
	int devs = conf->raid_disks;

955 956
	sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
	sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
957 958
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
959
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
960
			       0, 0, NULL);
L
Linus Torvalds 已提交
961 962 963
	if (!sc)
		return 1;
	conf->slab_cache = sc;
964
	conf->pool_size = devs;
965
	while (num--)
966
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
967 968 969
			return 1;
	return 0;
}
970 971

#ifdef CONFIG_MD_RAID5_RESHAPE
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
	int err = 0;
1001
	struct kmem_cache *sc;
1002 1003 1004 1005 1006
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1007 1008
	md_allow_write(conf->mddev);

1009 1010 1011
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1012
			       0, 0, NULL);
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
		if (!nsh)
			break;

		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));

		nsh->raid_conf = conf;
		spin_lock_init(&nsh->lock);

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
1047
				    unplug_slaves(conf->mddev)
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
			);
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
	 * conf->disks.
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
1094
#endif
L
Linus Torvalds 已提交
1095

1096
static int drop_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1097 1098 1099
{
	struct stripe_head *sh;

1100 1101 1102 1103 1104
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1105
	BUG_ON(atomic_read(&sh->count));
1106
	shrink_buffers(sh, conf->pool_size);
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

static void shrink_stripes(raid5_conf_t *conf)
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1117 1118
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1119 1120 1121
	conf->slab_cache = NULL;
}

1122
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1123 1124 1125
{
 	struct stripe_head *sh = bi->bi_private;
	raid5_conf_t *conf = sh->raid_conf;
1126
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1127
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1128 1129
	char b[BDEVNAME_SIZE];
	mdk_rdev_t *rdev;
L
Linus Torvalds 已提交
1130 1131 1132 1133 1134 1135


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1136 1137
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1138 1139 1140
		uptodate);
	if (i == disks) {
		BUG();
1141
		return;
L
Linus Torvalds 已提交
1142 1143 1144 1145
	}

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1146
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1147
			rdev = conf->disks[i].rdev;
1148 1149 1150 1151 1152 1153
			printk_rl(KERN_INFO "raid5:%s: read error corrected"
				  " (%lu sectors at %llu on %s)\n",
				  mdname(conf->mddev), STRIPE_SECTORS,
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdevname(rdev->bdev, b));
1154 1155 1156
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1157 1158
		if (atomic_read(&conf->disks[i].rdev->read_errors))
			atomic_set(&conf->disks[i].rdev->read_errors, 0);
L
Linus Torvalds 已提交
1159
	} else {
1160
		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1161
		int retry = 0;
1162 1163
		rdev = conf->disks[i].rdev;

L
Linus Torvalds 已提交
1164
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1165
		atomic_inc(&rdev->read_errors);
1166
		if (conf->mddev->degraded)
1167 1168 1169 1170 1171 1172 1173
			printk_rl(KERN_WARNING
				  "raid5:%s: read error not correctable "
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1174
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1175
			/* Oh, no!!! */
1176 1177 1178 1179 1180 1181 1182
			printk_rl(KERN_WARNING
				  "raid5:%s: read error NOT corrected!! "
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1183
		else if (atomic_read(&rdev->read_errors)
1184
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1185
			printk(KERN_WARNING
1186 1187
			       "raid5:%s: Too many read errors, failing device %s.\n",
			       mdname(conf->mddev), bdn);
1188 1189 1190 1191 1192
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1193 1194
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1195
			md_error(conf->mddev, rdev);
1196
		}
L
Linus Torvalds 已提交
1197 1198 1199 1200 1201 1202 1203
	}
	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1204
static void raid5_end_write_request (struct bio *bi, int error)
L
Linus Torvalds 已提交
1205 1206 1207
{
 	struct stripe_head *sh = bi->bi_private;
	raid5_conf_t *conf = sh->raid_conf;
1208
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1209 1210 1211 1212 1213 1214
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1215
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1216 1217 1218 1219
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1220
		return;
L
Linus Torvalds 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229
	}

	if (!uptodate)
		md_error(conf->mddev, conf->disks[i].rdev);

	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
1230
	release_stripe(sh);
L
Linus Torvalds 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
}


static sector_t compute_blocknr(struct stripe_head *sh, int i);
	
static void raid5_build_block (struct stripe_head *sh, int i)
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->vec.bv_page = dev->page;
	dev->vec.bv_len = STRIPE_SIZE;
	dev->vec.bv_offset = 0;

	dev->req.bi_sector = sh->sector;
	dev->req.bi_private = sh;

	dev->flags = 0;
1252
	dev->sector = compute_blocknr(sh, i);
L
Linus Torvalds 已提交
1253 1254 1255 1256 1257 1258
}

static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
	char b[BDEVNAME_SIZE];
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1259
	pr_debug("raid5: error called\n");
L
Linus Torvalds 已提交
1260

1261
	if (!test_bit(Faulty, &rdev->flags)) {
1262
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1263 1264 1265
		if (test_and_clear_bit(In_sync, &rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1266
			mddev->degraded++;
1267
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1268 1269 1270
			/*
			 * if recovery was running, make sure it aborts.
			 */
1271
			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
L
Linus Torvalds 已提交
1272
		}
1273
		set_bit(Faulty, &rdev->flags);
L
Linus Torvalds 已提交
1274
		printk (KERN_ALERT
1275 1276
			"raid5: Disk failure on %s, disabling device.\n"
			"raid5: Operation continuing on %d devices.\n",
1277
			bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
1278
	}
1279
}
L
Linus Torvalds 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
			unsigned int data_disks, unsigned int * dd_idx,
			unsigned int * pd_idx, raid5_conf_t *conf)
{
	long stripe;
	unsigned long chunk_number;
	unsigned int chunk_offset;
	sector_t new_sector;
	int sectors_per_chunk = conf->chunk_size >> 9;

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;
	BUG_ON(r_sector != chunk_number);

	/*
	 * Compute the stripe number
	 */
	stripe = chunk_number / data_disks;

	/*
	 * Compute the data disk and parity disk indexes inside the stripe
	 */
	*dd_idx = chunk_number % data_disks;

	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1317 1318
	switch(conf->level) {
	case 4:
L
Linus Torvalds 已提交
1319
		*pd_idx = data_disks;
1320 1321 1322
		break;
	case 5:
		switch (conf->algorithm) {
L
Linus Torvalds 已提交
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
		case ALGORITHM_LEFT_ASYMMETRIC:
			*pd_idx = data_disks - stripe % raid_disks;
			if (*dd_idx >= *pd_idx)
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
			*pd_idx = stripe % raid_disks;
			if (*dd_idx >= *pd_idx)
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
			*pd_idx = data_disks - stripe % raid_disks;
			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
			*pd_idx = stripe % raid_disks;
			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
			break;
		default:
N
NeilBrown 已提交
1342
			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
L
Linus Torvalds 已提交
1343
				conf->algorithm);
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
		}
		break;
	case 6:

		/**** FIX THIS ****/
		switch (conf->algorithm) {
		case ALGORITHM_LEFT_ASYMMETRIC:
			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
			if (*pd_idx == raid_disks-1)
				(*dd_idx)++; 	/* Q D D D P */
			else if (*dd_idx >= *pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
			*pd_idx = stripe % raid_disks;
			if (*pd_idx == raid_disks-1)
				(*dd_idx)++; 	/* Q D D D P */
			else if (*dd_idx >= *pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
			*pd_idx = stripe % raid_disks;
			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
			break;
		default:
			printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
				conf->algorithm);
		}
		break;
L
Linus Torvalds 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
	}

	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


static sector_t compute_blocknr(struct stripe_head *sh, int i)
{
	raid5_conf_t *conf = sh->raid_conf;
1390 1391
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1392 1393 1394 1395 1396 1397 1398
	sector_t new_sector = sh->sector, check;
	int sectors_per_chunk = conf->chunk_size >> 9;
	sector_t stripe;
	int chunk_offset;
	int chunk_number, dummy1, dummy2, dd_idx = i;
	sector_t r_sector;

1399

L
Linus Torvalds 已提交
1400 1401 1402 1403
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;
	BUG_ON(new_sector != stripe);

1404 1405 1406 1407 1408 1409
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
		switch (conf->algorithm) {
L
Linus Torvalds 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
		default:
N
NeilBrown 已提交
1422
			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
			       conf->algorithm);
		}
		break;
	case 6:
		if (i == raid6_next_disk(sh->pd_idx, raid_disks))
			return 0; /* It is the Q disk */
		switch (conf->algorithm) {
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
		  	if (sh->pd_idx == raid_disks-1)
				i--; 	/* Q D D D P */
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
		default:
			printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
L
Linus Torvalds 已提交
1450
				conf->algorithm);
1451 1452
		}
		break;
L
Linus Torvalds 已提交
1453 1454 1455 1456 1457 1458 1459
	}

	chunk_number = stripe * data_disks + i;
	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;

	check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
	if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
N
NeilBrown 已提交
1460
		printk(KERN_ERR "compute_blocknr: map not correct\n");
L
Linus Torvalds 已提交
1461 1462 1463 1464 1465 1466 1467 1468
		return 0;
	}
	return r_sector;
}



/*
1469 1470 1471 1472 1473
 * Copy data between a page in the stripe cache, and one or more bion
 * The page could align with the middle of the bio, or there could be
 * several bion, each with several bio_vecs, which cover part of the page
 * Multiple bion are linked together on bi_next.  There may be extras
 * at the end of this list.  We ignore them.
L
Linus Torvalds 已提交
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
 */
static void copy_data(int frombio, struct bio *bio,
		     struct page *page,
		     sector_t sector)
{
	char *pa = page_address(page);
	struct bio_vec *bvl;
	int i;
	int page_offset;

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio,i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else clen = len;
1502

L
Linus Torvalds 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
		if (clen > 0) {
			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
			if (frombio)
				memcpy(pa+page_offset, ba+b_offset, clen);
			else
				memcpy(ba+b_offset, pa+page_offset, clen);
			__bio_kunmap_atomic(ba, KM_USER0);
		}
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}
}

D
Dan Williams 已提交
1517 1518 1519 1520 1521
#define check_xor()	do {						  \
				if (count == MAX_XOR_BLOCKS) {		  \
				xor_blocks(count, STRIPE_SIZE, dest, ptr);\
				count = 0;				  \
			   }						  \
L
Linus Torvalds 已提交
1522 1523
			} while(0)

1524 1525 1526
static void compute_parity6(struct stripe_head *sh, int method)
{
	raid6_conf_t *conf = sh->raid_conf;
1527
	int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1528 1529 1530 1531 1532 1533 1534
	struct bio *chosen;
	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
	void *ptrs[disks];

	qd_idx = raid6_next_disk(pd_idx, disks);
	d0_idx = raid6_next_disk(qd_idx, disks);

1535
	pr_debug("compute_parity, stripe %llu, method %d\n",
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
		(unsigned long long)sh->sector, method);

	switch(method) {
	case READ_MODIFY_WRITE:
		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */
	case RECONSTRUCT_WRITE:
		for (i= disks; i-- ;)
			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
				chosen = sh->dev[i].towrite;
				sh->dev[i].towrite = NULL;

				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
					wake_up(&conf->wait_for_overlap);

E
Eric Sesterhenn 已提交
1550
				BUG_ON(sh->dev[i].written);
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
				sh->dev[i].written = chosen;
			}
		break;
	case CHECK_PARITY:
		BUG();		/* Not implemented yet */
	}

	for (i = disks; i--;)
		if (sh->dev[i].written) {
			sector_t sector = sh->dev[i].sector;
			struct bio *wbi = sh->dev[i].written;
			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
				copy_data(1, wbi, sh->dev[i].page, sector);
				wbi = r5_next_bio(wbi, sector);
			}

			set_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(R5_UPTODATE, &sh->dev[i].flags);
		}

//	switch(method) {
//	case RECONSTRUCT_WRITE:
//	case CHECK_PARITY:
//	case UPDATE_PARITY:
		/* Note that unlike RAID-5, the ordering of the disks matters greatly. */
		/* FIX: Is this ordering of drives even remotely optimal? */
		count = 0;
		i = d0_idx;
		do {
			ptrs[count++] = page_address(sh->dev[i].page);
			if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
				printk("block %d/%d not uptodate on parity calc\n", i,count);
			i = raid6_next_disk(i, disks);
		} while ( i != d0_idx );
//		break;
//	}

	raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);

	switch(method) {
	case RECONSTRUCT_WRITE:
		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
		break;
	case UPDATE_PARITY:
		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
		break;
	}
}


/* Compute one missing block */
static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
{
1608
	int i, count, disks = sh->disks;
D
Dan Williams 已提交
1609
	void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1610 1611 1612
	int pd_idx = sh->pd_idx;
	int qd_idx = raid6_next_disk(pd_idx, disks);

1613
	pr_debug("compute_block_1, stripe %llu, idx %d\n",
1614 1615 1616 1617 1618 1619
		(unsigned long long)sh->sector, dd_idx);

	if ( dd_idx == qd_idx ) {
		/* We're actually computing the Q drive */
		compute_parity6(sh, UPDATE_PARITY);
	} else {
D
Dan Williams 已提交
1620 1621 1622
		dest = page_address(sh->dev[dd_idx].page);
		if (!nozero) memset(dest, 0, STRIPE_SIZE);
		count = 0;
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
		for (i = disks ; i--; ) {
			if (i == dd_idx || i == qd_idx)
				continue;
			p = page_address(sh->dev[i].page);
			if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
				ptr[count++] = p;
			else
				printk("compute_block() %d, stripe %llu, %d"
				       " not present\n", dd_idx,
				       (unsigned long long)sh->sector, i);

			check_xor();
		}
D
Dan Williams 已提交
1636 1637
		if (count)
			xor_blocks(count, STRIPE_SIZE, dest, ptr);
1638 1639 1640 1641 1642 1643 1644 1645
		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
	}
}

/* Compute two missing blocks */
static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
{
1646
	int i, count, disks = sh->disks;
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
	int pd_idx = sh->pd_idx;
	int qd_idx = raid6_next_disk(pd_idx, disks);
	int d0_idx = raid6_next_disk(qd_idx, disks);
	int faila, failb;

	/* faila and failb are disk numbers relative to d0_idx */
	/* pd_idx become disks-2 and qd_idx become disks-1 */
	faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
	failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;

	BUG_ON(faila == failb);
	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }

1660
	pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	       (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);

	if ( failb == disks-1 ) {
		/* Q disk is one of the missing disks */
		if ( faila == disks-2 ) {
			/* Missing P+Q, just recompute */
			compute_parity6(sh, UPDATE_PARITY);
			return;
		} else {
			/* We're missing D+Q; recompute D from P */
			compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
			compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
			return;
		}
	}

	/* We're missing D+P or D+D; build pointer table */
	{
		/**** FIX THIS: This could be very bad if disks is close to 256 ****/
		void *ptrs[disks];

		count = 0;
		i = d0_idx;
		do {
			ptrs[count++] = page_address(sh->dev[i].page);
			i = raid6_next_disk(i, disks);
			if (i != dd_idx1 && i != dd_idx2 &&
			    !test_bit(R5_UPTODATE, &sh->dev[i].flags))
				printk("compute_2 with missing block %d/%d\n", count, i);
		} while ( i != d0_idx );

		if ( failb == disks-2 ) {
			/* We're missing D+P. */
			raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
		} else {
			/* We're missing D+D. */
			raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
		}

		/* Both the above update both missing blocks */
		set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
		set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
	}
}

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
static int
handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
	int locked = 0;

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
			set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
			sh->ops.count++;
		}
1721

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
		set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
		sh->ops.count++;

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
				locked++;
			}
		}
1735 1736 1737
		if (locked + 1 == disks)
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
				atomic_inc(&sh->raid_conf->pending_full_writes);
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	} else {
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

		set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
		set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
		set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);

		sh->ops.count += 3;

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			/* For a read-modify write there may be blocks that are
			 * locked for reading while others are ready to be
			 * written so we distinguish these blocks by the
			 * R5_Wantprexor bit
			 */
			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantprexor, &dev->flags);
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
				locked++;
			}
		}
	}

	/* keep the parity disk locked while asynchronous operations
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
	locked++;

	pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1777
		__func__, (unsigned long long)sh->sector,
1778 1779 1780 1781
		locked, sh->ops.pending);

	return locked;
}
1782

L
Linus Torvalds 已提交
1783 1784
/*
 * Each stripe/dev can have one or more bion attached.
1785
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
1786 1787 1788 1789 1790 1791
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
	raid5_conf_t *conf = sh->raid_conf;
1792
	int firstwrite=0;
L
Linus Torvalds 已提交
1793

1794
	pr_debug("adding bh b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
1795 1796 1797 1798 1799 1800
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock(&sh->lock);
	spin_lock_irq(&conf->device_lock);
1801
	if (forwrite) {
L
Linus Torvalds 已提交
1802
		bip = &sh->dev[dd_idx].towrite;
1803 1804 1805
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
1806 1807 1808 1809 1810 1811 1812 1813 1814
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

1815
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
1816 1817 1818 1819 1820 1821 1822
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
	bi->bi_phys_segments ++;
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);

1823
	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
L
Linus Torvalds 已提交
1824 1825 1826
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

1827 1828 1829
	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
1830
		sh->bm_seq = conf->seq_flush+1;
1831 1832 1833
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}

L
Linus Torvalds 已提交
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);
	return 0;
}

1856 1857
static void end_reshape(raid5_conf_t *conf);

1858 1859 1860 1861 1862 1863 1864
static int page_is_zero(struct page *p)
{
	char *a = page_address(p);
	return ((*(u32*)a) == 0 &&
		memcmp(a, a+4, STRIPE_SIZE-4)==0);
}

1865 1866 1867 1868
static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
{
	int sectors_per_chunk = conf->chunk_size >> 9;
	int pd_idx, dd_idx;
1869 1870
	int chunk_offset = sector_div(stripe, sectors_per_chunk);

1871 1872 1873 1874
	raid5_compute_sector(stripe * (disks - conf->max_degraded)
			     *sectors_per_chunk + chunk_offset,
			     disks, disks - conf->max_degraded,
			     &dd_idx, &pd_idx, conf);
1875 1876 1877
	return pd_idx;
}

1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
static void
handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
			mdk_rdev_t *rdev;
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
				/* multiple read failures in one stripe */
				md_error(conf->mddev, rdev);
			rcu_read_unlock();
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			if (--bi->bi_phys_segments == 0) {
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			if (--bi->bi_phys_segments == 0) {
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

1936 1937 1938 1939 1940 1941
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
				if (--bi->bi_phys_segments == 0) {
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
	}

1965 1966 1967
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
1968 1969
}

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
/* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
 * to process
 */
static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
			struct stripe_head_state *s, int disk_idx, int disks)
{
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *failed_dev = &sh->dev[s->failed_num];

	/* don't schedule compute operations or reads on the parity block while
	 * a check is in flight
	 */
	if ((disk_idx == sh->pd_idx) &&
	     test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
		return ~0;

	/* is the data in this block needed, and can we get it? */
	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding || (s->failed &&
	     (failed_dev->toread || (failed_dev->towrite &&
	     !test_bit(R5_OVERWRITE, &failed_dev->flags)
	     ))))) {
		/* 1/ We would like to get this block, possibly by computing it,
		 * but we might not be able to.
		 *
		 * 2/ Since parity check operations potentially make the parity
		 * block !uptodate it will need to be refreshed before any
		 * compute operations on data disks are scheduled.
		 *
		 * 3/ We hold off parity block re-reads until check operations
		 * have quiesced.
		 */
		if ((s->uptodate == disks - 1) &&
2005
		    (s->failed && disk_idx == s->failed_num) &&
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
		    !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
			set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			s->req_compute = 1;
			sh->ops.count++;
			/* Careful: from this point on 'uptodate' is in the eye
			 * of raid5_run_ops which services 'compute' operations
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
			s->uptodate++;
			return 0; /* uptodate + compute == disks */
		} else if ((s->uptodate < disks - 1) &&
			test_bit(R5_Insync, &dev->flags)) {
			/* Note: we hold off compute operations while checks are
			 * in flight, but we still prefer 'compute' over 'read'
			 * hence we only read if (uptodate < * disks-1)
			 */
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
				sh->ops.count++;
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
				s->syncing);
		}
	}

	return ~0;
}

2039 2040 2041 2042
static void handle_issuing_new_read_requests5(struct stripe_head *sh,
			struct stripe_head_state *s, int disks)
{
	int i;
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065

	/* Clear completed compute operations.  Parity recovery
	 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
	 * later on in this routine
	 */
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
		!test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
	}

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
		!test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
		!test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
		for (i = disks; i--; )
			if (__handle_issuing_new_read_requests5(
				sh, s, i, disks) == 0)
				break;
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	}
	set_bit(STRIPE_HANDLE, &sh->state);
}

static void handle_issuing_new_read_requests6(struct stripe_head *sh,
			struct stripe_head_state *s, struct r6_state *r6s,
			int disks)
{
	int i;
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (!test_bit(R5_LOCKED, &dev->flags) &&
		    !test_bit(R5_UPTODATE, &dev->flags) &&
		    (dev->toread || (dev->towrite &&
		     !test_bit(R5_OVERWRITE, &dev->flags)) ||
		     s->syncing || s->expanding ||
		     (s->failed >= 1 &&
		      (sh->dev[r6s->failed_num[0]].toread ||
		       s->to_write)) ||
		     (s->failed >= 2 &&
		      (sh->dev[r6s->failed_num[1]].toread ||
		       s->to_write)))) {
			/* we would like to get this block, possibly
			 * by computing it, but we might not be able to
			 */
2091 2092 2093
			if ((s->uptodate == disks - 1) &&
			    (s->failed && (i == r6s->failed_num[0] ||
					   i == r6s->failed_num[1]))) {
2094
				pr_debug("Computing stripe %llu block %d\n",
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
				       (unsigned long long)sh->sector, i);
				compute_block_1(sh, i, 0);
				s->uptodate++;
			} else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
				/* Computing 2-failure is *very* expensive; only
				 * do it if failed >= 2
				 */
				int other;
				for (other = disks; other--; ) {
					if (other == i)
						continue;
					if (!test_bit(R5_UPTODATE,
					      &sh->dev[other].flags))
						break;
				}
				BUG_ON(other < 0);
2111
				pr_debug("Computing stripe %llu blocks %d,%d\n",
2112 2113 2114 2115 2116 2117 2118 2119
				       (unsigned long long)sh->sector,
				       i, other);
				compute_block_2(sh, i, other);
				s->uptodate += 2;
			} else if (test_bit(R5_Insync, &dev->flags)) {
				set_bit(R5_LOCKED, &dev->flags);
				set_bit(R5_Wantread, &dev->flags);
				s->locked++;
2120
				pr_debug("Reading block %d (sync=%d)\n",
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
					i, s->syncing);
			}
		}
	}
	set_bit(STRIPE_HANDLE, &sh->state);
}


/* handle_completed_write_requests
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
static void handle_completed_write_requests(raid5_conf_t *conf,
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2148
				pr_debug("Return write for disc %d\n", i);
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
					if (--wbi->bi_phys_segments == 0) {
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2173 2174 2175 2176

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
}

static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
{
	int rmw = 0, rcw = 0, i;
	for (i = disks; i--; ) {
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2188 2189
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2190 2191 2192 2193 2194 2195 2196 2197
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2198 2199 2200
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2201 2202 2203 2204
			else
				rcw += 2*disks;
		}
	}
2205
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2206 2207 2208 2209 2210 2211 2212 2213
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2214 2215
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2216 2217 2218
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2219
					pr_debug("Read_old block "
2220 2221 2222
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
2223 2224 2225
					if (!test_and_set_bit(
						STRIPE_OP_IO, &sh->ops.pending))
						sh->ops.count++;
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	if (rcw <= rmw && rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
			    i != sh->pd_idx &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2240 2241
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2242 2243 2244
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2245
					pr_debug("Read_old block "
2246 2247 2248
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
2249 2250 2251
					if (!test_and_set_bit(
						STRIPE_OP_IO, &sh->ops.pending))
						sh->ops.count++;
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
	 * subsequent call wants to start a write request.  raid5_run_ops only
	 * handles the case where compute block and postxor are requested
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
	if ((s->req_compute ||
	    !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
		(s->locked == 0 && (rcw == 0 || rmw == 0) &&
		!test_bit(STRIPE_BIT_DELAY, &sh->state)))
2273
		s->locked += handle_write_operations5(sh, rcw == 0, 0);
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
}

static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
		struct stripe_head *sh,	struct stripe_head_state *s,
		struct r6_state *r6s, int disks)
{
	int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
	int qd_idx = r6s->qd_idx;
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags)
		    && i != pd_idx && i != qd_idx
		    && (!test_bit(R5_LOCKED, &dev->flags)
			    ) &&
		    !test_bit(R5_UPTODATE, &dev->flags)) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
			else {
2292
				pr_debug("raid6: must_compute: "
2293 2294 2295 2296 2297
					"disk %d flags=%#lx\n", i, dev->flags);
				must_compute++;
			}
		}
	}
2298
	pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
	       (unsigned long long)sh->sector, rcw, must_compute);
	set_bit(STRIPE_HANDLE, &sh->state);

	if (rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags)
			    && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
			    && !test_bit(R5_LOCKED, &dev->flags) &&
			    !test_bit(R5_UPTODATE, &dev->flags) &&
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2313
					pr_debug("Read_old stripe %llu "
2314 2315 2316 2317 2318 2319
						"block %d for Reconstruct\n",
					     (unsigned long long)sh->sector, i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
2320
					pr_debug("Request delayed stripe %llu "
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
						"block %d for Reconstruct\n",
					     (unsigned long long)sh->sector, i);
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data, we can start a
	 * write request
	 */
	if (s->locked == 0 && rcw == 0 &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
		if (must_compute > 0) {
			/* We have failed blocks and need to compute them */
			switch (s->failed) {
			case 0:
				BUG();
			case 1:
				compute_block_1(sh, r6s->failed_num[0], 0);
				break;
			case 2:
				compute_block_2(sh, r6s->failed_num[0],
						r6s->failed_num[1]);
				break;
			default: /* This request should have been failed? */
				BUG();
			}
		}

2350
		pr_debug("Computing parity for stripe %llu\n",
2351 2352 2353 2354 2355
			(unsigned long long)sh->sector);
		compute_parity6(sh, RECONSTRUCT_WRITE);
		/* now every locked buffer is ready to be written */
		for (i = disks; i--; )
			if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2356
				pr_debug("Writing stripe %llu block %d\n",
2357 2358 2359 2360
				       (unsigned long long)sh->sector, i);
				s->locked++;
				set_bit(R5_Wantwrite, &sh->dev[i].flags);
			}
2361 2362 2363
		if (s->locked == disks)
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
				atomic_inc(&conf->pending_full_writes);
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
		/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
		set_bit(STRIPE_INSYNC, &sh->state);

		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
			atomic_dec(&conf->preread_active_stripes);
			if (atomic_read(&conf->preread_active_stripes) <
			    IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		}
	}
}

static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks)
{
2379 2380
	int canceled_check = 0;

2381
	set_bit(STRIPE_HANDLE, &sh->state);
2382

2383 2384
	/* complete a check operation */
	if (test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
D
Dan Williams 已提交
2385 2386
		clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
		clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2387
		if (s->failed == 0) {
2388 2389 2390 2391
			if (sh->ops.zero_sum_result == 0)
				/* parity is correct (on disc,
				 * not in buffer any more)
				 */
2392 2393
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
				conf->mddev->resync_mismatches +=
					STRIPE_SECTORS;
				if (test_bit(
				     MD_RECOVERY_CHECK, &conf->mddev->recovery))
					/* don't try to repair!! */
					set_bit(STRIPE_INSYNC, &sh->state);
				else {
					set_bit(STRIPE_OP_COMPUTE_BLK,
						&sh->ops.pending);
					set_bit(STRIPE_OP_MOD_REPAIR_PD,
						&sh->ops.pending);
					set_bit(R5_Wantcompute,
						&sh->dev[sh->pd_idx].flags);
					sh->ops.target = sh->pd_idx;
					sh->ops.count++;
					s->uptodate++;
				}
2411
			}
2412 2413
		} else
			canceled_check = 1; /* STRIPE_INSYNC is not set */
2414
	}
2415

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
	/* start a new check operation if there are no failures, the stripe is
	 * not insync, and a repair is not in flight
	 */
	if (s->failed == 0 &&
	    !test_bit(STRIPE_INSYNC, &sh->state) &&
	    !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
		if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
			BUG_ON(s->uptodate != disks);
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			sh->ops.count++;
			s->uptodate--;
		}
	}

D
Dan Williams 已提交
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
	/* check if we can clear a parity disk reconstruct */
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
	    test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {

		clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
	}


2441
	/* Wait for check parity and compute block operations to complete
2442 2443 2444
	 * before write-back.  If a failure occurred while the check operation
	 * was in flight we need to cycle this stripe through handle_stripe
	 * since the parity block may not be uptodate
2445
	 */
2446 2447 2448
	if (!canceled_check && !test_bit(STRIPE_INSYNC, &sh->state) &&
	    !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
	    !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
		struct r5dev *dev;
		/* either failed parity check, or recovery is happening */
		if (s->failed == 0)
			s->failed_num = sh->pd_idx;
		dev = &sh->dev[s->failed_num];
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
		set_bit(R5_Wantwrite, &dev->flags);
2459 2460 2461
		if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
			sh->ops.count++;

2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
		clear_bit(STRIPE_DEGRADED, &sh->state);
		s->locked++;
		set_bit(STRIPE_INSYNC, &sh->state);
	}
}


static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s,
				struct r6_state *r6s, struct page *tmp_page,
				int disks)
{
	int update_p = 0, update_q = 0;
	struct r5dev *dev;
	int pd_idx = sh->pd_idx;
	int qd_idx = r6s->qd_idx;

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
	BUG_ON(s->uptodate < disks);
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

	/* If !tmp_page, we cannot do the calculations,
	 * but as we have set STRIPE_HANDLE, we will soon be called
	 * by stripe_handle with a tmp_page - just wait until then.
	 */
	if (tmp_page) {
		if (s->failed == r6s->q_failed) {
			/* The only possible failed device holds 'Q', so it
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
			compute_block_1(sh, pd_idx, 1);
			if (!page_is_zero(sh->dev[pd_idx].page)) {
				compute_block_1(sh, pd_idx, 0);
				update_p = 1;
			}
		}
		if (!r6s->q_failed && s->failed < 2) {
			/* q is not failed, and we didn't use it to generate
			 * anything, so it makes sense to check it
			 */
			memcpy(page_address(tmp_page),
			       page_address(sh->dev[qd_idx].page),
			       STRIPE_SIZE);
			compute_parity6(sh, UPDATE_PARITY);
			if (memcmp(page_address(tmp_page),
				   page_address(sh->dev[qd_idx].page),
				   STRIPE_SIZE) != 0) {
				clear_bit(STRIPE_INSYNC, &sh->state);
				update_q = 1;
			}
		}
		if (update_p || update_q) {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				update_p = update_q = 0;
		}

		/* now write out any block on a failed drive,
		 * or P or Q if they need it
		 */

		if (s->failed == 2) {
			dev = &sh->dev[r6s->failed_num[1]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
			dev = &sh->dev[r6s->failed_num[0]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}

		if (update_p) {
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (update_q) {
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
	}
}

static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
				struct r6_state *r6s)
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
2570
	struct dma_async_tx_descriptor *tx = NULL;
2571 2572
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
2573
		if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
			int dd_idx, pd_idx, j;
			struct stripe_head *sh2;

			sector_t bn = compute_blocknr(sh, i);
			sector_t s = raid5_compute_sector(bn, conf->raid_disks,
						conf->raid_disks -
						conf->max_degraded, &dd_idx,
						&pd_idx, conf);
			sh2 = get_active_stripe(conf, s, conf->raid_disks,
						pd_idx, 1);
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
2596 2597 2598 2599 2600 2601

			/* place all the copies on one channel */
			tx = async_memcpy(sh2->dev[dd_idx].page,
				sh->dev[i].page, 0, 0, STRIPE_SIZE,
				ASYNC_TX_DEP_ACK, tx, NULL, NULL);

2602 2603 2604 2605
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
2606 2607
				    (!r6s || j != raid6_next_disk(sh2->pd_idx,
								 sh2->disks)) &&
2608 2609 2610 2611 2612 2613 2614
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
2615

2616
		}
2617 2618 2619 2620 2621
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
2622
}
L
Linus Torvalds 已提交
2623

2624

L
Linus Torvalds 已提交
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
/*
 * handle_stripe - do things to a stripe.
 *
 * We lock the stripe and then examine the state of various bits
 * to see what needs to be done.
 * Possible results:
 *    return some read request which now have data
 *    return some write requests which are safely on disc
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 * buffers are taken off read_list or write_list, and bh_cache buffers
 * get BH_Lock set before the stripe lock is released.
 *
 */
2641

2642
static void handle_stripe5(struct stripe_head *sh)
L
Linus Torvalds 已提交
2643 2644
{
	raid5_conf_t *conf = sh->raid_conf;
2645 2646 2647
	int disks = sh->disks, i;
	struct bio *return_bi = NULL;
	struct stripe_head_state s;
L
Linus Torvalds 已提交
2648
	struct r5dev *dev;
2649
	unsigned long pending = 0;
2650
	mdk_rdev_t *blocked_rdev = NULL;
2651
	int prexor;
L
Linus Torvalds 已提交
2652

2653
	memset(&s, 0, sizeof(s));
2654 2655 2656 2657
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
		"ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
		atomic_read(&sh->count), sh->pd_idx,
		sh->ops.pending, sh->ops.ack, sh->ops.complete);
L
Linus Torvalds 已提交
2658 2659 2660 2661 2662

	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

2663 2664 2665
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
L
Linus Torvalds 已提交
2666 2667
	/* Now to look around and see what can be done */

N
Neil Brown 已提交
2668 2669 2670 2671 2672 2673 2674
	/* clean-up completed biofill operations */
	if (test_bit(STRIPE_OP_BIOFILL, &sh->ops.complete)) {
		clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
		clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
		clear_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
	}

2675
	rcu_read_lock();
L
Linus Torvalds 已提交
2676 2677
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
2678
		struct r5dev *dev = &sh->dev[i];
L
Linus Torvalds 已提交
2679 2680
		clear_bit(R5_Insync, &dev->flags);

2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
			"written %p\n",	i, dev->flags, dev->toread, dev->read,
			dev->towrite, dev->written);

		/* maybe we can request a biofill operation
		 *
		 * new wantfill requests are only permitted while
		 * STRIPE_OP_BIOFILL is clear
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
			!test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
2693 2694

		/* now count some things */
2695 2696
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2697
		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
L
Linus Torvalds 已提交
2698

2699 2700 2701
		if (test_bit(R5_Wantfill, &dev->flags))
			s.to_fill++;
		else if (dev->toread)
2702
			s.to_read++;
L
Linus Torvalds 已提交
2703
		if (dev->towrite) {
2704
			s.to_write++;
L
Linus Torvalds 已提交
2705
			if (!test_bit(R5_OVERWRITE, &dev->flags))
2706
				s.non_overwrite++;
L
Linus Torvalds 已提交
2707
		}
2708 2709
		if (dev->written)
			s.written++;
2710
		rdev = rcu_dereference(conf->disks[i].rdev);
2711 2712 2713 2714 2715
		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
			break;
		}
2716
		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
2717
			/* The ReadError flag will just be confusing now */
2718 2719 2720
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
		}
2721
		if (!rdev || !test_bit(In_sync, &rdev->flags)
2722
		    || test_bit(R5_ReadError, &dev->flags)) {
2723 2724
			s.failed++;
			s.failed_num = i;
L
Linus Torvalds 已提交
2725 2726 2727
		} else
			set_bit(R5_Insync, &dev->flags);
	}
2728
	rcu_read_unlock();
2729

2730 2731 2732 2733 2734
	if (unlikely(blocked_rdev)) {
		set_bit(STRIPE_HANDLE, &sh->state);
		goto unlock;
	}

2735 2736 2737
	if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
		sh->ops.count++;

2738
	pr_debug("locked=%d uptodate=%d to_read=%d"
L
Linus Torvalds 已提交
2739
		" to_write=%d failed=%d failed_num=%d\n",
2740 2741
		s.locked, s.uptodate, s.to_read, s.to_write,
		s.failed, s.failed_num);
L
Linus Torvalds 已提交
2742 2743 2744
	/* check if the array has lost two devices and, if so, some requests might
	 * need to be failed
	 */
2745 2746 2747 2748
	if (s.failed > 1 && s.to_read+s.to_write+s.written)
		handle_requests_to_failed_array(conf, sh, &s, disks,
						&return_bi);
	if (s.failed > 1 && s.syncing) {
L
Linus Torvalds 已提交
2749 2750
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
2751
		s.syncing = 0;
L
Linus Torvalds 已提交
2752 2753 2754 2755 2756 2757
	}

	/* might be able to return some write requests if the parity block
	 * is safe, or on a failed drive
	 */
	dev = &sh->dev[sh->pd_idx];
2758 2759 2760 2761 2762 2763
	if ( s.written &&
	     ((test_bit(R5_Insync, &dev->flags) &&
	       !test_bit(R5_LOCKED, &dev->flags) &&
	       test_bit(R5_UPTODATE, &dev->flags)) ||
	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
		handle_completed_write_requests(conf, sh, disks, &return_bi);
L
Linus Torvalds 已提交
2764 2765 2766 2767 2768

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
2769
	if (s.to_read || s.non_overwrite ||
2770 2771
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
	    test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2772
		handle_issuing_new_read_requests5(sh, &s, disks);
L
Linus Torvalds 已提交
2773

2774 2775 2776 2777 2778 2779 2780
	/* Now we check to see if any write operations have recently
	 * completed
	 */

	/* leave prexor set until postxor is done, allows us to distinguish
	 * a rmw from a rcw during biodrain
	 */
2781
	prexor = 0;
2782 2783 2784
	if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
		test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {

2785
		prexor = 1;
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
		clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
		clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
		clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);

		for (i = disks; i--; )
			clear_bit(R5_Wantprexor, &sh->dev[i].flags);
	}

	/* if only POSTXOR is set then this is an 'expand' postxor */
	if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
		test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {

		clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
		clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
		clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);

		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
				if (!test_and_set_bit(
				    STRIPE_OP_IO, &sh->ops.pending))
					sh->ops.count++;
2819 2820
				if (prexor)
					continue;
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
				if (!test_bit(R5_Insync, &dev->flags) ||
				    (i == sh->pd_idx && s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
			atomic_dec(&conf->preread_active_stripes);
			if (atomic_read(&conf->preread_active_stripes) <
				IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		}
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
			  !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2842
		handle_issuing_new_write_requests5(conf, sh, &s, disks);
L
Linus Torvalds 已提交
2843 2844

	/* maybe we need to check and possibly fix the parity for this stripe
2845 2846 2847
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
L
Linus Torvalds 已提交
2848
	 */
2849 2850 2851 2852 2853
	if ((s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
	     !test_bit(STRIPE_INSYNC, &sh->state)) ||
	      test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
	      test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
2854
		handle_parity_checks5(conf, sh, &s, disks);
2855

2856
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
L
Linus Torvalds 已提交
2857 2858 2859
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}
2860 2861 2862 2863

	/* If the failed drive is just a ReadError, then we might need to progress
	 * the repair/check process
	 */
2864 2865 2866 2867
	if (s.failed == 1 && !conf->mddev->ro &&
	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2868
		) {
2869
		dev = &sh->dev[s.failed_num];
2870 2871
		if (!test_bit(R5_ReWrite, &dev->flags)) {
			set_bit(R5_Wantwrite, &dev->flags);
2872 2873
			if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
				sh->ops.count++;
2874 2875
			set_bit(R5_ReWrite, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
2876
			s.locked++;
2877 2878 2879
		} else {
			/* let's read it back */
			set_bit(R5_Wantread, &dev->flags);
2880 2881
			if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
				sh->ops.count++;
2882
			set_bit(R5_LOCKED, &dev->flags);
2883
			s.locked++;
2884 2885 2886
		}
	}

2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
	/* Finish postxor operations initiated by the expansion
	 * process
	 */
	if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
		!test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {

		clear_bit(STRIPE_EXPANDING, &sh->state);

		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);

2899
		for (i = conf->raid_disks; i--; ) {
2900
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
2901 2902
			set_bit(R5_LOCKED, &dev->flags);
			s.locked++;
2903 2904
			if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
				sh->ops.count++;
2905
		}
2906 2907 2908 2909 2910 2911 2912 2913
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
		!test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
		sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
			conf->raid_disks);
2914
		s.locked += handle_write_operations5(sh, 1, 1);
2915
	} else if (s.expanded &&
2916
		   s.locked == 0 &&
2917
		!test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2918
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
2919
		atomic_dec(&conf->reshape_stripes);
2920 2921 2922 2923
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

2924 2925
	if (s.expanding && s.locked == 0 &&
	    !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2926
		handle_stripe_expansion(conf, sh, NULL);
2927

2928 2929 2930
	if (sh->ops.count)
		pending = get_stripe_work(sh);

2931
 unlock:
L
Linus Torvalds 已提交
2932 2933
	spin_unlock(&sh->lock);

2934 2935 2936 2937
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

2938 2939 2940
	if (pending)
		raid5_run_ops(sh, pending);

2941
	return_io(return_bi);
L
Linus Torvalds 已提交
2942 2943 2944

}

2945
static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
L
Linus Torvalds 已提交
2946
{
2947
	raid6_conf_t *conf = sh->raid_conf;
2948
	int disks = sh->disks;
2949 2950 2951 2952
	struct bio *return_bi = NULL;
	int i, pd_idx = sh->pd_idx;
	struct stripe_head_state s;
	struct r6_state r6s;
2953
	struct r5dev *dev, *pdev, *qdev;
2954
	mdk_rdev_t *blocked_rdev = NULL;
L
Linus Torvalds 已提交
2955

2956
	r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2957
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2958 2959 2960 2961
		"pd_idx=%d, qd_idx=%d\n",
	       (unsigned long long)sh->sector, sh->state,
	       atomic_read(&sh->count), pd_idx, r6s.qd_idx);
	memset(&s, 0, sizeof(s));
2962

2963 2964 2965 2966
	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

2967 2968 2969
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2970
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
2971 2972

	rcu_read_lock();
2973 2974 2975 2976
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
		dev = &sh->dev[i];
		clear_bit(R5_Insync, &dev->flags);
L
Linus Torvalds 已提交
2977

2978
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2979 2980 2981 2982
			i, dev->flags, dev->toread, dev->towrite, dev->written);
		/* maybe we can reply to a read */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
			struct bio *rbi, *rbi2;
2983
			pr_debug("Return read for disc %d\n", i);
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
			spin_lock_irq(&conf->device_lock);
			rbi = dev->toread;
			dev->toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&conf->wait_for_overlap);
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
				copy_data(0, rbi, dev->page, dev->sector);
				rbi2 = r5_next_bio(rbi, dev->sector);
				spin_lock_irq(&conf->device_lock);
				if (--rbi->bi_phys_segments == 0) {
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				spin_unlock_irq(&conf->device_lock);
				rbi = rbi2;
			}
		}
L
Linus Torvalds 已提交
3002

3003
		/* now count some things */
3004 3005
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
L
Linus Torvalds 已提交
3006

3007

3008 3009
		if (dev->toread)
			s.to_read++;
3010
		if (dev->towrite) {
3011
			s.to_write++;
3012
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3013
				s.non_overwrite++;
3014
		}
3015 3016
		if (dev->written)
			s.written++;
3017
		rdev = rcu_dereference(conf->disks[i].rdev);
3018 3019 3020 3021 3022
		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
			break;
		}
3023 3024 3025 3026
		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3027
		}
3028 3029
		if (!rdev || !test_bit(In_sync, &rdev->flags)
		    || test_bit(R5_ReadError, &dev->flags)) {
3030 3031 3032
			if (s.failed < 2)
				r6s.failed_num[s.failed] = i;
			s.failed++;
3033 3034
		} else
			set_bit(R5_Insync, &dev->flags);
L
Linus Torvalds 已提交
3035 3036
	}
	rcu_read_unlock();
3037 3038 3039 3040 3041

	if (unlikely(blocked_rdev)) {
		set_bit(STRIPE_HANDLE, &sh->state);
		goto unlock;
	}
3042
	pr_debug("locked=%d uptodate=%d to_read=%d"
3043
	       " to_write=%d failed=%d failed_num=%d,%d\n",
3044 3045 3046 3047
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       r6s.failed_num[0], r6s.failed_num[1]);
	/* check if the array has lost >2 devices and, if so, some requests
	 * might need to be failed
3048
	 */
3049 3050 3051 3052
	if (s.failed > 2 && s.to_read+s.to_write+s.written)
		handle_requests_to_failed_array(conf, sh, &s, disks,
						&return_bi);
	if (s.failed > 2 && s.syncing) {
3053 3054
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3055
		s.syncing = 0;
3056 3057 3058 3059 3060 3061 3062
	}

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[pd_idx];
3063 3064 3065 3066 3067 3068 3069 3070
	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
	qdev = &sh->dev[r6s.qd_idx];
	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);

	if ( s.written &&
	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3071
			     && !test_bit(R5_LOCKED, &pdev->flags)
3072 3073
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3074
			     && !test_bit(R5_LOCKED, &qdev->flags)
3075 3076
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
		handle_completed_write_requests(conf, sh, disks, &return_bi);
3077 3078 3079 3080 3081

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3082 3083 3084
	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
	    (s.syncing && (s.uptodate < disks)) || s.expanding)
		handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3085 3086

	/* now to consider writing and what else, if anything should be read */
3087 3088
	if (s.to_write)
		handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3089 3090

	/* maybe we need to check and possibly fix the parity for this stripe
3091 3092
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available
3093
	 */
3094 3095
	if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
		handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3096

3097
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3098 3099 3100 3101 3102 3103 3104
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
3105 3106 3107
	if (s.failed <= 2 && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			dev = &sh->dev[r6s.failed_num[i]];
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
				}
			}
		}
3123

3124
	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3125 3126 3127 3128 3129 3130 3131
		/* Need to write out all blocks after computing P&Q */
		sh->disks = conf->raid_disks;
		sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
					     conf->raid_disks);
		compute_parity6(sh, RECONSTRUCT_WRITE);
		for (i = conf->raid_disks ; i-- ;  ) {
			set_bit(R5_LOCKED, &sh->dev[i].flags);
3132
			s.locked++;
3133 3134 3135
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
		}
		clear_bit(STRIPE_EXPANDING, &sh->state);
3136
	} else if (s.expanded) {
3137 3138 3139 3140 3141 3142
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3143 3144
	if (s.expanding && s.locked == 0 &&
	    !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
3145
		handle_stripe_expansion(conf, sh, &r6s);
3146

3147
 unlock:
3148 3149
	spin_unlock(&sh->lock);

3150 3151 3152 3153
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3154
	return_io(return_bi);
3155 3156 3157 3158 3159 3160

	for (i=disks; i-- ;) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
3161
			rw = WRITE;
3162
		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
3163
			rw = READ;
3164 3165 3166
		else
			continue;

3167 3168
		set_bit(STRIPE_IO_STARTED, &sh->state);

3169 3170 3171
		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
3172
		if (rw == WRITE)
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
3186
			if (s.syncing || s.expanding || s.expanded)
3187 3188 3189
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

			bi->bi_bdev = rdev->bdev;
3190
			pr_debug("for %llu schedule op %ld on disc %d\n",
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
				(unsigned long long)sh->sector, bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
			if (rw == WRITE &&
			    test_bit(R5_ReWrite, &sh->dev[i].flags))
				atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
			generic_make_request(bi);
		} else {
3208
			if (rw == WRITE)
3209
				set_bit(STRIPE_DEGRADED, &sh->state);
3210
			pr_debug("skip op %ld on disc %d for sector %llu\n",
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
{
	if (sh->raid_conf->level == 6)
		handle_stripe6(sh, tmp_page);
	else
		handle_stripe5(sh);
}



static void raid5_activate_delayed(raid5_conf_t *conf)
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3239
			list_add_tail(&sh->lru, &conf->hold_list);
3240
		}
3241 3242
	} else
		blk_plug_device(conf->mddev->queue);
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
}

static void activate_bit_delay(raid5_conf_t *conf)
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

static void unplug_slaves(mddev_t *mddev)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);
	int i;

	rcu_read_lock();
	for (i=0; i<mddev->raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3268
			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3269 3270 3271 3272

			atomic_inc(&rdev->nr_pending);
			rcu_read_unlock();

3273
			blk_unplug(r_queue);
3274 3275 3276 3277 3278 3279 3280 3281

			rdev_dec_pending(rdev, mddev);
			rcu_read_lock();
		}
	}
	rcu_read_unlock();
}

3282
static void raid5_unplug_device(struct request_queue *q)
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
{
	mddev_t *mddev = q->queuedata;
	raid5_conf_t *conf = mddev_to_conf(mddev);
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	if (blk_remove_plug(q)) {
		conf->seq_flush++;
		raid5_activate_delayed(conf);
3293
	}
L
Linus Torvalds 已提交
3294 3295 3296 3297 3298 3299 3300
	md_wakeup_thread(mddev->thread);

	spin_unlock_irqrestore(&conf->device_lock, flags);

	unplug_slaves(mddev);
}

3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
static int raid5_congested(void *data, int bits)
{
	mddev_t *mddev = data;
	raid5_conf_t *conf = mddev_to_conf(mddev);

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}

3319 3320 3321
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3322
static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
3323 3324 3325 3326 3327 3328 3329
{
	mddev_t *mddev = q->queuedata;
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
	int max;
	unsigned int chunk_sectors = mddev->chunk_size >> 9;
	unsigned int bio_sectors = bio->bi_size >> 9;

3330
	if (bio_data_dir(bio) == WRITE)
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
		return biovec->bv_len; /* always allow writes to be mergeable */

	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351

static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
	unsigned int chunk_sectors = mddev->chunk_size >> 9;
	unsigned int bio_sectors = bio->bi_size >> 9;

	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3381
		conf->retry_read_aligned_list = bi->bi_next;
3382 3383 3384 3385 3386 3387 3388 3389 3390
		bi->bi_next = NULL;
		bi->bi_phys_segments = 1; /* biased count of active stripes */
		bi->bi_hw_segments = 0; /* count of processed stripes */
	}

	return bi;
}


3391 3392 3393 3394 3395 3396
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3397
static void raid5_align_endio(struct bio *bi, int error)
3398 3399
{
	struct bio* raid_bi  = bi->bi_private;
3400 3401 3402 3403 3404
	mddev_t *mddev;
	raid5_conf_t *conf;
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
	mdk_rdev_t *rdev;

3405
	bio_put(bi);
3406 3407 3408 3409 3410 3411 3412 3413 3414

	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
	conf = mddev_to_conf(mddev);
	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3415
		bio_endio(raid_bi, 0);
3416 3417
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3418
		return;
3419 3420 3421
	}


3422
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3423 3424

	add_bio_to_retry(raid_bi, conf);
3425 3426
}

3427 3428
static int bio_fits_rdev(struct bio *bi)
{
3429
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447

	if ((bi->bi_size>>9) > q->max_sectors)
		return 0;
	blk_recount_segments(q, bi);
	if (bi->bi_phys_segments > q->max_phys_segments ||
	    bi->bi_hw_segments > q->max_hw_segments)
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3448
static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3449 3450 3451 3452
{
	mddev_t *mddev = q->queuedata;
	raid5_conf_t *conf = mddev_to_conf(mddev);
	const unsigned int raid_disks = conf->raid_disks;
3453
	const unsigned int data_disks = raid_disks - conf->max_degraded;
3454 3455 3456 3457 3458
	unsigned int dd_idx, pd_idx;
	struct bio* align_bi;
	mdk_rdev_t *rdev;

	if (!in_chunk_boundary(mddev, raid_bio)) {
3459
		pr_debug("chunk_aligned_read : non aligned\n");
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
		return 0;
	}
	/*
 	 * use bio_clone to make a copy of the bio
	 */
	align_bi = bio_clone(raid_bio, GFP_NOIO);
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
	align_bi->bi_sector =  raid5_compute_sector(raid_bio->bi_sector,
					raid_disks,
					data_disks,
					&dd_idx,
					&pd_idx,
					conf);

	rcu_read_lock();
	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
	if (rdev && test_bit(In_sync, &rdev->flags)) {
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3489 3490 3491 3492 3493
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3494 3495 3496 3497 3498 3499 3500
		if (!bio_fits_rdev(align_bi)) {
			/* too big in some way */
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3501 3502 3503 3504 3505 3506 3507
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3508 3509 3510 3511
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3512
		bio_put(align_bi);
3513 3514 3515 3516
		return 0;
	}
}

3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3569

3570
static int make_request(struct request_queue *q, struct bio * bi)
L
Linus Torvalds 已提交
3571 3572 3573 3574 3575 3576 3577
{
	mddev_t *mddev = q->queuedata;
	raid5_conf_t *conf = mddev_to_conf(mddev);
	unsigned int dd_idx, pd_idx;
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3578
	const int rw = bio_data_dir(bi);
3579
	int remaining;
L
Linus Torvalds 已提交
3580

3581
	if (unlikely(bio_barrier(bi))) {
3582
		bio_endio(bi, -EOPNOTSUPP);
3583 3584 3585
		return 0;
	}

3586
	md_write_start(mddev, bi);
3587

3588 3589
	disk_stat_inc(mddev->gendisk, ios[rw]);
	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
L
Linus Torvalds 已提交
3590

3591
	if (rw == READ &&
3592 3593 3594 3595
	     mddev->reshape_position == MaxSector &&
	     chunk_aligned_read(q,bi))
            	return 0;

L
Linus Torvalds 已提交
3596 3597 3598 3599
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3600

L
Linus Torvalds 已提交
3601 3602
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3603
		int disks, data_disks;
3604

3605
	retry:
3606
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3607 3608 3609
		if (likely(conf->expand_progress == MaxSector))
			disks = conf->raid_disks;
		else {
3610 3611 3612 3613 3614 3615 3616 3617
			/* spinlock is needed as expand_progress may be
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
			 * Ofcourse expand_progress could change after
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
3618 3619 3620 3621
			spin_lock_irq(&conf->device_lock);
			disks = conf->raid_disks;
			if (logical_sector >= conf->expand_progress)
				disks = conf->previous_raid_disks;
3622 3623 3624 3625 3626 3627 3628
			else {
				if (logical_sector >= conf->expand_lo) {
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
3629 3630
			spin_unlock_irq(&conf->device_lock);
		}
3631 3632 3633
		data_disks = disks - conf->max_degraded;

 		new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3634
						  &dd_idx, &pd_idx, conf);
3635
		pr_debug("raid5: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
3636 3637 3638
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

3639
		sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
L
Linus Torvalds 已提交
3640
		if (sh) {
3641 3642
			if (unlikely(conf->expand_progress != MaxSector)) {
				/* expansion might have moved on while waiting for a
3643 3644 3645 3646 3647 3648
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
				if (logical_sector <  conf->expand_progress &&
				    disks == conf->previous_raid_disks)
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
					goto retry;
				}
			}
3662 3663 3664 3665 3666 3667 3668 3669 3670
			/* FIXME what if we get a false positive because these
			 * are being updated.
			 */
			if (logical_sector >= mddev->suspend_lo &&
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
				schedule();
				goto retry;
			}
3671 3672 3673 3674 3675

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
3676 3677 3678 3679 3680 3681 3682 3683
				 * and wait a while
				 */
				raid5_unplug_device(mddev->queue);
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
3684 3685
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
L
Linus Torvalds 已提交
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
	spin_lock_irq(&conf->device_lock);
3696 3697 3698
	remaining = --bi->bi_phys_segments;
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
3699

3700
		if ( rw == WRITE )
L
Linus Torvalds 已提交
3701
			md_write_end(mddev);
3702 3703

		bi->bi_end_io(bi,
3704 3705
			      test_bit(BIO_UPTODATE, &bi->bi_flags)
			        ? 0 : -EIO);
L
Linus Torvalds 已提交
3706 3707 3708 3709
	}
	return 0;
}

3710
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
3711
{
3712 3713 3714 3715 3716 3717 3718 3719 3720
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
L
Linus Torvalds 已提交
3721 3722
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	struct stripe_head *sh;
3723 3724
	int pd_idx;
	sector_t first_sector, last_sector;
3725 3726 3727
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
3728 3729 3730 3731 3732 3733 3734 3735
	int i;
	int dd_idx;
	sector_t writepos, safepos, gap;

	if (sector_nr == 0 &&
	    conf->expand_progress != 0) {
		/* restarting in the middle, skip the initial sectors */
		sector_nr = conf->expand_progress;
3736
		sector_div(sector_nr, new_data_disks);
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
		*skipped = 1;
		return sector_nr;
	}

	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
	 * i.e. one new_stripe forward from expand_progress new_maps
	 * to after where expand_lo old_maps to
	 */
	writepos = conf->expand_progress +
3750 3751
		conf->chunk_size/512*(new_data_disks);
	sector_div(writepos, new_data_disks);
3752
	safepos = conf->expand_lo;
3753
	sector_div(safepos, data_disks);
3754 3755 3756
	gap = conf->expand_progress - conf->expand_lo;

	if (writepos >= safepos ||
3757
	    gap > (new_data_disks)*3000*2 /*3Meg*/) {
3758 3759 3760 3761
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
		mddev->reshape_position = conf->expand_progress;
3762
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3763
		md_wakeup_thread(mddev->thread);
3764
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
		conf->expand_lo = mddev->reshape_position;
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
	}

	for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
		int j;
		int skipped = 0;
		pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
		sh = get_active_stripe(conf, sector_nr+i,
				       conf->raid_disks, pd_idx, 0);
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
3787 3788 3789
			if (conf->level == 6 &&
			    j == raid6_next_disk(sh->pd_idx, sh->disks))
				continue;
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
			s = compute_blocknr(sh, j);
			if (s < (mddev->array_size<<1)) {
				skipped = 1;
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
		if (!skipped) {
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
		release_stripe(sh);
	}
	spin_lock_irq(&conf->device_lock);
N
NeilBrown 已提交
3806
	conf->expand_progress = (sector_nr + i) * new_data_disks;
3807 3808 3809 3810 3811 3812 3813
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
3814
		raid5_compute_sector(sector_nr*(new_data_disks),
3815 3816 3817 3818
				     raid_disks, data_disks,
				     &dd_idx, &pd_idx, conf);
	last_sector =
		raid5_compute_sector((sector_nr+conf->chunk_size/512)
3819
				     *(new_data_disks) -1,
3820 3821 3822 3823 3824
				     raid_disks, data_disks,
				     &dd_idx, &pd_idx, conf);
	if (last_sector >= (mddev->size<<1))
		last_sector = (mddev->size<<1)-1;
	while (first_sector <= last_sector) {
3825 3826
		pd_idx = stripe_to_pdidx(first_sector, conf,
					 conf->previous_raid_disks);
3827 3828 3829 3830 3831 3832 3833
		sh = get_active_stripe(conf, first_sector,
				       conf->previous_raid_disks, pd_idx, 0);
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
	sector_nr += conf->chunk_size>>9;
	if (sector_nr >= mddev->resync_max) {
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
		mddev->reshape_position = conf->expand_progress;
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
		conf->expand_lo = mddev->reshape_position;
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
	}
3853 3854 3855 3856 3857 3858 3859 3860 3861
	return conf->chunk_size>>9;
}

/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	struct stripe_head *sh;
	int pd_idx;
L
Linus Torvalds 已提交
3862
	int raid_disks = conf->raid_disks;
3863 3864
	sector_t max_sector = mddev->size << 1;
	int sync_blocks;
3865 3866
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
3867

3868
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
3869 3870
		/* just being told to finish up .. nothing much to do */
		unplug_slaves(mddev);
3871 3872 3873 3874
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
3875 3876 3877 3878

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
3879
		else /* completed sync */
3880 3881 3882
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
3883 3884
		return 0;
	}
3885

3886 3887
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
3888

3889 3890 3891 3892 3893 3894
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

3895
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
3896 3897 3898
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
3899
	if (mddev->degraded >= conf->max_degraded &&
3900
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3901 3902
		sector_t rv = (mddev->size << 1) - sector_nr;
		*skipped = 1;
L
Linus Torvalds 已提交
3903 3904
		return rv;
	}
3905
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3906
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3907 3908 3909 3910 3911 3912
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
3913

N
NeilBrown 已提交
3914 3915 3916

	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

3917
	pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3918
	sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
L
Linus Torvalds 已提交
3919
	if (sh == NULL) {
3920
		sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
L
Linus Torvalds 已提交
3921
		/* make sure we don't swamp the stripe cache if someone else
3922
		 * is trying to get access
L
Linus Torvalds 已提交
3923
		 */
3924
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3925
	}
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
	for (i=0; i<mddev->raid_disks; i++)
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

	spin_lock(&sh->lock);
L
Linus Torvalds 已提交
3937 3938 3939 3940
	set_bit(STRIPE_SYNCING, &sh->state);
	clear_bit(STRIPE_INSYNC, &sh->state);
	spin_unlock(&sh->lock);

3941
	handle_stripe(sh, NULL);
L
Linus Torvalds 已提交
3942 3943 3944 3945 3946
	release_stripe(sh);

	return STRIPE_SECTORS;
}

3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
	int dd_idx, pd_idx;
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	sector = raid5_compute_sector(	logical_sector,
					conf->raid_disks,
					conf->raid_disks - conf->max_degraded,
					&dd_idx,
					&pd_idx,
					conf);
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
3976 3977 3978
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993

		if (scnt < raid_bio->bi_hw_segments)
			/* already done this stripe */
			continue;

		sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);

		if (!sh) {
			/* failed to get a stripe - must wait */
			raid_bio->bi_hw_segments = scnt;
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3994 3995 3996 3997 3998 3999 4000
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
			raid_bio->bi_hw_segments = scnt;
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4001 4002 4003 4004 4005 4006 4007 4008 4009
		handle_stripe(sh, NULL);
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
	remaining = --raid_bio->bi_phys_segments;
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {

4010
		raid_bio->bi_end_io(raid_bio,
4011 4012
			      test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
			        ? 0 : -EIO);
4013 4014 4015 4016 4017 4018 4019 4020
	}
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}



L
Linus Torvalds 已提交
4021 4022 4023 4024 4025 4026 4027
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4028
static void raid5d(mddev_t *mddev)
L
Linus Torvalds 已提交
4029 4030 4031 4032 4033
{
	struct stripe_head *sh;
	raid5_conf_t *conf = mddev_to_conf(mddev);
	int handled;

4034
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4035 4036 4037 4038 4039 4040

	md_check_recovery(mddev);

	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4041
		struct bio *bio;
L
Linus Torvalds 已提交
4042

4043
		if (conf->seq_flush != conf->seq_write) {
4044
			int seq = conf->seq_flush;
4045
			spin_unlock_irq(&conf->device_lock);
4046
			bitmap_unplug(mddev->bitmap);
4047
			spin_lock_irq(&conf->device_lock);
4048 4049 4050 4051
			conf->seq_write = seq;
			activate_bit_delay(conf);
		}

4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4062 4063 4064
		sh = __get_priority_stripe(conf);

		if (!sh) {
4065
			async_tx_issue_pending_all();
L
Linus Torvalds 已提交
4066
			break;
4067
		}
L
Linus Torvalds 已提交
4068 4069 4070
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4071
		handle_stripe(sh, conf->spare_page);
L
Linus Torvalds 已提交
4072 4073 4074 4075
		release_stripe(sh);

		spin_lock_irq(&conf->device_lock);
	}
4076
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4077 4078 4079 4080 4081

	spin_unlock_irq(&conf->device_lock);

	unplug_slaves(mddev);

4082
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4083 4084
}

4085
static ssize_t
4086
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4087
{
4088
	raid5_conf_t *conf = mddev_to_conf(mddev);
4089 4090 4091 4092
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4093 4094 4095
}

static ssize_t
4096
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4097
{
4098
	raid5_conf_t *conf = mddev_to_conf(mddev);
4099
	unsigned long new;
4100 4101
	if (len >= PAGE_SIZE)
		return -EINVAL;
4102 4103
	if (!conf)
		return -ENODEV;
4104

4105
	if (strict_strtoul(page, 10, &new))
4106 4107 4108 4109 4110 4111 4112 4113 4114
		return -EINVAL;
	if (new <= 16 || new > 32768)
		return -EINVAL;
	while (new < conf->max_nr_stripes) {
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4115
	md_allow_write(mddev);
4116 4117 4118 4119 4120 4121 4122
	while (new > conf->max_nr_stripes) {
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
	return len;
}
4123

4124 4125 4126 4127
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4128

4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);
4143
	unsigned long new;
4144 4145 4146 4147 4148
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4149
	if (strict_strtoul(page, 10, &new))
4150
		return -EINVAL;
4151
	if (new > conf->max_nr_stripes)
4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4163
static ssize_t
4164
stripe_cache_active_show(mddev_t *mddev, char *page)
4165
{
4166
	raid5_conf_t *conf = mddev_to_conf(mddev);
4167 4168 4169 4170
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4171 4172
}

4173 4174
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4175

4176
static struct attribute *raid5_attrs[] =  {
4177 4178
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4179
	&raid5_preread_bypass_threshold.attr,
4180 4181
	NULL,
};
4182 4183 4184
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4185 4186
};

4187
static int run(mddev_t *mddev)
L
Linus Torvalds 已提交
4188 4189 4190 4191 4192 4193
{
	raid5_conf_t *conf;
	int raid_disk, memory;
	mdk_rdev_t *rdev;
	struct disk_info *disk;
	struct list_head *tmp;
4194
	int working_disks = 0;
L
Linus Torvalds 已提交
4195

4196 4197
	if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4198
		       mdname(mddev), mddev->level);
L
Linus Torvalds 已提交
4199 4200 4201
		return -EIO;
	}

4202 4203 4204 4205 4206 4207 4208 4209
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
4210
		int max_degraded = (mddev->level == 5 ? 1 : 2);
4211 4212 4213 4214

		if (mddev->new_level != mddev->level ||
		    mddev->new_layout != mddev->layout ||
		    mddev->new_chunk != mddev->chunk_size) {
4215 4216
			printk(KERN_ERR "raid5: %s: unsupported reshape "
			       "required - aborting.\n",
4217 4218 4219 4220
			       mdname(mddev));
			return -EINVAL;
		}
		if (mddev->delta_disks <= 0) {
4221 4222
			printk(KERN_ERR "raid5: %s: unsupported reshape "
			       "(reduce disks) required - aborting.\n",
4223 4224 4225 4226 4227
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
4228 4229
		 * further up in new geometry must map after here in old
		 * geometry.
4230 4231
		 */
		here_new = mddev->reshape_position;
4232 4233 4234 4235
		if (sector_div(here_new, (mddev->chunk_size>>9)*
			       (mddev->raid_disks - max_degraded))) {
			printk(KERN_ERR "raid5: reshape_position not "
			       "on a stripe boundary\n");
4236 4237 4238 4239
			return -EINVAL;
		}
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
4240 4241 4242 4243
		sector_div(here_old, (mddev->chunk_size>>9)*
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
4244 4245
		if (here_new >= here_old) {
			/* Reading from the same stripe as writing to - bad */
4246 4247
			printk(KERN_ERR "raid5: reshape_position too early for "
			       "auto-recovery - aborting.\n");
4248 4249 4250 4251 4252 4253 4254
			return -EINVAL;
		}
		printk(KERN_INFO "raid5: reshape will continue\n");
		/* OK, we should be able to continue; */
	}


4255
	mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
L
Linus Torvalds 已提交
4256 4257
	if ((conf = mddev->private) == NULL)
		goto abort;
4258 4259 4260 4261 4262 4263 4264 4265
	if (mddev->reshape_position == MaxSector) {
		conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
	} else {
		conf->raid_disks = mddev->raid_disks;
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
	}

	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4266 4267 4268
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4269

L
Linus Torvalds 已提交
4270 4271
	conf->mddev = mddev;

4272
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4273 4274
		goto abort;

4275 4276 4277 4278 4279
	if (mddev->level == 6) {
		conf->spare_page = alloc_page(GFP_KERNEL);
		if (!conf->spare_page)
			goto abort;
	}
L
Linus Torvalds 已提交
4280
	spin_lock_init(&conf->device_lock);
4281
	mddev->queue->queue_lock = &conf->device_lock;
L
Linus Torvalds 已提交
4282 4283 4284
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
4285
	INIT_LIST_HEAD(&conf->hold_list);
L
Linus Torvalds 已提交
4286
	INIT_LIST_HEAD(&conf->delayed_list);
4287
	INIT_LIST_HEAD(&conf->bitmap_list);
L
Linus Torvalds 已提交
4288 4289 4290
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
4291
	atomic_set(&conf->active_aligned_reads, 0);
4292
	conf->bypass_threshold = BYPASS_THRESHOLD;
L
Linus Torvalds 已提交
4293

4294
	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4295

4296
	rdev_for_each(rdev, tmp, mddev) {
L
Linus Torvalds 已提交
4297
		raid_disk = rdev->raid_disk;
4298
		if (raid_disk >= conf->raid_disks
L
Linus Torvalds 已提交
4299 4300 4301 4302 4303 4304
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

		disk->rdev = rdev;

4305
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4306 4307 4308 4309
			char b[BDEVNAME_SIZE];
			printk(KERN_INFO "raid5: device %s operational as raid"
				" disk %d\n", bdevname(rdev->bdev,b),
				raid_disk);
4310
			working_disks++;
4311 4312 4313
		} else
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4314 4315 4316
	}

	/*
4317
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
L
Linus Torvalds 已提交
4318
	 */
4319
	mddev->degraded = conf->raid_disks - working_disks;
L
Linus Torvalds 已提交
4320 4321 4322
	conf->mddev = mddev;
	conf->chunk_size = mddev->chunk_size;
	conf->level = mddev->level;
4323 4324 4325 4326
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
L
Linus Torvalds 已提交
4327 4328
	conf->algorithm = mddev->layout;
	conf->max_nr_stripes = NR_STRIPES;
4329
	conf->expand_progress = mddev->reshape_position;
L
Linus Torvalds 已提交
4330 4331 4332

	/* device size must be a multiple of chunk size */
	mddev->size &= ~(mddev->chunk_size/1024 -1);
4333
	mddev->resync_max_sectors = mddev->size << 1;
L
Linus Torvalds 已提交
4334

4335 4336 4337 4338 4339
	if (conf->level == 6 && conf->raid_disks < 4) {
		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
		       mdname(mddev), conf->raid_disks);
		goto abort;
	}
L
Linus Torvalds 已提交
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350
	if (!conf->chunk_size || conf->chunk_size % 4) {
		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
			conf->chunk_size, mdname(mddev));
		goto abort;
	}
	if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
		printk(KERN_ERR 
			"raid5: unsupported parity algorithm %d for %s\n",
			conf->algorithm, mdname(mddev));
		goto abort;
	}
4351
	if (mddev->degraded > conf->max_degraded) {
L
Linus Torvalds 已提交
4352 4353
		printk(KERN_ERR "raid5: not enough operational devices for %s"
			" (%d/%d failed)\n",
4354
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
4355 4356 4357
		goto abort;
	}

4358
	if (mddev->degraded > 0 &&
L
Linus Torvalds 已提交
4359
	    mddev->recovery_cp != MaxSector) {
4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
			       "raid5: starting dirty degraded array: %s"
			       "- data corruption possible.\n",
			       mdname(mddev));
		else {
			printk(KERN_ERR
			       "raid5: cannot start dirty degraded array for %s\n",
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
	}

	{
		mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
		if (!mddev->thread) {
			printk(KERN_ERR 
				"raid5: couldn't allocate thread for %s\n",
				mdname(mddev));
			goto abort;
		}
	}
4382
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
L
Linus Torvalds 已提交
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406
		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR 
			"raid5: couldn't allocate %dkB for buffers\n", memory);
		shrink_stripes(conf);
		md_unregister_thread(mddev->thread);
		goto abort;
	} else
		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
			memory, mdname(mddev));

	if (mddev->degraded == 0)
		printk("raid5: raid level %d set %s active with %d out of %d"
			" devices, algorithm %d\n", conf->level, mdname(mddev), 
			mddev->raid_disks-mddev->degraded, mddev->raid_disks,
			conf->algorithm);
	else
		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
			" out of %d devices, algorithm %d\n", conf->level,
			mdname(mddev), mddev->raid_disks - mddev->degraded,
			mddev->raid_disks, conf->algorithm);

	print_raid5_conf(conf);

4407 4408
	if (conf->expand_progress != MaxSector) {
		printk("...ok start reshape thread\n");
4409
		conf->expand_lo = conf->expand_progress;
4410 4411 4412 4413 4414 4415 4416 4417 4418
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
							"%s_reshape");
	}

L
Linus Torvalds 已提交
4419
	/* read-ahead size must cover two whole stripes, which is
4420
	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
L
Linus Torvalds 已提交
4421 4422
	 */
	{
4423 4424
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
4425
			(mddev->chunk_size / PAGE_SIZE);
L
Linus Torvalds 已提交
4426 4427 4428 4429 4430
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
	}

	/* Ok, everything is just fine now */
4431 4432 4433 4434
	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
		printk(KERN_WARNING
		       "raid5: failed to create sysfs attributes for %s\n",
		       mdname(mddev));
4435 4436

	mddev->queue->unplug_fn = raid5_unplug_device;
4437
	mddev->queue->backing_dev_info.congested_data = mddev;
4438
	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4439

4440 4441
	mddev->array_size =  mddev->size * (conf->previous_raid_disks -
					    conf->max_degraded);
4442

4443 4444
	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);

L
Linus Torvalds 已提交
4445 4446 4447 4448
	return 0;
abort:
	if (conf) {
		print_raid5_conf(conf);
4449
		safe_put_page(conf->spare_page);
4450
		kfree(conf->disks);
4451
		kfree(conf->stripe_hashtbl);
L
Linus Torvalds 已提交
4452 4453 4454 4455 4456 4457 4458 4459 4460
		kfree(conf);
	}
	mddev->private = NULL;
	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
	return -EIO;
}



4461
static int stop(mddev_t *mddev)
L
Linus Torvalds 已提交
4462 4463 4464 4465 4466 4467
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;

	md_unregister_thread(mddev->thread);
	mddev->thread = NULL;
	shrink_stripes(conf);
4468
	kfree(conf->stripe_hashtbl);
4469
	mddev->queue->backing_dev_info.congested_fn = NULL;
L
Linus Torvalds 已提交
4470
	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4471
	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4472
	kfree(conf->disks);
4473
	kfree(conf);
L
Linus Torvalds 已提交
4474 4475 4476 4477
	mddev->private = NULL;
	return 0;
}

4478
#ifdef DEBUG
4479
static void print_sh (struct seq_file *seq, struct stripe_head *sh)
L
Linus Torvalds 已提交
4480 4481 4482
{
	int i;

4483 4484 4485 4486 4487
	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
	seq_printf(seq, "sh %llu,  count %d.\n",
		   (unsigned long long)sh->sector, atomic_read(&sh->count));
	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4488
	for (i = 0; i < sh->disks; i++) {
4489 4490
		seq_printf(seq, "(cache%d: %p %ld) ",
			   i, sh->dev[i].page, sh->dev[i].flags);
L
Linus Torvalds 已提交
4491
	}
4492
	seq_printf(seq, "\n");
L
Linus Torvalds 已提交
4493 4494
}

4495
static void printall (struct seq_file *seq, raid5_conf_t *conf)
L
Linus Torvalds 已提交
4496 4497
{
	struct stripe_head *sh;
4498
	struct hlist_node *hn;
L
Linus Torvalds 已提交
4499 4500 4501 4502
	int i;

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < NR_HASH; i++) {
4503
		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
L
Linus Torvalds 已提交
4504 4505
			if (sh->raid_conf != conf)
				continue;
4506
			print_sh(seq, sh);
L
Linus Torvalds 已提交
4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
		}
	}
	spin_unlock_irq(&conf->device_lock);
}
#endif

static void status (struct seq_file *seq, mddev_t *mddev)
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	int i;

	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4519
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
4520 4521 4522
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
4523
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
4524
	seq_printf (seq, "]");
4525
#ifdef DEBUG
4526 4527
	seq_printf (seq, "\n");
	printall(seq, conf);
L
Linus Torvalds 已提交
4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
#endif
}

static void print_raid5_conf (raid5_conf_t *conf)
{
	int i;
	struct disk_info *tmp;

	printk("RAID5 conf printout:\n");
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
4541 4542
	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
		 conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
4543 4544 4545 4546 4547 4548

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
		printk(" disk %d, o:%d, dev:%s\n",
4549
			i, !test_bit(Faulty, &tmp->rdev->flags),
L
Linus Torvalds 已提交
4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
			bdevname(tmp->rdev->bdev,b));
	}
}

static int raid5_spare_active(mddev_t *mddev)
{
	int i;
	raid5_conf_t *conf = mddev->private;
	struct disk_info *tmp;

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
		if (tmp->rdev
4563
		    && !test_bit(Faulty, &tmp->rdev->flags)
4564 4565 4566
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
4567
			mddev->degraded--;
4568
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
		}
	}
	print_raid5_conf(conf);
	return 0;
}

static int raid5_remove_disk(mddev_t *mddev, int number)
{
	raid5_conf_t *conf = mddev->private;
	int err = 0;
	mdk_rdev_t *rdev;
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
	rdev = p->rdev;
	if (rdev) {
4585
		if (test_bit(In_sync, &rdev->flags) ||
L
Linus Torvalds 已提交
4586 4587 4588 4589
		    atomic_read(&rdev->nr_pending)) {
			err = -EBUSY;
			goto abort;
		}
4590 4591 4592 4593 4594 4595 4596 4597
		/* Only remove non-faulty devices if recovery
		 * isn't possible.
		 */
		if (!test_bit(Faulty, &rdev->flags) &&
		    mddev->degraded <= conf->max_degraded) {
			err = -EBUSY;
			goto abort;
		}
L
Linus Torvalds 已提交
4598
		p->rdev = NULL;
4599
		synchronize_rcu();
L
Linus Torvalds 已提交
4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
		if (atomic_read(&rdev->nr_pending)) {
			/* lost the race, try later */
			err = -EBUSY;
			p->rdev = rdev;
		}
	}
abort:

	print_raid5_conf(conf);
	return err;
}

static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
	raid5_conf_t *conf = mddev->private;
	int found = 0;
	int disk;
	struct disk_info *p;

4619
	if (mddev->degraded > conf->max_degraded)
L
Linus Torvalds 已提交
4620 4621 4622 4623
		/* no point adding a device */
		return 0;

	/*
4624 4625
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
4626
	 */
4627 4628 4629 4630 4631 4632
	if (rdev->saved_raid_disk >= 0 &&
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
		disk = 0;
	for ( ; disk < conf->raid_disks; disk++)
L
Linus Torvalds 已提交
4633
		if ((p=conf->disks + disk)->rdev == NULL) {
4634
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
4635 4636
			rdev->raid_disk = disk;
			found = 1;
4637 4638
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
4639
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
			break;
		}
	print_raid5_conf(conf);
	return found;
}

static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
4655 4656
	raid5_conf_t *conf = mddev_to_conf(mddev);

L
Linus Torvalds 已提交
4657
	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4658
	mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
L
Linus Torvalds 已提交
4659
	set_capacity(mddev->gendisk, mddev->array_size << 1);
4660
	mddev->changed = 1;
L
Linus Torvalds 已提交
4661 4662 4663 4664 4665
	if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
		mddev->recovery_cp = mddev->size << 1;
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
	mddev->size = sectors /2;
4666
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
4667 4668 4669
	return 0;
}

4670
#ifdef CONFIG_MD_RAID5_RESHAPE
4671
static int raid5_check_reshape(mddev_t *mddev)
4672 4673 4674 4675
{
	raid5_conf_t *conf = mddev_to_conf(mddev);
	int err;

4676 4677 4678 4679
	if (mddev->delta_disks < 0 ||
	    mddev->new_level != mddev->level)
		return -EINVAL; /* Cannot shrink array or change level yet */
	if (mddev->delta_disks == 0)
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
		return 0; /* nothing to do */

	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
4690 4691
	if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
	    (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4692 4693 4694 4695 4696
		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
		       (mddev->chunk_size / STRIPE_SIZE)*4);
		return -ENOSPC;
	}

4697 4698 4699 4700
	err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
	if (err)
		return err;

4701 4702
	if (mddev->degraded > conf->max_degraded)
		return -EINVAL;
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
	/* looks like we might be able to manage this */
	return 0;
}

static int raid5_start_reshape(mddev_t *mddev)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);
	mdk_rdev_t *rdev;
	struct list_head *rtmp;
	int spares = 0;
	int added_devices = 0;
4714
	unsigned long flags;
4715

4716
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4717 4718
		return -EBUSY;

4719
	rdev_for_each(rdev, rtmp, mddev)
4720 4721 4722
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags))
			spares++;
4723

4724
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4725 4726 4727 4728 4729
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

4730
	atomic_set(&conf->reshape_stripes, 0);
4731 4732
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
4733
	conf->raid_disks += mddev->delta_disks;
4734
	conf->expand_progress = 0;
4735
	conf->expand_lo = 0;
4736 4737 4738 4739 4740
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
	 */
4741
	rdev_for_each(rdev, rtmp, mddev)
4742 4743 4744 4745 4746 4747
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags)) {
			if (raid5_add_disk(mddev, rdev)) {
				char nm[20];
				set_bit(In_sync, &rdev->flags);
				added_devices++;
4748
				rdev->recovery_offset = 0;
4749
				sprintf(nm, "rd%d", rdev->raid_disk);
4750 4751 4752 4753 4754 4755
				if (sysfs_create_link(&mddev->kobj,
						      &rdev->kobj, nm))
					printk(KERN_WARNING
					       "raid5: failed to create "
					       " link %s for %s\n",
					       nm, mdname(mddev));
4756 4757 4758 4759
			} else
				break;
		}

4760
	spin_lock_irqsave(&conf->device_lock, flags);
4761
	mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4762
	spin_unlock_irqrestore(&conf->device_lock, flags);
4763
	mddev->raid_disks = conf->raid_disks;
4764
	mddev->reshape_position = 0;
4765
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4766

4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
						"%s_reshape");
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
		conf->expand_progress = MaxSector;
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}
#endif

static void end_reshape(raid5_conf_t *conf)
{
	struct block_device *bdev;

4791
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4792 4793
		conf->mddev->array_size = conf->mddev->size *
			(conf->raid_disks - conf->max_degraded);
4794
		set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4795
		conf->mddev->changed = 1;
4796 4797 4798 4799

		bdev = bdget_disk(conf->mddev->gendisk, 0);
		if (bdev) {
			mutex_lock(&bdev->bd_inode->i_mutex);
4800
			i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4801 4802 4803 4804 4805 4806 4807
			mutex_unlock(&bdev->bd_inode->i_mutex);
			bdput(bdev);
		}
		spin_lock_irq(&conf->device_lock);
		conf->expand_progress = MaxSector;
		spin_unlock_irq(&conf->device_lock);
		conf->mddev->reshape_position = MaxSector;
4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
		{
			int data_disks = conf->previous_raid_disks - conf->max_degraded;
			int stripe = data_disks *
				(conf->mddev->chunk_size / PAGE_SIZE);
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
4819 4820 4821
	}
}

4822 4823 4824 4825 4826
static void raid5_quiesce(mddev_t *mddev, int state)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);

	switch(state) {
4827 4828 4829 4830
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

4831 4832 4833 4834
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 1;
		wait_event_lock_irq(conf->wait_for_stripe,
4835 4836
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
4837 4838 4839 4840 4841 4842 4843 4844
				    conf->device_lock, /* nothing */);
		spin_unlock_irq(&conf->device_lock);
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
4845
		wake_up(&conf->wait_for_overlap);
4846 4847 4848 4849
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
4850

4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865
static struct mdk_personality raid6_personality =
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
4866 4867 4868 4869
#ifdef CONFIG_MD_RAID5_RESHAPE
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
#endif
4870 4871
	.quiesce	= raid5_quiesce,
};
4872
static struct mdk_personality raid5_personality =
L
Linus Torvalds 已提交
4873 4874
{
	.name		= "raid5",
4875
	.level		= 5,
L
Linus Torvalds 已提交
4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
4887
#ifdef CONFIG_MD_RAID5_RESHAPE
4888 4889
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
4890
#endif
4891
	.quiesce	= raid5_quiesce,
L
Linus Torvalds 已提交
4892 4893
};

4894
static struct mdk_personality raid4_personality =
L
Linus Torvalds 已提交
4895
{
4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
4909 4910 4911 4912
#ifdef CONFIG_MD_RAID5_RESHAPE
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
#endif
4913 4914 4915 4916 4917
	.quiesce	= raid5_quiesce,
};

static int __init raid5_init(void)
{
4918 4919 4920 4921 4922 4923
	int e;

	e = raid6_select_algo();
	if ( e )
		return e;
	register_md_personality(&raid6_personality);
4924 4925 4926
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
4927 4928
}

4929
static void raid5_exit(void)
L
Linus Torvalds 已提交
4930
{
4931
	unregister_md_personality(&raid6_personality);
4932 4933
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
4934 4935 4936 4937 4938 4939
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
MODULE_ALIAS("md-personality-4"); /* RAID5 */
4940 4941
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
4942 4943
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
4944 4945 4946 4947 4948 4949 4950
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");