slub.c 126.4 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
V
Vegard Nossum 已提交
23
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
24 25 26 27
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
28
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
29
#include <linux/kallsyms.h>
30
#include <linux/memory.h>
R
Roman Zippel 已提交
31
#include <linux/math64.h>
A
Akinobu Mita 已提交
32
#include <linux/fault-inject.h>
33
#include <linux/stacktrace.h>
34
#include <linux/prefetch.h>
35
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
36

37 38
#include <trace/events/kmem.h>

39 40
#include "internal.h"

C
Christoph Lameter 已提交
41 42
/*
 * Lock order:
43
 *   1. slab_mutex (Global Mutex)
44 45
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
46
 *
47
 *   slab_mutex
48
 *
49
 *   The role of the slab_mutex is to protect the list of all the slabs
50 51 52 53 54 55 56 57 58 59 60 61 62 63
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
84 85
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
86
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
87 88
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
89 90 91 92 93 94 95
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
96 97 98 99 100 101 102 103 104 105 106 107
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
108
 * 			freelist that allows lockless access to
109 110
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
111 112 113
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
114
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
115 116
 */

117 118
static inline int kmem_cache_debug(struct kmem_cache *s)
{
119
#ifdef CONFIG_SLUB_DEBUG
120
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121
#else
122
	return 0;
123
#endif
124
}
125

126 127 128 129 130 131 132 133 134
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
135 136 137 138 139 140 141 142 143 144 145
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

146 147 148
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

149 150 151 152
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
153
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
154

155 156 157 158 159 160 161
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
 * sort the partial list by the number of objects in the.
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
162 163
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
164

165
/*
166 167 168
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
169
 */
170
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171

C
Christoph Lameter 已提交
172 173 174 175
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 177
		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
		SLAB_FAILSLAB)
C
Christoph Lameter 已提交
178 179

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
V
Vegard Nossum 已提交
180
		SLAB_CACHE_DMA | SLAB_NOTRACK)
C
Christoph Lameter 已提交
181

182 183
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
184
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
185

C
Christoph Lameter 已提交
186
/* Internal SLUB flags */
C
Christoph Lameter 已提交
187
#define __OBJECT_POISON		0x80000000UL /* Poison object */
188
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
189 190 191 192 193

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

194 195 196
/*
 * Tracking user of a slab.
 */
197
#define TRACK_ADDRS_COUNT 16
198
struct track {
199
	unsigned long addr;	/* Called from address */
200 201 202
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
203 204 205 206 207 208 209
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

210
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
211 212 213
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
214
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
215
#else
216 217 218
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
219
static inline void sysfs_slab_remove(struct kmem_cache *s) { }
220

221
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
222 223
#endif

224
static inline void stat(const struct kmem_cache *s, enum stat_item si)
225 226
{
#ifdef CONFIG_SLUB_STATS
227
	__this_cpu_inc(s->cpu_slab->stat[si]);
228 229 230
#endif
}

C
Christoph Lameter 已提交
231 232 233 234 235 236 237 238 239
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
	return s->node[node];
}

C
Christoph Lameter 已提交
240
/* Verify that a pointer has an address that is valid within a slab page */
241 242 243 244 245
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

246
	if (!object)
247 248
		return 1;

249
	base = page_address(page);
250
	if (object < base || object >= base + page->objects * s->size ||
251 252 253 254 255 256 257
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

258 259 260 261 262
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

263 264 265 266 267
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

268 269 270 271 272 273 274 275 276 277 278 279
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

280 281 282 283 284 285
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
286 287
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
288 289 290 291 292 293 294 295
			__p += (__s)->size)

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

296 297 298 299 300 301 302 303
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304
		return s->object_size;
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

320 321 322 323 324
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

325
static inline struct kmem_cache_order_objects oo_make(int order,
326
		unsigned long size, int reserved)
327 328
{
	struct kmem_cache_order_objects x = {
329
		(order << OO_SHIFT) + order_objects(order, size, reserved)
330 331 332 333 334 335 336
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
337
	return x.x >> OO_SHIFT;
338 339 340 341
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
342
	return x.x & OO_MASK;
343 344
}

345 346 347 348 349 350 351 352 353 354 355 356 357
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	__bit_spin_unlock(PG_locked, &page->flags);
}

358 359 360 361 362 363 364
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
365 366
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
367
	if (s->flags & __CMPXCHG_DOUBLE) {
368
		if (cmpxchg_double(&page->freelist, &page->counters,
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
		slab_lock(page);
		if (page->freelist == freelist_old && page->counters == counters_old) {
			page->freelist = freelist_new;
			page->counters = counters_new;
			slab_unlock(page);
			return 1;
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
#endif

	return 0;
}

395 396 397 398 399
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
400 401
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
402
	if (s->flags & __CMPXCHG_DOUBLE) {
403
		if (cmpxchg_double(&page->freelist, &page->counters,
404 405 406 407 408 409
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
410 411 412
		unsigned long flags;

		local_irq_save(flags);
413
		slab_lock(page);
414 415 416
		if (page->freelist == freelist_old && page->counters == counters_old) {
			page->freelist = freelist_new;
			page->counters = counters_new;
417
			slab_unlock(page);
418
			local_irq_restore(flags);
419 420
			return 1;
		}
421
		slab_unlock(page);
422
		local_irq_restore(flags);
423 424 425 426 427 428 429 430 431 432 433 434
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
#endif

	return 0;
}

C
Christoph Lameter 已提交
435
#ifdef CONFIG_SLUB_DEBUG
436 437 438
/*
 * Determine a map of object in use on a page.
 *
439
 * Node listlock must be held to guarantee that the page does
440 441 442 443 444 445 446 447 448 449 450
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

C
Christoph Lameter 已提交
451 452 453
/*
 * Debug settings:
 */
454 455 456
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
457
static int slub_debug;
458
#endif
C
Christoph Lameter 已提交
459 460

static char *slub_debug_slabs;
461
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
462

C
Christoph Lameter 已提交
463 464 465 466 467
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
468 469
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
C
Christoph Lameter 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
486
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
487
{
A
Akinobu Mita 已提交
488
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
489 490

	if (addr) {
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
		save_stack_trace(&trace);

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
509 510
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
511
		p->pid = current->pid;
C
Christoph Lameter 已提交
512 513 514 515 516 517 518
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
519 520 521
	if (!(s->flags & SLAB_STORE_USER))
		return;

522 523
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
524 525 526 527 528 529 530
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

531
	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
532
		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
533 534 535 536 537 538 539 540 541 542
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
			else
				break;
	}
#endif
543 544 545 546 547 548 549 550 551 552 553 554 555
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
556 557
	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
		page, page->objects, page->inuse, page->freelist, page->flags);
558 559 560 561 562 563 564 565 566 567 568 569 570

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "========================================"
			"=====================================\n");
571
	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
572 573
	printk(KERN_ERR "----------------------------------------"
			"-------------------------------------\n\n");
574

575
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
C
Christoph Lameter 已提交
576 577
}

578 579 580 581 582 583 584 585 586 587 588 589
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
590 591
{
	unsigned int off;	/* Offset of last byte */
592
	u8 *addr = page_address(page);
593 594 595 596 597 598 599 600 601

	print_tracking(s, p);

	print_page_info(page);

	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
			p, p - addr, get_freepointer(s, p));

	if (p > addr + 16)
602
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
603

604
	print_section("Object ", p, min_t(unsigned long, s->object_size,
605
				PAGE_SIZE));
C
Christoph Lameter 已提交
606
	if (s->flags & SLAB_RED_ZONE)
607 608
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
609 610 611 612 613 614

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

615
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
616 617 618 619
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
620
		print_section("Padding ", p + off, s->size - off);
621 622

	dump_stack();
C
Christoph Lameter 已提交
623 624 625 626 627
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
628
	slab_bug(s, "%s", reason);
629
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
630 631
}

632
static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
C
Christoph Lameter 已提交
633 634 635 636
{
	va_list args;
	char buf[100];

637 638
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
639
	va_end(args);
640
	slab_bug(s, "%s", buf);
641
	print_page_info(page);
C
Christoph Lameter 已提交
642 643 644
	dump_stack();
}

645
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
646 647 648 649
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
650 651
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
652 653 654
	}

	if (s->flags & SLAB_RED_ZONE)
655
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
656 657
}

658 659 660 661 662 663 664 665 666
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
667
			u8 *start, unsigned int value, unsigned int bytes)
668 669 670 671
{
	u8 *fault;
	u8 *end;

672
	fault = memchr_inv(start, value, bytes);
673 674 675 676 677 678 679 680 681 682 683 684 685 686
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
687 688 689 690 691 692 693 694 695
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
696
 *
C
Christoph Lameter 已提交
697 698 699
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
700
 * object + s->object_size
C
Christoph Lameter 已提交
701
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
702
 * 	Padding is extended by another word if Redzoning is enabled and
703
 * 	object_size == inuse.
C
Christoph Lameter 已提交
704
 *
C
Christoph Lameter 已提交
705 706 707 708
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
709 710
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
711 712
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
713
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
714
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
715 716 717
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
718 719
 *
 * object + s->size
C
Christoph Lameter 已提交
720
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
721
 *
722
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
723
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

742 743
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
744 745
}

746
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
747 748
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
749 750 751 752 753
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
754 755 756 757

	if (!(s->flags & SLAB_POISON))
		return 1;

758
	start = page_address(page);
759
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
760 761
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
762 763 764
	if (!remainder)
		return 1;

765
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
766 767 768 769 770 771
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
772
	print_section("Padding ", end - remainder, remainder);
773

E
Eric Dumazet 已提交
774
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
775
	return 0;
C
Christoph Lameter 已提交
776 777 778
}

static int check_object(struct kmem_cache *s, struct page *page,
779
					void *object, u8 val)
C
Christoph Lameter 已提交
780 781
{
	u8 *p = object;
782
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
783 784

	if (s->flags & SLAB_RED_ZONE) {
785
		if (!check_bytes_and_report(s, page, object, "Redzone",
786
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
787 788
			return 0;
	} else {
789
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
790
			check_bytes_and_report(s, page, p, "Alignment padding",
791
				endobject, POISON_INUSE, s->inuse - s->object_size);
I
Ingo Molnar 已提交
792
		}
C
Christoph Lameter 已提交
793 794 795
	}

	if (s->flags & SLAB_POISON) {
796
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
797
			(!check_bytes_and_report(s, page, p, "Poison", p,
798
					POISON_FREE, s->object_size - 1) ||
799
			 !check_bytes_and_report(s, page, p, "Poison",
800
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
801 802 803 804 805 806 807
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

808
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
809 810 811 812 813 814 815 816 817 818
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
819
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
820
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
821
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
822
		 */
823
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
824 825 826 827 828 829 830
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
831 832
	int maxobj;

C
Christoph Lameter 已提交
833 834 835
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
836
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
837 838
		return 0;
	}
839

840
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
841 842 843 844 845 846
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
			s->name, page->objects, maxobj);
		return 0;
	}
	if (page->inuse > page->objects) {
847
		slab_err(s, page, "inuse %u > max %u",
848
			s->name, page->inuse, page->objects);
C
Christoph Lameter 已提交
849 850 851 852 853 854 855 856
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
857 858
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
859 860 861 862
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
863
	void *fp;
C
Christoph Lameter 已提交
864
	void *object = NULL;
865
	unsigned long max_objects;
C
Christoph Lameter 已提交
866

867
	fp = page->freelist;
868
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
869 870 871 872 873 874
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
875
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
876 877
				break;
			} else {
878
				slab_err(s, page, "Freepointer corrupt");
879
				page->freelist = NULL;
880
				page->inuse = page->objects;
881
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
882 883 884 885 886 887 888 889 890
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

891
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
892 893
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
894 895 896 897 898 899 900

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
901
	if (page->inuse != page->objects - nr) {
902
		slab_err(s, page, "Wrong object count. Counter is %d but "
903 904
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
905
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
906 907 908 909
	}
	return search == NULL;
}

910 911
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
912 913 914 915 916 917 918 919 920
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
921
			print_section("Object ", (void *)object, s->object_size);
C
Christoph Lameter 已提交
922 923 924 925 926

		dump_stack();
	}
}

927 928 929 930 931 932
/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
{
933
	flags &= gfp_allowed_mask;
934 935 936
	lockdep_trace_alloc(flags);
	might_sleep_if(flags & __GFP_WAIT);

937
	return should_failslab(s->object_size, flags, s->flags);
938 939 940 941
}

static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
{
942
	flags &= gfp_allowed_mask;
943
	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
944
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
945 946 947 948 949 950
}

static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);

951 952 953 954 955 956 957 958 959 960
	/*
	 * Trouble is that we may no longer disable interupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
961 962
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
963 964 965
		local_irq_restore(flags);
	}
#endif
966
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
967
		debug_check_no_obj_freed(x, s->object_size);
968 969
}

970
/*
C
Christoph Lameter 已提交
971
 * Tracking of fully allocated slabs for debugging purposes.
972 973
 *
 * list_lock must be held.
974
 */
975 976
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
977
{
978 979 980
	if (!(s->flags & SLAB_STORE_USER))
		return;

981 982 983
	list_add(&page->lru, &n->full);
}

984 985 986
/*
 * list_lock must be held.
 */
987 988 989 990 991 992 993 994
static void remove_full(struct kmem_cache *s, struct page *page)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	list_del(&page->lru);
}

995 996 997 998 999 1000 1001 1002
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1003 1004 1005 1006 1007
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1008
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1009 1010 1011 1012 1013 1014 1015 1016 1017
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1018
	if (likely(n)) {
1019
		atomic_long_inc(&n->nr_slabs);
1020 1021
		atomic_long_add(objects, &n->total_objects);
	}
1022
}
1023
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1024 1025 1026 1027
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1028
	atomic_long_sub(objects, &n->total_objects);
1029 1030 1031
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1032 1033 1034 1035 1036 1037
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1038
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1039 1040 1041
	init_tracking(s, object);
}

1042
static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1043
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1044 1045 1046 1047 1048 1049
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1050
		goto bad;
C
Christoph Lameter 已提交
1051 1052
	}

1053
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
C
Christoph Lameter 已提交
1054 1055
		goto bad;

C
Christoph Lameter 已提交
1056 1057 1058 1059
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1060
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1061
	return 1;
C
Christoph Lameter 已提交
1062

C
Christoph Lameter 已提交
1063 1064 1065 1066 1067
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1068
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1069
		 */
1070
		slab_fix(s, "Marking all objects used");
1071
		page->inuse = page->objects;
1072
		page->freelist = NULL;
C
Christoph Lameter 已提交
1073 1074 1075 1076
	}
	return 0;
}

1077 1078 1079
static noinline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags)
C
Christoph Lameter 已提交
1080
{
1081
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1082

1083
	spin_lock_irqsave(&n->list_lock, *flags);
1084 1085
	slab_lock(page);

C
Christoph Lameter 已提交
1086 1087 1088 1089
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
1090
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
1091 1092 1093 1094
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1095
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
1096 1097 1098
		goto fail;
	}

1099
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1100
		goto out;
C
Christoph Lameter 已提交
1101

1102
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1103
		if (!PageSlab(page)) {
1104 1105
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1106
		} else if (!page->slab_cache) {
C
Christoph Lameter 已提交
1107
			printk(KERN_ERR
1108
				"SLUB <none>: no slab for object 0x%p.\n",
C
Christoph Lameter 已提交
1109
						object);
1110
			dump_stack();
P
Pekka Enberg 已提交
1111
		} else
1112 1113
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
1114 1115
		goto fail;
	}
C
Christoph Lameter 已提交
1116 1117 1118 1119

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1120
	init_object(s, object, SLUB_RED_INACTIVE);
1121
out:
1122
	slab_unlock(page);
1123 1124 1125 1126 1127
	/*
	 * Keep node_lock to preserve integrity
	 * until the object is actually freed
	 */
	return n;
C
Christoph Lameter 已提交
1128

C
Christoph Lameter 已提交
1129
fail:
1130 1131
	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, *flags);
1132
	slab_fix(s, "Object at 0x%p not freed", object);
1133
	return NULL;
C
Christoph Lameter 已提交
1134 1135
}

C
Christoph Lameter 已提交
1136 1137
static int __init setup_slub_debug(char *str)
{
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

1152 1153 1154 1155 1156 1157 1158 1159 1160
	if (tolower(*str) == 'o') {
		/*
		 * Avoid enabling debugging on caches if its minimum order
		 * would increase as a result.
		 */
		disable_higher_order_debug = 1;
		goto out;
	}

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1171
	for (; *str && *str != ','; str++) {
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1188 1189 1190
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1191 1192
		default:
			printk(KERN_ERR "slub_debug option '%c' "
P
Pekka Enberg 已提交
1193
				"unknown. skipped\n", *str);
1194
		}
C
Christoph Lameter 已提交
1195 1196
	}

1197
check_slabs:
C
Christoph Lameter 已提交
1198 1199
	if (*str == ',')
		slub_debug_slabs = str + 1;
1200
out:
C
Christoph Lameter 已提交
1201 1202 1203 1204 1205
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1206
static unsigned long kmem_cache_flags(unsigned long object_size,
1207
	unsigned long flags, const char *name,
1208
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1209 1210
{
	/*
1211
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1212
	 */
1213
	if (slub_debug && (!slub_debug_slabs ||
1214 1215
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
		flags |= slub_debug;
1216 1217

	return flags;
C
Christoph Lameter 已提交
1218 1219
}
#else
C
Christoph Lameter 已提交
1220 1221
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1222

C
Christoph Lameter 已提交
1223
static inline int alloc_debug_processing(struct kmem_cache *s,
1224
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1225

1226 1227 1228
static inline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags) { return NULL; }
C
Christoph Lameter 已提交
1229 1230 1231 1232

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1233
			void *object, u8 val) { return 1; }
1234 1235
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1236
static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1237
static inline unsigned long kmem_cache_flags(unsigned long object_size,
1238
	unsigned long flags, const char *name,
1239
	void (*ctor)(void *))
1240 1241 1242
{
	return flags;
}
C
Christoph Lameter 已提交
1243
#define slub_debug 0
1244

1245 1246
#define disable_higher_order_debug 0

1247 1248
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1249 1250
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1251 1252 1253 1254
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1255 1256 1257 1258 1259 1260 1261 1262 1263

static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
							{ return 0; }

static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
		void *object) {}

static inline void slab_free_hook(struct kmem_cache *s, void *x) {}

1264
#endif /* CONFIG_SLUB_DEBUG */
1265

C
Christoph Lameter 已提交
1266 1267 1268
/*
 * Slab allocation and freeing
 */
1269 1270 1271 1272 1273
static inline struct page *alloc_slab_page(gfp_t flags, int node,
					struct kmem_cache_order_objects oo)
{
	int order = oo_order(oo);

1274 1275
	flags |= __GFP_NOTRACK;

1276
	if (node == NUMA_NO_NODE)
1277 1278
		return alloc_pages(flags, order);
	else
1279
		return alloc_pages_exact_node(node, flags, order);
1280 1281
}

C
Christoph Lameter 已提交
1282 1283
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1284
	struct page *page;
1285
	struct kmem_cache_order_objects oo = s->oo;
1286
	gfp_t alloc_gfp;
C
Christoph Lameter 已提交
1287

1288 1289 1290 1291 1292
	flags &= gfp_allowed_mask;

	if (flags & __GFP_WAIT)
		local_irq_enable();

1293
	flags |= s->allocflags;
1294

1295 1296 1297 1298 1299 1300 1301
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;

	page = alloc_slab_page(alloc_gfp, node, oo);
1302 1303 1304 1305 1306 1307 1308
	if (unlikely(!page)) {
		oo = s->min;
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
		page = alloc_slab_page(flags, node, oo);
C
Christoph Lameter 已提交
1309

1310 1311
		if (page)
			stat(s, ORDER_FALLBACK);
1312
	}
V
Vegard Nossum 已提交
1313

1314
	if (kmemcheck_enabled && page
1315
		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
		int pages = 1 << oo_order(oo);

		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1328 1329
	}

1330 1331 1332 1333 1334
	if (flags & __GFP_WAIT)
		local_irq_disable();
	if (!page)
		return NULL;

1335
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1336 1337 1338
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1339
		1 << oo_order(oo));
C
Christoph Lameter 已提交
1340 1341 1342 1343 1344 1345 1346

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1347
	setup_object_debug(s, page, object);
1348
	if (unlikely(s->ctor))
1349
		s->ctor(object);
C
Christoph Lameter 已提交
1350 1351 1352 1353 1354 1355 1356 1357
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *last;
	void *p;
G
Glauber Costa 已提交
1358
	int order;
C
Christoph Lameter 已提交
1359

C
Christoph Lameter 已提交
1360
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1361

C
Christoph Lameter 已提交
1362 1363
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1364 1365 1366
	if (!page)
		goto out;

G
Glauber Costa 已提交
1367
	order = compound_order(page);
1368
	inc_slabs_node(s, page_to_nid(page), page->objects);
G
Glauber Costa 已提交
1369
	memcg_bind_pages(s, order);
1370
	page->slab_cache = s;
1371
	__SetPageSlab(page);
1372 1373
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1374 1375 1376 1377

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1378
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1379 1380

	last = start;
1381
	for_each_object(p, s, start, page->objects) {
C
Christoph Lameter 已提交
1382 1383 1384 1385 1386
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
1387
	set_freepointer(s, last, NULL);
C
Christoph Lameter 已提交
1388 1389

	page->freelist = start;
1390
	page->inuse = page->objects;
1391
	page->frozen = 1;
C
Christoph Lameter 已提交
1392 1393 1394 1395 1396 1397
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1398 1399
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1400

1401
	if (kmem_cache_debug(s)) {
C
Christoph Lameter 已提交
1402 1403 1404
		void *p;

		slab_pad_check(s, page);
1405 1406
		for_each_object(p, s, page_address(page),
						page->objects)
1407
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1408 1409
	}

1410
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1411

C
Christoph Lameter 已提交
1412 1413 1414
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1415
		-pages);
C
Christoph Lameter 已提交
1416

1417
	__ClearPageSlabPfmemalloc(page);
1418
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1419 1420

	memcg_release_pages(s, order);
1421
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1422 1423
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1424
	__free_memcg_kmem_pages(page, order);
C
Christoph Lameter 已提交
1425 1426
}

1427 1428 1429
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1430 1431 1432 1433
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1434 1435 1436 1437 1438
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1439
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1440 1441 1442 1443 1444
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			/*
			 * RCU free overloads the RCU head over the LRU
			 */
			head = (void *)&page->lru;
		}
C
Christoph Lameter 已提交
1459 1460 1461 1462 1463 1464 1465 1466

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1467
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1468 1469 1470 1471
	free_slab(s, page);
}

/*
1472 1473 1474
 * Management of partially allocated slabs.
 *
 * list_lock must be held.
C
Christoph Lameter 已提交
1475
 */
1476
static inline void add_partial(struct kmem_cache_node *n,
1477
				struct page *page, int tail)
C
Christoph Lameter 已提交
1478
{
C
Christoph Lameter 已提交
1479
	n->nr_partial++;
1480
	if (tail == DEACTIVATE_TO_TAIL)
1481 1482 1483
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1484 1485
}

1486 1487 1488 1489
/*
 * list_lock must be held.
 */
static inline void remove_partial(struct kmem_cache_node *n,
1490 1491 1492 1493 1494 1495
					struct page *page)
{
	list_del(&page->lru);
	n->nr_partial--;
}

C
Christoph Lameter 已提交
1496
/*
1497 1498
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1499
 *
1500 1501
 * Returns a list of objects or NULL if it fails.
 *
1502
 * Must hold list_lock since we modify the partial list.
C
Christoph Lameter 已提交
1503
 */
1504
static inline void *acquire_slab(struct kmem_cache *s,
1505
		struct kmem_cache_node *n, struct page *page,
1506
		int mode, int *objects)
C
Christoph Lameter 已提交
1507
{
1508 1509 1510 1511 1512 1513 1514 1515 1516
	void *freelist;
	unsigned long counters;
	struct page new;

	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1517 1518 1519
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1520
	*objects = new.objects - new.inuse;
1521
	if (mode) {
1522
		new.inuse = page->objects;
1523 1524 1525 1526
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1527

1528 1529
	VM_BUG_ON(new.frozen);
	new.frozen = 1;
1530

1531
	if (!__cmpxchg_double_slab(s, page,
1532
			freelist, counters,
1533
			new.freelist, new.counters,
1534 1535
			"acquire_slab"))
		return NULL;
1536 1537

	remove_partial(n, page);
1538
	WARN_ON(!freelist);
1539
	return freelist;
C
Christoph Lameter 已提交
1540 1541
}

1542
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1543
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1544

C
Christoph Lameter 已提交
1545
/*
C
Christoph Lameter 已提交
1546
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1547
 */
1548 1549
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1550
{
1551 1552
	struct page *page, *page2;
	void *object = NULL;
1553 1554
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1555 1556 1557 1558

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1559 1560
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1561 1562 1563 1564 1565
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1566
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1567
		void *t;
1568

1569 1570 1571
		if (!pfmemalloc_match(page, flags))
			continue;

1572
		t = acquire_slab(s, n, page, object == NULL, &objects);
1573 1574 1575
		if (!t)
			break;

1576
		available += objects;
1577
		if (!object) {
1578 1579 1580 1581
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1582
			put_cpu_partial(s, page, 0);
1583
			stat(s, CPU_PARTIAL_NODE);
1584
		}
1585 1586
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1587 1588
			break;

1589
	}
C
Christoph Lameter 已提交
1590
	spin_unlock(&n->list_lock);
1591
	return object;
C
Christoph Lameter 已提交
1592 1593 1594
}

/*
C
Christoph Lameter 已提交
1595
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1596
 */
1597
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1598
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1599 1600 1601
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1602
	struct zoneref *z;
1603 1604
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1605
	void *object;
1606
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1607 1608

	/*
C
Christoph Lameter 已提交
1609 1610 1611 1612
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1613
	 *
C
Christoph Lameter 已提交
1614 1615 1616 1617
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1618
	 *
C
Christoph Lameter 已提交
1619
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1620 1621 1622 1623 1624
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1625
	 */
1626 1627
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1628 1629
		return NULL;

1630 1631
	do {
		cpuset_mems_cookie = get_mems_allowed();
1632
		zonelist = node_zonelist(slab_node(), flags);
1633 1634 1635 1636 1637 1638 1639
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
					n->nr_partial > s->min_partial) {
1640
				object = get_partial_node(s, n, c, flags);
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
				if (object) {
					/*
					 * Return the object even if
					 * put_mems_allowed indicated that
					 * the cpuset mems_allowed was
					 * updated in parallel. It's a
					 * harmless race between the alloc
					 * and the cpuset update.
					 */
					put_mems_allowed(cpuset_mems_cookie);
					return object;
				}
1653
			}
C
Christoph Lameter 已提交
1654
		}
1655
	} while (!put_mems_allowed(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1656 1657 1658 1659 1660 1661 1662
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1663
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1664
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1665
{
1666
	void *object;
1667
	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
C
Christoph Lameter 已提交
1668

1669
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1670 1671
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1672

1673
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1674 1675
}

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
		printk("due to cpu change %d -> %d\n",
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
		printk("due to cpu running other code. Event %ld->%ld\n",
			tid_to_event(tid), tid_to_event(actual_tid));
	else
		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
			actual_tid, tid, next_tid(tid));
#endif
1732
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1733 1734
}

1735
static void init_kmem_cache_cpus(struct kmem_cache *s)
1736 1737 1738 1739 1740 1741
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1742

C
Christoph Lameter 已提交
1743 1744 1745
/*
 * Remove the cpu slab
 */
1746
static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
C
Christoph Lameter 已提交
1747
{
1748 1749 1750 1751 1752
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1753
	int tail = DEACTIVATE_TO_HEAD;
1754 1755 1756 1757
	struct page new;
	struct page old;

	if (page->freelist) {
1758
		stat(s, DEACTIVATE_REMOTE_FREES);
1759
		tail = DEACTIVATE_TO_TAIL;
1760 1761
	}

1762
	/*
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
			VM_BUG_ON(!new.frozen);

1782
		} while (!__cmpxchg_double_slab(s, page,
1783 1784 1785 1786 1787 1788 1789
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1790
	/*
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1803
	 */
1804
redo:
1805

1806 1807 1808
	old.freelist = page->freelist;
	old.counters = page->counters;
	VM_BUG_ON(!old.frozen);
1809

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1821
	if (!new.inuse && n->nr_partial > s->min_partial)
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1854

1855 1856 1857 1858 1859
			remove_full(s, page);

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1860
			stat(s, tail);
1861 1862

		} else if (m == M_FULL) {
1863

1864 1865 1866 1867 1868 1869 1870
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1871
	if (!__cmpxchg_double_slab(s, page,
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1884
	}
C
Christoph Lameter 已提交
1885 1886
}

1887 1888 1889
/*
 * Unfreeze all the cpu partial slabs.
 *
1890 1891 1892
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
1893
 */
1894 1895
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
1896
{
1897
#ifdef CONFIG_SLUB_CPU_PARTIAL
1898
	struct kmem_cache_node *n = NULL, *n2 = NULL;
1899
	struct page *page, *discard_page = NULL;
1900 1901 1902 1903 1904 1905

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
1906 1907 1908 1909 1910 1911 1912 1913 1914

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
			VM_BUG_ON(!old.frozen);

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1927
		} while (!__cmpxchg_double_slab(s, page,
1928 1929 1930 1931
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

1932
		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1933 1934
			page->next = discard_page;
			discard_page = page;
1935 1936 1937
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
1938 1939 1940 1941 1942
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
1943 1944 1945 1946 1947 1948 1949 1950 1951

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
1952
#endif
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
1964
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1965
{
1966
#ifdef CONFIG_SLUB_CPU_PARTIAL
1967 1968 1969 1970
	struct page *oldpage;
	int pages;
	int pobjects;

1971 1972 1973
	if (!s->cpu_partial)
		return;

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
1989
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
1990
				local_irq_restore(flags);
1991
				oldpage = NULL;
1992 1993
				pobjects = 0;
				pages = 0;
1994
				stat(s, CPU_PARTIAL_DRAIN);
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2005
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
2006
#endif
2007 2008
}

2009
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2010
{
2011
	stat(s, CPUSLAB_FLUSH);
2012 2013 2014 2015 2016
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2017 2018 2019 2020
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2021
 *
C
Christoph Lameter 已提交
2022 2023
 * Called from IPI handler with interrupts disabled.
 */
2024
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2025
{
2026
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2027

2028 2029 2030 2031
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2032
		unfreeze_partials(s, c);
2033
	}
C
Christoph Lameter 已提交
2034 2035 2036 2037 2038 2039
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2040
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2041 2042
}

2043 2044 2045 2046 2047
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2048
	return c->page || c->partial;
2049 2050
}

C
Christoph Lameter 已提交
2051 2052
static void flush_all(struct kmem_cache *s)
{
2053
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2054 2055
}

2056 2057 2058 2059
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2060
static inline int node_match(struct page *page, int node)
2061 2062
{
#ifdef CONFIG_NUMA
2063
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2064 2065 2066 2067 2068
		return 0;
#endif
	return 1;
}

P
Pekka Enberg 已提交
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}

2088 2089 2090 2091 2092 2093 2094 2095 2096
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
#ifdef CONFIG_SLUB_DEBUG
	return atomic_long_read(&n->total_objects);
#else
	return 0;
#endif
}

P
Pekka Enberg 已提交
2097 2098 2099 2100 2101 2102 2103 2104 2105
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
	int node;

	printk(KERN_WARNING
		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2106
		"default order: %d, min order: %d\n", s->name, s->object_size,
P
Pekka Enberg 已提交
2107 2108
		s->size, oo_order(s->oo), oo_order(s->min));

2109
	if (oo_order(s->min) > get_order(s->object_size))
2110 2111 2112
		printk(KERN_WARNING "  %s debugging increased min order, use "
		       "slub_debug=O to disable.\n", s->name);

P
Pekka Enberg 已提交
2113 2114 2115 2116 2117 2118 2119 2120 2121
	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

		if (!n)
			continue;

2122 2123 2124
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2125 2126 2127 2128 2129 2130 2131

		printk(KERN_WARNING
			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
			node, nr_slabs, nr_objs, nr_free);
	}
}

2132 2133 2134
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2135
	void *freelist;
2136 2137
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2138

2139
	freelist = get_partial(s, flags, node, c);
2140

2141 2142 2143 2144
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2145 2146 2147 2148 2149 2150 2151 2152 2153
	if (page) {
		c = __this_cpu_ptr(s->cpu_slab);
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2154
		freelist = page->freelist;
2155 2156 2157 2158 2159 2160
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2161
		freelist = NULL;
2162

2163
	return freelist;
2164 2165
}

2166 2167 2168 2169 2170 2171 2172 2173
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2174 2175 2176 2177 2178 2179 2180
/*
 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
 * or deactivate the page.
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2181 2182
 *
 * This function must be called with interrupt disabled.
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2193

2194 2195 2196 2197 2198 2199
		new.counters = counters;
		VM_BUG_ON(!new.frozen);

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2200
	} while (!__cmpxchg_double_slab(s, page,
2201 2202 2203 2204 2205 2206 2207
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2208
/*
2209 2210 2211 2212 2213 2214
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2215
 *
2216 2217 2218
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2219
 *
2220
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2221 2222
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
2223
 */
2224 2225
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2226
{
2227
	void *freelist;
2228
	struct page *page;
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif
C
Christoph Lameter 已提交
2240

2241 2242
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2243
		goto new_slab;
2244
redo:
2245

2246
	if (unlikely(!node_match(page, node))) {
2247
		stat(s, ALLOC_NODE_MISMATCH);
2248
		deactivate_slab(s, page, c->freelist);
2249 2250
		c->page = NULL;
		c->freelist = NULL;
2251 2252
		goto new_slab;
	}
C
Christoph Lameter 已提交
2253

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2266
	/* must check again c->freelist in case of cpu migration or IRQ */
2267 2268
	freelist = c->freelist;
	if (freelist)
2269
		goto load_freelist;
2270

2271
	stat(s, ALLOC_SLOWPATH);
2272

2273
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2274

2275
	if (!freelist) {
2276 2277
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2278
		goto new_slab;
2279
	}
C
Christoph Lameter 已提交
2280

2281
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2282

2283
load_freelist:
2284 2285 2286 2287 2288 2289
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
	VM_BUG_ON(!c->page->frozen);
2290
	c->freelist = get_freepointer(s, freelist);
2291 2292
	c->tid = next_tid(c->tid);
	local_irq_restore(flags);
2293
	return freelist;
C
Christoph Lameter 已提交
2294 2295

new_slab:
2296

2297
	if (c->partial) {
2298 2299
		page = c->page = c->partial;
		c->partial = page->next;
2300 2301 2302
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2303 2304
	}

2305
	freelist = new_slab_objects(s, gfpflags, node, &c);
2306

2307 2308 2309
	if (unlikely(!freelist)) {
		if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(s, gfpflags, node);
2310

2311 2312
		local_irq_restore(flags);
		return NULL;
C
Christoph Lameter 已提交
2313
	}
2314

2315
	page = c->page;
2316
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2317
		goto load_freelist;
2318

2319
	/* Only entered in the debug case */
2320
	if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
2321
		goto new_slab;	/* Slab failed checks. Next slab needed */
2322

2323
	deactivate_slab(s, page, get_freepointer(s, freelist));
2324 2325
	c->page = NULL;
	c->freelist = NULL;
2326
	local_irq_restore(flags);
2327
	return freelist;
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2340
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2341
		gfp_t gfpflags, int node, unsigned long addr)
2342 2343
{
	void **object;
2344
	struct kmem_cache_cpu *c;
2345
	struct page *page;
2346
	unsigned long tid;
2347

2348
	if (slab_pre_alloc_hook(s, gfpflags))
A
Akinobu Mita 已提交
2349
		return NULL;
2350

2351
	s = memcg_kmem_get_cache(s, gfpflags);
2352 2353 2354 2355 2356 2357
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2358 2359 2360 2361 2362
	 *
	 * Preemption is disabled for the retrieval of the tid because that
	 * must occur from the current processor. We cannot allow rescheduling
	 * on a different processor between the determination of the pointer
	 * and the retrieval of the tid.
2363
	 */
2364
	preempt_disable();
2365
	c = __this_cpu_ptr(s->cpu_slab);
2366 2367 2368 2369 2370 2371 2372 2373

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */
	tid = c->tid;
2374
	preempt_enable();
2375

2376
	object = c->freelist;
2377
	page = c->page;
2378
	if (unlikely(!object || !page || !node_match(page, node)))
2379
		object = __slab_alloc(s, gfpflags, node, addr, c);
2380 2381

	else {
2382 2383
		void *next_object = get_freepointer_safe(s, object);

2384
		/*
L
Lucas De Marchi 已提交
2385
		 * The cmpxchg will only match if there was no additional
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
		 * operation and if we are on the right processor.
		 *
		 * The cmpxchg does the following atomically (without lock semantics!)
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
		 * Since this is without lock semantics the protection is only against
		 * code executing on this cpu *not* from access by other cpus.
		 */
2396
		if (unlikely(!this_cpu_cmpxchg_double(
2397 2398
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2399
				next_object, next_tid(tid)))) {
2400 2401 2402 2403

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2404
		prefetch_freepointer(s, next_object);
2405
		stat(s, ALLOC_FASTPATH);
2406
	}
2407

2408
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2409
		memset(object, 0, s->object_size);
2410

2411
	slab_post_alloc_hook(s, gfpflags, object);
V
Vegard Nossum 已提交
2412

2413
	return object;
C
Christoph Lameter 已提交
2414 2415
}

2416 2417 2418 2419 2420 2421
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2422 2423
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2424
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2425

2426
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2427 2428

	return ret;
C
Christoph Lameter 已提交
2429 2430 2431
}
EXPORT_SYMBOL(kmem_cache_alloc);

2432
#ifdef CONFIG_TRACING
2433 2434
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2435
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2436 2437 2438 2439 2440 2441
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);

void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
E
Eduard - Gabriel Munteanu 已提交
2442
{
2443 2444 2445
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2446
}
2447
EXPORT_SYMBOL(kmalloc_order_trace);
E
Eduard - Gabriel Munteanu 已提交
2448 2449
#endif

C
Christoph Lameter 已提交
2450 2451 2452
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2453
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2454

2455
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2456
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2457 2458

	return ret;
C
Christoph Lameter 已提交
2459 2460 2461
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2462
#ifdef CONFIG_TRACING
2463
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2464
				    gfp_t gfpflags,
2465
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2466
{
2467
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2468 2469 2470 2471

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2472
}
2473
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2474
#endif
2475
#endif
E
Eduard - Gabriel Munteanu 已提交
2476

C
Christoph Lameter 已提交
2477
/*
2478 2479
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2480
 *
2481 2482 2483
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2484
 */
2485
static void __slab_free(struct kmem_cache *s, struct page *page,
2486
			void *x, unsigned long addr)
C
Christoph Lameter 已提交
2487 2488 2489
{
	void *prior;
	void **object = (void *)x;
2490 2491 2492 2493
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2494
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2495

2496
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2497

2498 2499
	if (kmem_cache_debug(s) &&
		!(n = free_debug_processing(s, page, x, addr, &flags)))
2500
		return;
C
Christoph Lameter 已提交
2501

2502
	do {
2503 2504 2505 2506
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2507 2508 2509 2510 2511 2512
		prior = page->freelist;
		counters = page->counters;
		set_freepointer(s, object, prior);
		new.counters = counters;
		was_frozen = new.frozen;
		new.inuse--;
2513
		if ((!new.inuse || !prior) && !was_frozen) {
2514

2515
			if (kmem_cache_has_cpu_partial(s) && !prior)
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536

				/*
				 * Slab was on no list before and will be partially empty
				 * We can defer the list move and instead freeze it.
				 */
				new.frozen = 1;

			else { /* Needs to be taken off a list */

	                        n = get_node(s, page_to_nid(page));
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2537
		}
C
Christoph Lameter 已提交
2538

2539 2540 2541 2542
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
		object, new.counters,
		"__slab_free"));
C
Christoph Lameter 已提交
2543

2544
	if (likely(!n)) {
2545 2546 2547 2548 2549

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2550
		if (new.frozen && !was_frozen) {
2551
			put_cpu_partial(s, page, 1);
2552 2553
			stat(s, CPU_PARTIAL_FREE);
		}
2554
		/*
2555 2556 2557 2558 2559
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
                if (was_frozen)
                        stat(s, FREE_FROZEN);
2560
                return;
2561
        }
C
Christoph Lameter 已提交
2562

2563 2564 2565
	if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
		goto slab_empty;

C
Christoph Lameter 已提交
2566
	/*
2567 2568
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2569
	 */
2570 2571 2572
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
			remove_full(s, page);
2573 2574
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2575
	}
2576
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2577 2578 2579
	return;

slab_empty:
2580
	if (prior) {
C
Christoph Lameter 已提交
2581
		/*
2582
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2583
		 */
2584
		remove_partial(n, page);
2585
		stat(s, FREE_REMOVE_PARTIAL);
2586 2587 2588
	} else
		/* Slab must be on the full list */
		remove_full(s, page);
2589

2590
	spin_unlock_irqrestore(&n->list_lock, flags);
2591
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2592 2593 2594
	discard_slab(s, page);
}

2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
2606
static __always_inline void slab_free(struct kmem_cache *s,
2607
			struct page *page, void *x, unsigned long addr)
2608 2609
{
	void **object = (void *)x;
2610
	struct kmem_cache_cpu *c;
2611
	unsigned long tid;
2612

2613 2614
	slab_free_hook(s, x);

2615 2616 2617 2618 2619 2620 2621
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
	 * during the cmpxchg then the free will succedd.
	 */
2622
	preempt_disable();
2623
	c = __this_cpu_ptr(s->cpu_slab);
2624

2625
	tid = c->tid;
2626
	preempt_enable();
2627

2628
	if (likely(page == c->page)) {
2629
		set_freepointer(s, object, c->freelist);
2630

2631
		if (unlikely(!this_cpu_cmpxchg_double(
2632 2633 2634 2635 2636 2637 2638
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2639
		stat(s, FREE_FASTPATH);
2640
	} else
2641
		__slab_free(s, page, x, addr);
2642 2643 2644

}

C
Christoph Lameter 已提交
2645 2646
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2647 2648
	s = cache_from_obj(s, x);
	if (!s)
2649
		return;
2650
	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2651
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2652 2653 2654 2655
}
EXPORT_SYMBOL(kmem_cache_free);

/*
C
Christoph Lameter 已提交
2656 2657 2658 2659
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
2660 2661 2662 2663
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
2664
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2675
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2676
static int slub_min_objects;
C
Christoph Lameter 已提交
2677 2678 2679

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
2680
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
2681 2682 2683 2684 2685 2686
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
2687 2688 2689 2690
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
2691
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
2692 2693 2694 2695 2696 2697
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
2698
 *
C
Christoph Lameter 已提交
2699 2700 2701 2702
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
2703
 *
C
Christoph Lameter 已提交
2704 2705 2706 2707
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
2708
 */
2709
static inline int slab_order(int size, int min_objects,
2710
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
2711 2712 2713
{
	int order;
	int rem;
2714
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
2715

2716
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2717
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2718

2719
	for (order = max(min_order,
2720 2721
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
2722

2723
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
2724

2725
		if (slab_size < min_objects * size + reserved)
C
Christoph Lameter 已提交
2726 2727
			continue;

2728
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
2729

2730
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
2731 2732 2733
			break;

	}
C
Christoph Lameter 已提交
2734

C
Christoph Lameter 已提交
2735 2736 2737
	return order;
}

2738
static inline int calculate_order(int size, int reserved)
2739 2740 2741 2742
{
	int order;
	int min_objects;
	int fraction;
2743
	int max_objects;
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
2754 2755
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2756
	max_objects = order_objects(slub_max_order, size, reserved);
2757 2758
	min_objects = min(min_objects, max_objects);

2759
	while (min_objects > 1) {
C
Christoph Lameter 已提交
2760
		fraction = 16;
2761 2762
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
2763
					slub_max_order, fraction, reserved);
2764 2765 2766 2767
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
2768
		min_objects--;
2769 2770 2771 2772 2773 2774
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
2775
	order = slab_order(size, 1, slub_max_order, 1, reserved);
2776 2777 2778 2779 2780 2781
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
2782
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
2783
	if (order < MAX_ORDER)
2784 2785 2786 2787
		return order;
	return -ENOSYS;
}

2788
static void
2789
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
2790 2791 2792 2793
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
2794
#ifdef CONFIG_SLUB_DEBUG
2795
	atomic_long_set(&n->nr_slabs, 0);
2796
	atomic_long_set(&n->total_objects, 0);
2797
	INIT_LIST_HEAD(&n->full);
2798
#endif
C
Christoph Lameter 已提交
2799 2800
}

2801
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2802
{
2803
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2804
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2805

2806
	/*
2807 2808
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
2809
	 */
2810 2811
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
2812 2813 2814 2815 2816

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
2817

2818
	return 1;
2819 2820
}

2821 2822
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
2823 2824 2825 2826 2827 2828
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
 * Note that this function only works on the kmalloc_node_cache
2829 2830
 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2831
 */
2832
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
2833 2834 2835 2836
{
	struct page *page;
	struct kmem_cache_node *n;

2837
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
2838

2839
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
2840 2841

	BUG_ON(!page);
2842 2843 2844 2845 2846 2847 2848
	if (page_to_nid(page) != node) {
		printk(KERN_ERR "SLUB: Unable to allocate memory from "
				"node %d\n", node);
		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
				"in order to be able to continue\n");
	}

C
Christoph Lameter 已提交
2849 2850
	n = page->freelist;
	BUG_ON(!n);
2851
	page->freelist = get_freepointer(kmem_cache_node, n);
2852
	page->inuse = 1;
2853
	page->frozen = 0;
2854
	kmem_cache_node->node[node] = n;
2855
#ifdef CONFIG_SLUB_DEBUG
2856
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2857
	init_tracking(kmem_cache_node, n);
2858
#endif
2859
	init_kmem_cache_node(n);
2860
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
2861

2862
	add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
2863 2864 2865 2866 2867 2868
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

C
Christoph Lameter 已提交
2869
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2870
		struct kmem_cache_node *n = s->node[node];
2871

2872
		if (n)
2873 2874
			kmem_cache_free(kmem_cache_node, n);

C
Christoph Lameter 已提交
2875 2876 2877 2878
		s->node[node] = NULL;
	}
}

2879
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
2880 2881 2882
{
	int node;

C
Christoph Lameter 已提交
2883
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2884 2885
		struct kmem_cache_node *n;

2886
		if (slab_state == DOWN) {
2887
			early_kmem_cache_node_alloc(node);
2888 2889
			continue;
		}
2890
		n = kmem_cache_alloc_node(kmem_cache_node,
2891
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
2892

2893 2894 2895
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
2896
		}
2897

C
Christoph Lameter 已提交
2898
		s->node[node] = n;
2899
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
2900 2901 2902 2903
	}
	return 1;
}

2904
static void set_min_partial(struct kmem_cache *s, unsigned long min)
2905 2906 2907 2908 2909 2910 2911 2912
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
2913 2914 2915 2916
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
2917
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
2918 2919
{
	unsigned long flags = s->flags;
2920
	unsigned long size = s->object_size;
2921
	int order;
C
Christoph Lameter 已提交
2922

2923 2924 2925 2926 2927 2928 2929 2930
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2931 2932 2933 2934 2935 2936
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2937
			!s->ctor)
C
Christoph Lameter 已提交
2938 2939 2940 2941 2942 2943
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
2944
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2945
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2946
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2947
	 */
2948
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
2949
		size += sizeof(void *);
C
Christoph Lameter 已提交
2950
#endif
C
Christoph Lameter 已提交
2951 2952

	/*
C
Christoph Lameter 已提交
2953 2954
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
2955 2956 2957 2958
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2959
		s->ctor)) {
C
Christoph Lameter 已提交
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

2972
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2973 2974 2975 2976 2977 2978 2979
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

2980
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
2981 2982 2983 2984
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
2985
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
2986 2987 2988
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
2989
#endif
C
Christoph Lameter 已提交
2990

C
Christoph Lameter 已提交
2991 2992 2993 2994 2995
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
2996
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
2997
	s->size = size;
2998 2999 3000
	if (forced_order >= 0)
		order = forced_order;
	else
3001
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3002

3003
	if (order < 0)
C
Christoph Lameter 已提交
3004 3005
		return 0;

3006
	s->allocflags = 0;
3007
	if (order)
3008 3009 3010
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3011
		s->allocflags |= GFP_DMA;
3012 3013 3014 3015

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3016 3017 3018
	/*
	 * Determine the number of objects per slab
	 */
3019 3020
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3021 3022
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3023

3024
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3025 3026
}

3027
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3028
{
3029
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3030
	s->reserved = 0;
C
Christoph Lameter 已提交
3031

3032 3033
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3034

3035
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3036
		goto error;
3037 3038 3039 3040 3041
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3042
		if (get_order(s->size) > get_order(s->object_size)) {
3043 3044 3045 3046 3047 3048
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3049

3050 3051
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3052 3053 3054 3055 3056
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3057 3058 3059 3060
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3076
	 * B) The number of objects in cpu partial slabs to extract from the
3077 3078 3079
	 *    per node list when we run out of per cpu objects. We only fetch 50%
	 *    to keep some capacity around for frees.
	 */
3080
	if (!kmem_cache_has_cpu_partial(s))
3081 3082
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3083 3084 3085 3086 3087 3088 3089 3090
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3091
#ifdef CONFIG_NUMA
3092
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3093
#endif
3094
	if (!init_kmem_cache_nodes(s))
3095
		goto error;
C
Christoph Lameter 已提交
3096

3097
	if (alloc_kmem_cache_cpus(s))
3098
		return 0;
3099

3100
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3101 3102 3103 3104
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3105
			s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
C
Christoph Lameter 已提交
3106
			s->offset, flags);
3107
	return -EINVAL;
C
Christoph Lameter 已提交
3108 3109
}

3110 3111 3112 3113 3114 3115
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3116 3117
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3118 3119
	if (!map)
		return;
3120
	slab_err(s, page, text, s->name);
3121 3122
	slab_lock(page);

3123
	get_map(s, page, map);
3124 3125 3126 3127 3128 3129 3130 3131 3132
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
							p, p - addr);
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3133
	kfree(map);
3134 3135 3136
#endif
}

C
Christoph Lameter 已提交
3137
/*
C
Christoph Lameter 已提交
3138
 * Attempt to free all partial slabs on a node.
3139 3140
 * This is called from kmem_cache_close(). We must be the last thread
 * using the cache and therefore we do not need to lock anymore.
C
Christoph Lameter 已提交
3141
 */
C
Christoph Lameter 已提交
3142
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3143 3144 3145
{
	struct page *page, *h;

3146
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3147
		if (!page->inuse) {
3148
			remove_partial(n, page);
C
Christoph Lameter 已提交
3149
			discard_slab(s, page);
3150 3151
		} else {
			list_slab_objects(s, page,
3152
			"Objects remaining in %s on kmem_cache_close()");
C
Christoph Lameter 已提交
3153
		}
3154
	}
C
Christoph Lameter 已提交
3155 3156 3157
}

/*
C
Christoph Lameter 已提交
3158
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3159
 */
3160
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
3161 3162 3163 3164 3165
{
	int node;

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3166
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3167 3168
		struct kmem_cache_node *n = get_node(s, node);

C
Christoph Lameter 已提交
3169 3170
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3171 3172
			return 1;
	}
3173
	free_percpu(s->cpu_slab);
C
Christoph Lameter 已提交
3174 3175 3176 3177
	free_kmem_cache_nodes(s);
	return 0;
}

3178
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3179
{
3180
	int rc = kmem_cache_close(s);
3181

3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
	if (!rc) {
		/*
		 * We do the same lock strategy around sysfs_slab_add, see
		 * __kmem_cache_create. Because this is pretty much the last
		 * operation we do and the lock will be released shortly after
		 * that in slab_common.c, we could just move sysfs_slab_remove
		 * to a later point in common code. We should do that when we
		 * have a common sysfs framework for all allocators.
		 */
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3192
		sysfs_slab_remove(s);
3193 3194
		mutex_lock(&slab_mutex);
	}
3195 3196

	return rc;
C
Christoph Lameter 已提交
3197 3198 3199 3200 3201 3202 3203 3204
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3205
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3206 3207 3208 3209 3210 3211 3212 3213

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3214
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3215
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3216 3217 3218 3219 3220 3221 3222 3223

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3224
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

void *__kmalloc(size_t size, gfp_t flags)
{
3241
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3242
	void *ret;
C
Christoph Lameter 已提交
3243

3244
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3245
		return kmalloc_large(size, flags);
3246

3247
	s = kmalloc_slab(size, flags);
3248 3249

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3250 3251
		return s;

3252
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3253

3254
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3255 3256

	return ret;
C
Christoph Lameter 已提交
3257 3258 3259
}
EXPORT_SYMBOL(__kmalloc);

3260
#ifdef CONFIG_NUMA
3261 3262
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3263
	struct page *page;
3264
	void *ptr = NULL;
3265

3266
	flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3267
	page = alloc_pages_node(node, flags, get_order(size));
3268
	if (page)
3269 3270 3271 3272
		ptr = page_address(page);

	kmemleak_alloc(ptr, size, 1, flags);
	return ptr;
3273 3274
}

C
Christoph Lameter 已提交
3275 3276
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3277
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3278
	void *ret;
C
Christoph Lameter 已提交
3279

3280
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3281 3282
		ret = kmalloc_large_node(size, flags, node);

3283 3284 3285
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3286 3287 3288

		return ret;
	}
3289

3290
	s = kmalloc_slab(size, flags);
3291 3292

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3293 3294
		return s;

3295
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3296

3297
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3298 3299

	return ret;
C
Christoph Lameter 已提交
3300 3301 3302 3303 3304 3305
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
3306
	struct page *page;
C
Christoph Lameter 已提交
3307

3308
	if (unlikely(object == ZERO_SIZE_PTR))
3309 3310
		return 0;

3311 3312
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3313 3314
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3315
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3316
	}
C
Christoph Lameter 已提交
3317

3318
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3319
}
K
Kirill A. Shutemov 已提交
3320
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3321

3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
#ifdef CONFIG_SLUB_DEBUG
bool verify_mem_not_deleted(const void *x)
{
	struct page *page;
	void *object = (void *)x;
	unsigned long flags;
	bool rv;

	if (unlikely(ZERO_OR_NULL_PTR(x)))
		return false;

	local_irq_save(flags);

	page = virt_to_head_page(x);
	if (unlikely(!PageSlab(page))) {
		/* maybe it was from stack? */
		rv = true;
		goto out_unlock;
	}

	slab_lock(page);
3343 3344
	if (on_freelist(page->slab_cache, page, object)) {
		object_err(page->slab_cache, page, object, "Object is on free-list");
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
		rv = false;
	} else {
		rv = true;
	}
	slab_unlock(page);

out_unlock:
	local_irq_restore(flags);
	return rv;
}
EXPORT_SYMBOL(verify_mem_not_deleted);
#endif

C
Christoph Lameter 已提交
3358 3359 3360
void kfree(const void *x)
{
	struct page *page;
3361
	void *object = (void *)x;
C
Christoph Lameter 已提交
3362

3363 3364
	trace_kfree(_RET_IP_, x);

3365
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3366 3367
		return;

3368
	page = virt_to_head_page(x);
3369
	if (unlikely(!PageSlab(page))) {
3370
		BUG_ON(!PageCompound(page));
3371
		kmemleak_free(x);
3372
		__free_memcg_kmem_pages(page, compound_order(page));
3373 3374
		return;
	}
3375
	slab_free(page->slab_cache, page, object, _RET_IP_);
C
Christoph Lameter 已提交
3376 3377 3378
}
EXPORT_SYMBOL(kfree);

3379
/*
C
Christoph Lameter 已提交
3380 3381 3382 3383 3384 3385 3386 3387
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3388 3389 3390 3391 3392 3393 3394 3395
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3396
	int objects = oo_objects(s->max);
3397
	struct list_head *slabs_by_inuse =
3398
		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3399 3400 3401 3402 3403 3404
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
3405
	for_each_node_state(node, N_NORMAL_MEMORY) {
3406 3407 3408 3409 3410
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

3411
		for (i = 0; i < objects; i++)
3412 3413 3414 3415 3416
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
3417
		 * Build lists indexed by the items in use in each slab.
3418
		 *
C
Christoph Lameter 已提交
3419 3420
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3421 3422
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3423 3424 3425
			list_move(&page->lru, slabs_by_inuse + page->inuse);
			if (!page->inuse)
				n->nr_partial--;
3426 3427 3428
		}

		/*
C
Christoph Lameter 已提交
3429 3430
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
3431
		 */
3432
		for (i = objects - 1; i > 0; i--)
3433 3434 3435
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
3436 3437 3438 3439

		/* Release empty slabs */
		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
			discard_slab(s, page);
3440 3441 3442 3443 3444 3445 3446
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

3447 3448 3449 3450
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3451
	mutex_lock(&slab_mutex);
3452 3453
	list_for_each_entry(s, &slab_caches, list)
		kmem_cache_shrink(s);
3454
	mutex_unlock(&slab_mutex);
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3466
	offline_node = marg->status_change_nid_normal;
3467 3468 3469 3470 3471 3472 3473 3474

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3475
	mutex_lock(&slab_mutex);
3476 3477 3478 3479 3480 3481
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3482
			 * and offline_pages() function shouldn't call this
3483 3484
			 * callback. So, we must fail.
			 */
3485
			BUG_ON(slabs_node(s, offline_node));
3486 3487

			s->node[offline_node] = NULL;
3488
			kmem_cache_free(kmem_cache_node, n);
3489 3490
		}
	}
3491
	mutex_unlock(&slab_mutex);
3492 3493 3494 3495 3496 3497 3498
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3499
	int nid = marg->status_change_nid_normal;
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3510
	 * We are bringing a node online. No memory is available yet. We must
3511 3512 3513
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3514
	mutex_lock(&slab_mutex);
3515 3516 3517 3518 3519 3520
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3521
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3522 3523 3524 3525
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3526
		init_kmem_cache_node(n);
3527 3528 3529
		s->node[nid] = n;
	}
out:
3530
	mutex_unlock(&slab_mutex);
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3554 3555 3556 3557
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3558 3559 3560
	return ret;
}

3561 3562 3563 3564
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
3565

C
Christoph Lameter 已提交
3566 3567 3568 3569
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3570 3571
/*
 * Used for early kmem_cache structures that were allocated using
3572 3573
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3574 3575
 */

3576
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3577 3578
{
	int node;
3579
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3580

3581
	memcpy(s, static_cache, kmem_cache->object_size);
3582

3583 3584 3585 3586 3587 3588
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
3589 3590 3591 3592 3593 3594
	for_each_node_state(node, N_NORMAL_MEMORY) {
		struct kmem_cache_node *n = get_node(s, node);
		struct page *p;

		if (n) {
			list_for_each_entry(p, &n->partial, lru)
3595
				p->slab_cache = s;
3596

L
Li Zefan 已提交
3597
#ifdef CONFIG_SLUB_DEBUG
3598
			list_for_each_entry(p, &n->full, lru)
3599
				p->slab_cache = s;
3600 3601 3602
#endif
		}
	}
3603 3604
	list_add(&s->list, &slab_caches);
	return s;
3605 3606
}

C
Christoph Lameter 已提交
3607 3608
void __init kmem_cache_init(void)
{
3609 3610
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
3611

3612 3613 3614
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3615 3616
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3617

3618 3619
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3620

3621
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
3622 3623 3624 3625

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3626 3627 3628 3629
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3630

3631
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
3632

3633 3634 3635 3636 3637
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3638
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3639 3640

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3641
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
3642 3643 3644

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3645
#endif
C
Christoph Lameter 已提交
3646

I
Ingo Molnar 已提交
3647
	printk(KERN_INFO
3648
		"SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3649
		" CPUs=%d, Nodes=%d\n",
3650
		cache_line_size(),
C
Christoph Lameter 已提交
3651 3652 3653 3654
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3655 3656 3657 3658
void __init kmem_cache_init_late(void)
{
}

C
Christoph Lameter 已提交
3659 3660 3661 3662 3663 3664 3665 3666
/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

3667
	if (s->ctor)
C
Christoph Lameter 已提交
3668 3669
		return 1;

3670 3671 3672 3673 3674 3675
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
3676 3677 3678
	return 0;
}

3679
static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3680
		size_t align, unsigned long flags, const char *name,
3681
		void (*ctor)(void *))
C
Christoph Lameter 已提交
3682
{
3683
	struct kmem_cache *s;
C
Christoph Lameter 已提交
3684 3685 3686 3687

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

3688
	if (ctor)
C
Christoph Lameter 已提交
3689 3690 3691 3692 3693
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
3694
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
3695

3696
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
3697 3698 3699 3700 3701 3702
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3703
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
C
Christoph Lameter 已提交
3704 3705 3706 3707 3708
				continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
P
Pekka Enberg 已提交
3709
		if ((s->size & ~(align - 1)) != s->size)
C
Christoph Lameter 已提交
3710 3711 3712 3713 3714
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

3715 3716 3717
		if (!cache_match_memcg(s, memcg))
			continue;

C
Christoph Lameter 已提交
3718 3719 3720 3721 3722
		return s;
	}
	return NULL;
}

3723 3724 3725
struct kmem_cache *
__kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
		   size_t align, unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3726 3727 3728
{
	struct kmem_cache *s;

3729
	s = find_mergeable(memcg, size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3730 3731 3732 3733 3734 3735
	if (s) {
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3736
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3737
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3738

3739 3740
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3741
			s = NULL;
3742
		}
3743
	}
C
Christoph Lameter 已提交
3744

3745 3746
	return s;
}
P
Pekka Enberg 已提交
3747

3748
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3749
{
3750 3751 3752 3753 3754
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
3755

3756 3757 3758 3759
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

3760
	memcg_propagate_slab_attrs(s);
3761 3762 3763
	mutex_unlock(&slab_mutex);
	err = sysfs_slab_add(s);
	mutex_lock(&slab_mutex);
3764

3765 3766
	if (err)
		kmem_cache_close(s);
3767

3768
	return err;
C
Christoph Lameter 已提交
3769 3770 3771 3772
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3773 3774
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3775 3776 3777 3778 3779
 */
static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3780 3781
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3782 3783 3784

	switch (action) {
	case CPU_UP_CANCELED:
3785
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3786
	case CPU_DEAD:
3787
	case CPU_DEAD_FROZEN:
3788
		mutex_lock(&slab_mutex);
3789 3790 3791 3792 3793
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
3794
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3795 3796 3797 3798 3799 3800 3801
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

P
Pekka Enberg 已提交
3802
static struct notifier_block __cpuinitdata slab_notifier = {
I
Ingo Molnar 已提交
3803
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3804
};
C
Christoph Lameter 已提交
3805 3806 3807

#endif

3808
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
3809
{
3810
	struct kmem_cache *s;
3811
	void *ret;
3812

3813
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3814 3815
		return kmalloc_large(size, gfpflags);

3816
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3817

3818
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3819
		return s;
C
Christoph Lameter 已提交
3820

3821
	ret = slab_alloc(s, gfpflags, caller);
3822

L
Lucas De Marchi 已提交
3823
	/* Honor the call site pointer we received. */
3824
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3825 3826

	return ret;
C
Christoph Lameter 已提交
3827 3828
}

3829
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3830
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3831
					int node, unsigned long caller)
C
Christoph Lameter 已提交
3832
{
3833
	struct kmem_cache *s;
3834
	void *ret;
3835

3836
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3837 3838 3839 3840 3841 3842 3843 3844
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
3845

3846
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3847

3848
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3849
		return s;
C
Christoph Lameter 已提交
3850

3851
	ret = slab_alloc_node(s, gfpflags, node, caller);
3852

L
Lucas De Marchi 已提交
3853
	/* Honor the call site pointer we received. */
3854
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3855 3856

	return ret;
C
Christoph Lameter 已提交
3857
}
3858
#endif
C
Christoph Lameter 已提交
3859

3860
#ifdef CONFIG_SYSFS
3861 3862 3863 3864 3865 3866 3867 3868 3869
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
3870
#endif
3871

3872
#ifdef CONFIG_SLUB_DEBUG
3873 3874
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3875 3876
{
	void *p;
3877
	void *addr = page_address(page);
3878 3879 3880 3881 3882 3883

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
3884
	bitmap_zero(map, page->objects);
3885

3886 3887 3888 3889 3890
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
3891 3892
	}

3893
	for_each_object(p, s, addr, page->objects)
3894
		if (!test_bit(slab_index(p, s, addr), map))
3895
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3896 3897 3898 3899
				return 0;
	return 1;
}

3900 3901
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3902
{
3903 3904 3905
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
3906 3907
}

3908 3909
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3910 3911 3912 3913 3914 3915 3916 3917
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3918
		validate_slab_slab(s, page, map);
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3929
		validate_slab_slab(s, page, map);
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3942
static long validate_slab_cache(struct kmem_cache *s)
3943 3944 3945
{
	int node;
	unsigned long count = 0;
3946
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3947 3948 3949 3950
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
3951 3952

	flush_all(s);
C
Christoph Lameter 已提交
3953
	for_each_node_state(node, N_NORMAL_MEMORY) {
3954 3955
		struct kmem_cache_node *n = get_node(s, node);

3956
		count += validate_slab_node(s, n, map);
3957
	}
3958
	kfree(map);
3959 3960
	return count;
}
3961
/*
C
Christoph Lameter 已提交
3962
 * Generate lists of code addresses where slabcache objects are allocated
3963 3964 3965 3966 3967
 * and freed.
 */

struct location {
	unsigned long count;
3968
	unsigned long addr;
3969 3970 3971 3972 3973
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
3974
	DECLARE_BITMAP(cpus, NR_CPUS);
3975
	nodemask_t nodes;
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

3991
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3992 3993 3994 3995 3996 3997
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

3998
	l = (void *)__get_free_pages(flags, order);
3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4012
				const struct track *track)
4013 4014 4015
{
	long start, end, pos;
	struct location *l;
4016
	unsigned long caddr;
4017
	unsigned long age = jiffies - track->when;
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4049 4050
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4051 4052
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4053 4054 4055
			return 1;
		}

4056
		if (track->addr < caddr)
4057 4058 4059 4060 4061 4062
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4063
	 * Not found. Insert new tracking element.
4064
	 */
4065
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4066 4067 4068 4069 4070 4071 4072 4073
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4074 4075 4076 4077 4078 4079
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4080 4081
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4082 4083
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4084 4085 4086 4087
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4088
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4089
		unsigned long *map)
4090
{
4091
	void *addr = page_address(page);
4092 4093
	void *p;

4094
	bitmap_zero(map, page->objects);
4095
	get_map(s, page, map);
4096

4097
	for_each_object(p, s, addr, page->objects)
4098 4099
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4100 4101 4102 4103 4104
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4105
	int len = 0;
4106
	unsigned long i;
4107
	struct loc_track t = { 0, 0, NULL };
4108
	int node;
E
Eric Dumazet 已提交
4109 4110
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
4111

E
Eric Dumazet 已提交
4112 4113 4114
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4115
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4116
	}
4117 4118 4119
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4120
	for_each_node_state(node, N_NORMAL_MEMORY) {
4121 4122 4123 4124
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

4125
		if (!atomic_long_read(&n->nr_slabs))
4126 4127 4128 4129
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4130
			process_slab(&t, s, page, alloc, map);
4131
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4132
			process_slab(&t, s, page, alloc, map);
4133 4134 4135 4136
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4137
		struct location *l = &t.loc[i];
4138

H
Hugh Dickins 已提交
4139
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4140
			break;
4141
		len += sprintf(buf + len, "%7ld ", l->count);
4142 4143

		if (l->addr)
J
Joe Perches 已提交
4144
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4145
		else
4146
			len += sprintf(buf + len, "<not-available>");
4147 4148

		if (l->sum_time != l->min_time) {
4149
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4150 4151 4152
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4153
		} else
4154
			len += sprintf(buf + len, " age=%ld",
4155 4156 4157
				l->min_time);

		if (l->min_pid != l->max_pid)
4158
			len += sprintf(buf + len, " pid=%ld-%ld",
4159 4160
				l->min_pid, l->max_pid);
		else
4161
			len += sprintf(buf + len, " pid=%ld",
4162 4163
				l->min_pid);

R
Rusty Russell 已提交
4164 4165
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4166 4167 4168
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
R
Rusty Russell 已提交
4169
						 to_cpumask(l->cpus));
4170 4171
		}

4172
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4173 4174 4175
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4176 4177 4178
					l->nodes);
		}

4179
		len += sprintf(buf + len, "\n");
4180 4181 4182
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4183
	kfree(map);
4184
	if (!t.count)
4185 4186
		len += sprintf(buf, "No data\n");
	return len;
4187
}
4188
#endif
4189

4190 4191 4192 4193 4194
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

4195
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
			" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
	validate_slab_cache(kmalloc_caches[6]);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
			p);
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4252
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4253
enum slab_stat_type {
4254 4255 4256 4257 4258
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4259 4260
};

4261
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4262 4263 4264
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4265
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4266

4267 4268
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4269 4270 4271 4272 4273 4274 4275 4276
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;
	unsigned long *per_cpu;

	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4277 4278
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4279 4280
	per_cpu = nodes + nr_node_ids;

4281 4282
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4283

4284
		for_each_possible_cpu(cpu) {
4285
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4286
			int node;
4287
			struct page *page;
4288

4289
			page = ACCESS_ONCE(c->page);
4290 4291
			if (!page)
				continue;
4292

4293 4294 4295 4296 4297 4298 4299
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4300

4301 4302 4303 4304
			total += x;
			nodes[node] += x;

			page = ACCESS_ONCE(c->partial);
4305 4306
			if (page) {
				x = page->pobjects;
4307 4308
				total += x;
				nodes[node] += x;
4309
			}
4310

4311
			per_cpu[node]++;
C
Christoph Lameter 已提交
4312 4313 4314
		}
	}

4315
	lock_memory_hotplug();
4316
#ifdef CONFIG_SLUB_DEBUG
4317 4318 4319 4320 4321 4322 4323 4324 4325
	if (flags & SO_ALL) {
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);

		if (flags & SO_TOTAL)
			x = atomic_long_read(&n->total_objects);
		else if (flags & SO_OBJECTS)
			x = atomic_long_read(&n->total_objects) -
				count_partial(n, count_free);
C
Christoph Lameter 已提交
4326 4327

			else
4328
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4329 4330 4331 4332
			total += x;
			nodes[node] += x;
		}

4333 4334 4335
	} else
#endif
	if (flags & SO_PARTIAL) {
4336 4337
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);
C
Christoph Lameter 已提交
4338

4339 4340 4341 4342
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4343
			else
4344
				x = n->nr_partial;
C
Christoph Lameter 已提交
4345 4346 4347 4348 4349 4350
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4351
	for_each_node_state(node, N_NORMAL_MEMORY)
C
Christoph Lameter 已提交
4352 4353 4354 4355
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4356
	unlock_memory_hotplug();
C
Christoph Lameter 已提交
4357 4358 4359 4360
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4361
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4362 4363 4364 4365
static int any_slab_objects(struct kmem_cache *s)
{
	int node;

4366
	for_each_online_node(node) {
C
Christoph Lameter 已提交
4367 4368
		struct kmem_cache_node *n = get_node(s, node);

4369 4370 4371
		if (!n)
			continue;

4372
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4373 4374 4375 4376
			return 1;
	}
	return 0;
}
4377
#endif
C
Christoph Lameter 已提交
4378 4379

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4380
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4381 4382 4383 4384 4385 4386 4387 4388

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4389 4390
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4391 4392 4393

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4394
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4410
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4411 4412 4413 4414 4415
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4416
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4417 4418 4419
}
SLAB_ATTR_RO(objs_per_slab);

4420 4421 4422
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4423 4424 4425 4426 4427 4428
	unsigned long order;
	int err;

	err = strict_strtoul(buf, 10, &order);
	if (err)
		return err;
4429 4430 4431 4432 4433 4434 4435 4436

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4437 4438
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4439
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4440
}
4441
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4442

4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

	err = strict_strtoul(buf, 10, &min);
	if (err)
		return err;

4458
	set_min_partial(s, min);
4459 4460 4461 4462
	return length;
}
SLAB_ATTR(min_partial);

4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

	err = strict_strtoul(buf, 10, &objects);
	if (err)
		return err;
4477
	if (objects && !kmem_cache_has_cpu_partial(s))
4478
		return -EINVAL;
4479 4480 4481 4482 4483 4484 4485

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4486 4487
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4488 4489 4490
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4502
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4503 4504 4505 4506 4507
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4508
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4509 4510 4511 4512 4513
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4514
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4515 4516 4517
}
SLAB_ATTR_RO(objects);

4518 4519 4520 4521 4522 4523
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4590 4591 4592 4593 4594 4595
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4596
#ifdef CONFIG_SLUB_DEBUG
4597 4598 4599 4600 4601 4602
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4603 4604 4605 4606 4607 4608
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4609 4610 4611 4612 4613 4614 4615 4616 4617
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4618 4619
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4620
		s->flags |= SLAB_DEBUG_FREE;
4621
	}
C
Christoph Lameter 已提交
4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
4635 4636
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4637
		s->flags |= SLAB_TRACE;
4638
	}
C
Christoph Lameter 已提交
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4655 4656
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4657
		s->flags |= SLAB_RED_ZONE;
4658
	}
4659
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4676 4677
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4678
		s->flags |= SLAB_POISON;
4679
	}
4680
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4697 4698
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4699
		s->flags |= SLAB_STORE_USER;
4700
	}
4701
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4702 4703 4704 4705
	return length;
}
SLAB_ATTR(store_user);

4706 4707 4708 4709 4710 4711 4712 4713
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4714 4715 4716 4717 4718 4719 4720 4721
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4722 4723
}
SLAB_ATTR(validate);
4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4757
#endif
4758

4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
4778
#ifdef CONFIG_NUMA
4779
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4780
{
4781
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4782 4783
}

4784
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4785 4786
				const char *buf, size_t length)
{
4787 4788 4789 4790 4791 4792 4793
	unsigned long ratio;
	int err;

	err = strict_strtoul(buf, 10, &ratio);
	if (err)
		return err;

4794
	if (ratio <= 100)
4795
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4796 4797 4798

	return length;
}
4799
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4800 4801
#endif

4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4814
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4815 4816 4817 4818 4819 4820 4821

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4822
#ifdef CONFIG_SMP
4823 4824
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4825
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4826
	}
4827
#endif
4828 4829 4830 4831
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
4832 4833 4834 4835 4836
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
4837
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
4838 4839
}

4840 4841 4842 4843 4844
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
4845 4846 4847 4848 4849 4850 4851 4852 4853
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
4865
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4866 4867 4868 4869 4870 4871 4872
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4873
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4874
STAT_ATTR(ORDER_FALLBACK, order_fallback);
4875 4876
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4877 4878
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4879 4880
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4881 4882
#endif

P
Pekka Enberg 已提交
4883
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4884 4885 4886 4887
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
4888
	&min_partial_attr.attr,
4889
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
4890
	&objects_attr.attr,
4891
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
4892 4893 4894 4895 4896 4897 4898 4899
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
4900
	&shrink_attr.attr,
4901
	&reserved_attr.attr,
4902
	&slabs_cpu_partial_attr.attr,
4903
#ifdef CONFIG_SLUB_DEBUG
4904 4905 4906 4907
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
4908 4909 4910
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4911
	&validate_attr.attr,
4912 4913
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
4914
#endif
C
Christoph Lameter 已提交
4915 4916 4917 4918
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4919
	&remote_node_defrag_ratio_attr.attr,
4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
4932
	&alloc_node_mismatch_attr.attr,
4933 4934 4935 4936 4937 4938 4939
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
4940
	&deactivate_bypass_attr.attr,
4941
	&order_fallback_attr.attr,
4942 4943
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
4944 4945
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
4946 4947
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
4948
#endif
4949 4950 4951 4952
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
4994 4995 4996
#ifdef CONFIG_MEMCG_KMEM
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
		int i;
C
Christoph Lameter 已提交
4997

4998 4999 5000 5001
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5019 5020 5021 5022 5023 5024 5025 5026
		for_each_memcg_cache_index(i) {
			struct kmem_cache *c = cache_from_memcg(s, i);
			if (c)
				attribute->store(c, buf, len);
		}
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5027 5028 5029
	return err;
}

5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	int i;
	char *buffer = NULL;

	if (!is_root_cache(s))
		return;

	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
	if (!s->max_attr_size)
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
		else if (s->max_attr_size < ARRAY_SIZE(mbuf))
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

		attr->show(s->memcg_params->root_cache, buf);
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5083
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5101
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5102 5103 5104
	.filter = uevent_filter,
};

5105
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5106 5107 5108 5109

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5110 5111
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
V
Vegard Nossum 已提交
5134 5135
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
C
Christoph Lameter 已提交
5136 5137 5138
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5139 5140 5141 5142 5143 5144

#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
		p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
#endif

C
Christoph Lameter 已提交
5145 5146 5147 5148 5149 5150 5151 5152
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5153
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5154 5155 5156 5157 5158 5159 5160

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5161
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5162 5163 5164 5165 5166 5167 5168 5169 5170
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5171
	s->kobj.kset = slab_kset;
5172 5173 5174
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
	if (err) {
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5175
		return err;
5176
	}
C
Christoph Lameter 已提交
5177 5178

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5179 5180 5181
	if (err) {
		kobject_del(&s->kobj);
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5182
		return err;
5183
	}
C
Christoph Lameter 已提交
5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
5195
	if (slab_state < FULL)
5196 5197 5198 5199 5200 5201
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

C
Christoph Lameter 已提交
5202 5203
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5204
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5205 5206 5207 5208
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5209
 * available lest we lose that information.
C
Christoph Lameter 已提交
5210 5211 5212 5213 5214 5215 5216
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5217
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5218 5219 5220 5221 5222

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5223
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5224 5225 5226
		/*
		 * If we have a leftover link then remove it.
		 */
5227 5228
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5244
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5245 5246
	int err;

5247
	mutex_lock(&slab_mutex);
5248

5249
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5250
	if (!slab_kset) {
5251
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5252 5253 5254 5255
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

5256
	slab_state = FULL;
5257

5258
	list_for_each_entry(s, &slab_caches, list) {
5259
		err = sysfs_slab_add(s);
5260 5261 5262
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
						" to sysfs\n", s->name);
5263
	}
C
Christoph Lameter 已提交
5264 5265 5266 5267 5268 5269

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5270 5271
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5272
					" %s to sysfs\n", al->name);
C
Christoph Lameter 已提交
5273 5274 5275
		kfree(al);
	}

5276
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5277 5278 5279 5280 5281
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5282
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5283 5284 5285 5286

/*
 * The /proc/slabinfo ABI
 */
5287
#ifdef CONFIG_SLABINFO
5288
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5289 5290
{
	unsigned long nr_slabs = 0;
5291 5292
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5293 5294 5295 5296 5297 5298 5299 5300
	int node;

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (!n)
			continue;

5301 5302
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5303
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5304 5305
	}

5306 5307 5308 5309 5310 5311
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5312 5313
}

5314
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5315 5316 5317
{
}

5318 5319
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5320
{
5321
	return -EIO;
5322
}
5323
#endif /* CONFIG_SLABINFO */