slub.c 129.2 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
C
Christoph Lameter 已提交
21
#include <linux/seq_file.h>
V
Vegard Nossum 已提交
22
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
23 24 25 26
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
27
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
28
#include <linux/kallsyms.h>
29
#include <linux/memory.h>
R
Roman Zippel 已提交
30
#include <linux/math64.h>
A
Akinobu Mita 已提交
31
#include <linux/fault-inject.h>
32
#include <linux/stacktrace.h>
33
#include <linux/prefetch.h>
C
Christoph Lameter 已提交
34

35 36
#include <trace/events/kmem.h>

37 38
#include "internal.h"

C
Christoph Lameter 已提交
39 40
/*
 * Lock order:
41
 *   1. slab_mutex (Global Mutex)
42 43
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
44
 *
45
 *   slab_mutex
46
 *
47
 *   The role of the slab_mutex is to protect the list of all the slabs
48 49 50 51 52 53 54 55 56 57 58 59 60 61
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
82 83
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
84
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
85 86
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
87 88 89 90 91 92 93
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
94 95 96 97 98 99 100 101 102 103 104 105
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
106
 * 			freelist that allows lockless access to
107 108
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
109 110 111
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
112
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
113 114
 */

115 116 117 118 119
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DEBUG_FREE)

static inline int kmem_cache_debug(struct kmem_cache *s)
{
120
#ifdef CONFIG_SLUB_DEBUG
121
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122
#else
123
	return 0;
124
#endif
125
}
126

C
Christoph Lameter 已提交
127 128 129 130 131 132 133 134 135 136 137
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

138 139 140
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

141 142 143 144
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
145
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
146

147 148 149 150 151 152 153
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
 * sort the partial list by the number of objects in the.
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
154 155
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
156

157
/*
158 159 160
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
161
 */
162
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
163

C
Christoph Lameter 已提交
164 165 166 167
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
168 169
		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
		SLAB_FAILSLAB)
C
Christoph Lameter 已提交
170 171

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
V
Vegard Nossum 已提交
172
		SLAB_CACHE_DMA | SLAB_NOTRACK)
C
Christoph Lameter 已提交
173

174 175
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
176
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
177

C
Christoph Lameter 已提交
178
/* Internal SLUB flags */
C
Christoph Lameter 已提交
179
#define __OBJECT_POISON		0x80000000UL /* Poison object */
180
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
181 182 183 184 185 186 187

static int kmem_size = sizeof(struct kmem_cache);

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

188 189 190
/*
 * Tracking user of a slab.
 */
191
#define TRACK_ADDRS_COUNT 16
192
struct track {
193
	unsigned long addr;	/* Called from address */
194 195 196
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
197 198 199 200 201 202 203
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

204
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
205 206
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
207

C
Christoph Lameter 已提交
208
#else
209 210
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
211
static inline void sysfs_slab_remove(struct kmem_cache *s) { }
212

C
Christoph Lameter 已提交
213 214
#endif

215
static inline void stat(const struct kmem_cache *s, enum stat_item si)
216 217
{
#ifdef CONFIG_SLUB_STATS
218
	__this_cpu_inc(s->cpu_slab->stat[si]);
219 220 221
#endif
}

C
Christoph Lameter 已提交
222 223 224 225 226 227 228 229 230
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
	return s->node[node];
}

C
Christoph Lameter 已提交
231
/* Verify that a pointer has an address that is valid within a slab page */
232 233 234 235 236
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

237
	if (!object)
238 239
		return 1;

240
	base = page_address(page);
241
	if (object < base || object >= base + page->objects * s->size ||
242 243 244 245 246 247 248
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

249 250 251 252 253
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

254 255 256 257 258
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

259 260 261 262 263 264 265 266 267 268 269 270
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

271 272 273 274 275 276
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
277 278
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
279 280 281 282 283 284 285 286
			__p += (__s)->size)

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

287 288 289 290 291 292 293 294
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
295
		return s->object_size;
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

311 312 313 314 315
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

316
static inline struct kmem_cache_order_objects oo_make(int order,
317
		unsigned long size, int reserved)
318 319
{
	struct kmem_cache_order_objects x = {
320
		(order << OO_SHIFT) + order_objects(order, size, reserved)
321 322 323 324 325 326 327
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
328
	return x.x >> OO_SHIFT;
329 330 331 332
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
333
	return x.x & OO_MASK;
334 335
}

336 337 338 339 340 341 342 343 344 345 346 347 348
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	__bit_spin_unlock(PG_locked, &page->flags);
}

349 350 351 352 353 354 355
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
356 357
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
358
	if (s->flags & __CMPXCHG_DOUBLE) {
359
		if (cmpxchg_double(&page->freelist, &page->counters,
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
		slab_lock(page);
		if (page->freelist == freelist_old && page->counters == counters_old) {
			page->freelist = freelist_new;
			page->counters = counters_new;
			slab_unlock(page);
			return 1;
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
#endif

	return 0;
}

386 387 388 389 390
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
391 392
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
393
	if (s->flags & __CMPXCHG_DOUBLE) {
394
		if (cmpxchg_double(&page->freelist, &page->counters,
395 396 397 398 399 400
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
401 402 403
		unsigned long flags;

		local_irq_save(flags);
404
		slab_lock(page);
405 406 407
		if (page->freelist == freelist_old && page->counters == counters_old) {
			page->freelist = freelist_new;
			page->counters = counters_new;
408
			slab_unlock(page);
409
			local_irq_restore(flags);
410 411
			return 1;
		}
412
		slab_unlock(page);
413
		local_irq_restore(flags);
414 415 416 417 418 419 420 421 422 423 424 425
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
#endif

	return 0;
}

C
Christoph Lameter 已提交
426
#ifdef CONFIG_SLUB_DEBUG
427 428 429
/*
 * Determine a map of object in use on a page.
 *
430
 * Node listlock must be held to guarantee that the page does
431 432 433 434 435 436 437 438 439 440 441
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

C
Christoph Lameter 已提交
442 443 444
/*
 * Debug settings:
 */
445 446 447
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
448
static int slub_debug;
449
#endif
C
Christoph Lameter 已提交
450 451

static char *slub_debug_slabs;
452
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
453

C
Christoph Lameter 已提交
454 455 456 457 458
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
459 460
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
C
Christoph Lameter 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
477
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
478
{
A
Akinobu Mita 已提交
479
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
480 481

	if (addr) {
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
		save_stack_trace(&trace);

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
500 501
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
502
		p->pid = current->pid;
C
Christoph Lameter 已提交
503 504 505 506 507 508 509
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
510 511 512
	if (!(s->flags & SLAB_STORE_USER))
		return;

513 514
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
515 516 517 518 519 520 521
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

522
	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
523
		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
524 525 526 527 528 529 530 531 532 533
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
			else
				break;
	}
#endif
534 535 536 537 538 539 540 541 542 543 544 545 546
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
547 548
	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
		page, page->objects, page->inuse, page->freelist, page->flags);
549 550 551 552 553 554 555 556 557 558 559 560 561

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "========================================"
			"=====================================\n");
562
	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
563 564
	printk(KERN_ERR "----------------------------------------"
			"-------------------------------------\n\n");
C
Christoph Lameter 已提交
565 566
}

567 568 569 570 571 572 573 574 575 576 577 578
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
579 580
{
	unsigned int off;	/* Offset of last byte */
581
	u8 *addr = page_address(page);
582 583 584 585 586 587 588 589 590

	print_tracking(s, p);

	print_page_info(page);

	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
			p, p - addr, get_freepointer(s, p));

	if (p > addr + 16)
591
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
592

593
	print_section("Object ", p, min_t(unsigned long, s->object_size,
594
				PAGE_SIZE));
C
Christoph Lameter 已提交
595
	if (s->flags & SLAB_RED_ZONE)
596 597
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
598 599 600 601 602 603

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

604
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
605 606 607 608
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
609
		print_section("Padding ", p + off, s->size - off);
610 611

	dump_stack();
C
Christoph Lameter 已提交
612 613 614 615 616
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
617
	slab_bug(s, "%s", reason);
618
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
619 620
}

621
static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
C
Christoph Lameter 已提交
622 623 624 625
{
	va_list args;
	char buf[100];

626 627
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
628
	va_end(args);
629
	slab_bug(s, "%s", buf);
630
	print_page_info(page);
C
Christoph Lameter 已提交
631 632 633
	dump_stack();
}

634
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
635 636 637 638
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
639 640
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
641 642 643
	}

	if (s->flags & SLAB_RED_ZONE)
644
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
645 646
}

647 648 649 650 651 652 653 654 655
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
656
			u8 *start, unsigned int value, unsigned int bytes)
657 658 659 660
{
	u8 *fault;
	u8 *end;

661
	fault = memchr_inv(start, value, bytes);
662 663 664 665 666 667 668 669 670 671 672 673 674 675
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
676 677 678 679 680 681 682 683 684
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
685
 *
C
Christoph Lameter 已提交
686 687 688
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
689
 * object + s->object_size
C
Christoph Lameter 已提交
690
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
691
 * 	Padding is extended by another word if Redzoning is enabled and
692
 * 	object_size == inuse.
C
Christoph Lameter 已提交
693
 *
C
Christoph Lameter 已提交
694 695 696 697
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
698 699
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
700 701
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
702
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
703
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
704 705 706
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
707 708
 *
 * object + s->size
C
Christoph Lameter 已提交
709
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
710
 *
711
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
712
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

731 732
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
733 734
}

735
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
736 737
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
738 739 740 741 742
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
743 744 745 746

	if (!(s->flags & SLAB_POISON))
		return 1;

747
	start = page_address(page);
748
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
749 750
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
751 752 753
	if (!remainder)
		return 1;

754
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
755 756 757 758 759 760
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
761
	print_section("Padding ", end - remainder, remainder);
762

E
Eric Dumazet 已提交
763
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
764
	return 0;
C
Christoph Lameter 已提交
765 766 767
}

static int check_object(struct kmem_cache *s, struct page *page,
768
					void *object, u8 val)
C
Christoph Lameter 已提交
769 770
{
	u8 *p = object;
771
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
772 773

	if (s->flags & SLAB_RED_ZONE) {
774
		if (!check_bytes_and_report(s, page, object, "Redzone",
775
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
776 777
			return 0;
	} else {
778
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
779
			check_bytes_and_report(s, page, p, "Alignment padding",
780
				endobject, POISON_INUSE, s->inuse - s->object_size);
I
Ingo Molnar 已提交
781
		}
C
Christoph Lameter 已提交
782 783 784
	}

	if (s->flags & SLAB_POISON) {
785
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
786
			(!check_bytes_and_report(s, page, p, "Poison", p,
787
					POISON_FREE, s->object_size - 1) ||
788
			 !check_bytes_and_report(s, page, p, "Poison",
789
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
790 791 792 793 794 795 796
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

797
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
798 799 800 801 802 803 804 805 806 807
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
808
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
809
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
810
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
811
		 */
812
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
813 814 815 816 817 818 819
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
820 821
	int maxobj;

C
Christoph Lameter 已提交
822 823 824
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
825
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
826 827
		return 0;
	}
828

829
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
830 831 832 833 834 835
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
			s->name, page->objects, maxobj);
		return 0;
	}
	if (page->inuse > page->objects) {
836
		slab_err(s, page, "inuse %u > max %u",
837
			s->name, page->inuse, page->objects);
C
Christoph Lameter 已提交
838 839 840 841 842 843 844 845
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
846 847
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
848 849 850 851
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
852
	void *fp;
C
Christoph Lameter 已提交
853
	void *object = NULL;
854
	unsigned long max_objects;
C
Christoph Lameter 已提交
855

856
	fp = page->freelist;
857
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
858 859 860 861 862 863
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
864
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
865 866
				break;
			} else {
867
				slab_err(s, page, "Freepointer corrupt");
868
				page->freelist = NULL;
869
				page->inuse = page->objects;
870
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
871 872 873 874 875 876 877 878 879
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

880
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
881 882
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
883 884 885 886 887 888 889

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
890
	if (page->inuse != page->objects - nr) {
891
		slab_err(s, page, "Wrong object count. Counter is %d but "
892 893
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
894
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
895 896 897 898
	}
	return search == NULL;
}

899 900
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
901 902 903 904 905 906 907 908 909
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
910
			print_section("Object ", (void *)object, s->object_size);
C
Christoph Lameter 已提交
911 912 913 914 915

		dump_stack();
	}
}

916 917 918 919 920 921
/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
{
922
	flags &= gfp_allowed_mask;
923 924 925
	lockdep_trace_alloc(flags);
	might_sleep_if(flags & __GFP_WAIT);

926
	return should_failslab(s->object_size, flags, s->flags);
927 928 929 930
}

static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
{
931
	flags &= gfp_allowed_mask;
932
	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
933
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
934 935 936 937 938 939
}

static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);

940 941 942 943 944 945 946 947 948 949
	/*
	 * Trouble is that we may no longer disable interupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
950 951
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
952 953 954
		local_irq_restore(flags);
	}
#endif
955
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
956
		debug_check_no_obj_freed(x, s->object_size);
957 958
}

959
/*
C
Christoph Lameter 已提交
960
 * Tracking of fully allocated slabs for debugging purposes.
961 962
 *
 * list_lock must be held.
963
 */
964 965
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
966
{
967 968 969
	if (!(s->flags & SLAB_STORE_USER))
		return;

970 971 972
	list_add(&page->lru, &n->full);
}

973 974 975
/*
 * list_lock must be held.
 */
976 977 978 979 980 981 982 983
static void remove_full(struct kmem_cache *s, struct page *page)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	list_del(&page->lru);
}

984 985 986 987 988 989 990 991
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

992 993 994 995 996
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

997
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
998 999 1000 1001 1002 1003 1004 1005 1006
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1007
	if (n) {
1008
		atomic_long_inc(&n->nr_slabs);
1009 1010
		atomic_long_add(objects, &n->total_objects);
	}
1011
}
1012
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1013 1014 1015 1016
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1017
	atomic_long_sub(objects, &n->total_objects);
1018 1019 1020
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1021 1022 1023 1024 1025 1026
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1027
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1028 1029 1030
	init_tracking(s, object);
}

1031
static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1032
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1033 1034 1035 1036 1037 1038
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1039
		goto bad;
C
Christoph Lameter 已提交
1040 1041
	}

1042
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
C
Christoph Lameter 已提交
1043 1044
		goto bad;

C
Christoph Lameter 已提交
1045 1046 1047 1048
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1049
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1050
	return 1;
C
Christoph Lameter 已提交
1051

C
Christoph Lameter 已提交
1052 1053 1054 1055 1056
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1057
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1058
		 */
1059
		slab_fix(s, "Marking all objects used");
1060
		page->inuse = page->objects;
1061
		page->freelist = NULL;
C
Christoph Lameter 已提交
1062 1063 1064 1065
	}
	return 0;
}

1066 1067 1068
static noinline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags)
C
Christoph Lameter 已提交
1069
{
1070
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1071

1072
	spin_lock_irqsave(&n->list_lock, *flags);
1073 1074
	slab_lock(page);

C
Christoph Lameter 已提交
1075 1076 1077 1078
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
1079
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
1080 1081 1082 1083
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1084
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
1085 1086 1087
		goto fail;
	}

1088
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1089
		goto out;
C
Christoph Lameter 已提交
1090 1091

	if (unlikely(s != page->slab)) {
I
Ingo Molnar 已提交
1092
		if (!PageSlab(page)) {
1093 1094
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
I
Ingo Molnar 已提交
1095
		} else if (!page->slab) {
C
Christoph Lameter 已提交
1096
			printk(KERN_ERR
1097
				"SLUB <none>: no slab for object 0x%p.\n",
C
Christoph Lameter 已提交
1098
						object);
1099
			dump_stack();
P
Pekka Enberg 已提交
1100
		} else
1101 1102
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
1103 1104
		goto fail;
	}
C
Christoph Lameter 已提交
1105 1106 1107 1108

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1109
	init_object(s, object, SLUB_RED_INACTIVE);
1110
out:
1111
	slab_unlock(page);
1112 1113 1114 1115 1116
	/*
	 * Keep node_lock to preserve integrity
	 * until the object is actually freed
	 */
	return n;
C
Christoph Lameter 已提交
1117

C
Christoph Lameter 已提交
1118
fail:
1119 1120
	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, *flags);
1121
	slab_fix(s, "Object at 0x%p not freed", object);
1122
	return NULL;
C
Christoph Lameter 已提交
1123 1124
}

C
Christoph Lameter 已提交
1125 1126
static int __init setup_slub_debug(char *str)
{
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

1141 1142 1143 1144 1145 1146 1147 1148 1149
	if (tolower(*str) == 'o') {
		/*
		 * Avoid enabling debugging on caches if its minimum order
		 * would increase as a result.
		 */
		disable_higher_order_debug = 1;
		goto out;
	}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1160
	for (; *str && *str != ','; str++) {
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1177 1178 1179
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1180 1181
		default:
			printk(KERN_ERR "slub_debug option '%c' "
P
Pekka Enberg 已提交
1182
				"unknown. skipped\n", *str);
1183
		}
C
Christoph Lameter 已提交
1184 1185
	}

1186
check_slabs:
C
Christoph Lameter 已提交
1187 1188
	if (*str == ',')
		slub_debug_slabs = str + 1;
1189
out:
C
Christoph Lameter 已提交
1190 1191 1192 1193 1194
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1195
static unsigned long kmem_cache_flags(unsigned long object_size,
1196
	unsigned long flags, const char *name,
1197
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1198 1199
{
	/*
1200
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1201
	 */
1202
	if (slub_debug && (!slub_debug_slabs ||
1203 1204
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
		flags |= slub_debug;
1205 1206

	return flags;
C
Christoph Lameter 已提交
1207 1208
}
#else
C
Christoph Lameter 已提交
1209 1210
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1211

C
Christoph Lameter 已提交
1212
static inline int alloc_debug_processing(struct kmem_cache *s,
1213
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1214

1215 1216 1217
static inline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags) { return NULL; }
C
Christoph Lameter 已提交
1218 1219 1220 1221

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1222
			void *object, u8 val) { return 1; }
1223 1224
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1225
static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1226
static inline unsigned long kmem_cache_flags(unsigned long object_size,
1227
	unsigned long flags, const char *name,
1228
	void (*ctor)(void *))
1229 1230 1231
{
	return flags;
}
C
Christoph Lameter 已提交
1232
#define slub_debug 0
1233

1234 1235
#define disable_higher_order_debug 0

1236 1237
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1238 1239
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1240 1241 1242 1243
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1244 1245 1246 1247 1248 1249 1250 1251 1252

static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
							{ return 0; }

static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
		void *object) {}

static inline void slab_free_hook(struct kmem_cache *s, void *x) {}

1253
#endif /* CONFIG_SLUB_DEBUG */
1254

C
Christoph Lameter 已提交
1255 1256 1257
/*
 * Slab allocation and freeing
 */
1258 1259 1260 1261 1262
static inline struct page *alloc_slab_page(gfp_t flags, int node,
					struct kmem_cache_order_objects oo)
{
	int order = oo_order(oo);

1263 1264
	flags |= __GFP_NOTRACK;

1265
	if (node == NUMA_NO_NODE)
1266 1267
		return alloc_pages(flags, order);
	else
1268
		return alloc_pages_exact_node(node, flags, order);
1269 1270
}

C
Christoph Lameter 已提交
1271 1272
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1273
	struct page *page;
1274
	struct kmem_cache_order_objects oo = s->oo;
1275
	gfp_t alloc_gfp;
C
Christoph Lameter 已提交
1276

1277 1278 1279 1280 1281
	flags &= gfp_allowed_mask;

	if (flags & __GFP_WAIT)
		local_irq_enable();

1282
	flags |= s->allocflags;
1283

1284 1285 1286 1287 1288 1289 1290
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;

	page = alloc_slab_page(alloc_gfp, node, oo);
1291 1292 1293 1294 1295 1296 1297
	if (unlikely(!page)) {
		oo = s->min;
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
		page = alloc_slab_page(flags, node, oo);
C
Christoph Lameter 已提交
1298

1299 1300
		if (page)
			stat(s, ORDER_FALLBACK);
1301
	}
V
Vegard Nossum 已提交
1302

1303
	if (kmemcheck_enabled && page
1304
		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
		int pages = 1 << oo_order(oo);

		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1317 1318
	}

1319 1320 1321 1322 1323
	if (flags & __GFP_WAIT)
		local_irq_disable();
	if (!page)
		return NULL;

1324
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1325 1326 1327
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1328
		1 << oo_order(oo));
C
Christoph Lameter 已提交
1329 1330 1331 1332 1333 1334 1335

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1336
	setup_object_debug(s, page, object);
1337
	if (unlikely(s->ctor))
1338
		s->ctor(object);
C
Christoph Lameter 已提交
1339 1340 1341 1342 1343 1344 1345 1346 1347
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *last;
	void *p;

C
Christoph Lameter 已提交
1348
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1349

C
Christoph Lameter 已提交
1350 1351
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1352 1353 1354
	if (!page)
		goto out;

1355
	inc_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1356
	page->slab = s;
1357
	__SetPageSlab(page);
1358 1359
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1360 1361 1362 1363

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
1364
		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
C
Christoph Lameter 已提交
1365 1366

	last = start;
1367
	for_each_object(p, s, start, page->objects) {
C
Christoph Lameter 已提交
1368 1369 1370 1371 1372
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
1373
	set_freepointer(s, last, NULL);
C
Christoph Lameter 已提交
1374 1375

	page->freelist = start;
1376
	page->inuse = page->objects;
1377
	page->frozen = 1;
C
Christoph Lameter 已提交
1378 1379 1380 1381 1382 1383
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1384 1385
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1386

1387
	if (kmem_cache_debug(s)) {
C
Christoph Lameter 已提交
1388 1389 1390
		void *p;

		slab_pad_check(s, page);
1391 1392
		for_each_object(p, s, page_address(page),
						page->objects)
1393
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1394 1395
	}

1396
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1397

C
Christoph Lameter 已提交
1398 1399 1400
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1401
		-pages);
C
Christoph Lameter 已提交
1402

1403
	__ClearPageSlabPfmemalloc(page);
1404 1405
	__ClearPageSlab(page);
	reset_page_mapcount(page);
N
Nick Piggin 已提交
1406 1407
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1408
	__free_pages(page, order);
C
Christoph Lameter 已提交
1409 1410
}

1411 1412 1413
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1414 1415 1416 1417
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1418 1419 1420 1421 1422
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

C
Christoph Lameter 已提交
1423 1424 1425 1426 1427 1428
	__free_slab(page->slab, page);
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			/*
			 * RCU free overloads the RCU head over the LRU
			 */
			head = (void *)&page->lru;
		}
C
Christoph Lameter 已提交
1443 1444 1445 1446 1447 1448 1449 1450

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1451
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1452 1453 1454 1455
	free_slab(s, page);
}

/*
1456 1457 1458
 * Management of partially allocated slabs.
 *
 * list_lock must be held.
C
Christoph Lameter 已提交
1459
 */
1460
static inline void add_partial(struct kmem_cache_node *n,
1461
				struct page *page, int tail)
C
Christoph Lameter 已提交
1462
{
C
Christoph Lameter 已提交
1463
	n->nr_partial++;
1464
	if (tail == DEACTIVATE_TO_TAIL)
1465 1466 1467
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1468 1469
}

1470 1471 1472 1473
/*
 * list_lock must be held.
 */
static inline void remove_partial(struct kmem_cache_node *n,
1474 1475 1476 1477 1478 1479
					struct page *page)
{
	list_del(&page->lru);
	n->nr_partial--;
}

C
Christoph Lameter 已提交
1480
/*
1481 1482
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1483
 *
1484 1485
 * Returns a list of objects or NULL if it fails.
 *
1486
 * Must hold list_lock since we modify the partial list.
C
Christoph Lameter 已提交
1487
 */
1488
static inline void *acquire_slab(struct kmem_cache *s,
1489
		struct kmem_cache_node *n, struct page *page,
1490
		int mode)
C
Christoph Lameter 已提交
1491
{
1492 1493 1494 1495 1496 1497 1498 1499 1500
	void *freelist;
	unsigned long counters;
	struct page new;

	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1501 1502 1503
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1504
	if (mode) {
1505
		new.inuse = page->objects;
1506 1507 1508 1509
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1510

1511 1512
	VM_BUG_ON(new.frozen);
	new.frozen = 1;
1513

1514
	if (!__cmpxchg_double_slab(s, page,
1515
			freelist, counters,
1516
			new.freelist, new.counters,
1517 1518
			"acquire_slab"))
		return NULL;
1519 1520

	remove_partial(n, page);
1521
	WARN_ON(!freelist);
1522
	return freelist;
C
Christoph Lameter 已提交
1523 1524
}

1525 1526
static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);

C
Christoph Lameter 已提交
1527
/*
C
Christoph Lameter 已提交
1528
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1529
 */
1530
static void *get_partial_node(struct kmem_cache *s,
1531
		struct kmem_cache_node *n, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1532
{
1533 1534
	struct page *page, *page2;
	void *object = NULL;
C
Christoph Lameter 已提交
1535 1536 1537 1538

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1539 1540
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1541 1542 1543 1544 1545
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1546
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1547
		void *t = acquire_slab(s, n, page, object == NULL);
1548 1549 1550 1551 1552
		int available;

		if (!t)
			break;

1553
		if (!object) {
1554 1555 1556 1557 1558 1559
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
			available =  page->objects - page->inuse;
		} else {
			available = put_cpu_partial(s, page, 0);
1560
			stat(s, CPU_PARTIAL_NODE);
1561 1562 1563 1564
		}
		if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
			break;

1565
	}
C
Christoph Lameter 已提交
1566
	spin_unlock(&n->list_lock);
1567
	return object;
C
Christoph Lameter 已提交
1568 1569 1570
}

/*
C
Christoph Lameter 已提交
1571
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1572
 */
1573
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1574
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1575 1576 1577
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1578
	struct zoneref *z;
1579 1580
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1581
	void *object;
1582
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1583 1584

	/*
C
Christoph Lameter 已提交
1585 1586 1587 1588
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1589
	 *
C
Christoph Lameter 已提交
1590 1591 1592 1593
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1594
	 *
C
Christoph Lameter 已提交
1595
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1596 1597 1598 1599 1600
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1601
	 */
1602 1603
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1604 1605
		return NULL;

1606 1607
	do {
		cpuset_mems_cookie = get_mems_allowed();
1608
		zonelist = node_zonelist(slab_node(), flags);
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
					n->nr_partial > s->min_partial) {
				object = get_partial_node(s, n, c);
				if (object) {
					/*
					 * Return the object even if
					 * put_mems_allowed indicated that
					 * the cpuset mems_allowed was
					 * updated in parallel. It's a
					 * harmless race between the alloc
					 * and the cpuset update.
					 */
					put_mems_allowed(cpuset_mems_cookie);
					return object;
				}
1629
			}
C
Christoph Lameter 已提交
1630
		}
1631
	} while (!put_mems_allowed(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1632 1633 1634 1635 1636 1637 1638
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1639
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1640
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1641
{
1642
	void *object;
1643
	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
C
Christoph Lameter 已提交
1644

1645 1646 1647
	object = get_partial_node(s, get_node(s, searchnode), c);
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1648

1649
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1650 1651
}

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
		printk("due to cpu change %d -> %d\n",
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
		printk("due to cpu running other code. Event %ld->%ld\n",
			tid_to_event(tid), tid_to_event(actual_tid));
	else
		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
			actual_tid, tid, next_tid(tid));
#endif
1708
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1709 1710 1711 1712 1713 1714 1715 1716 1717
}

void init_kmem_cache_cpus(struct kmem_cache *s)
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1718

C
Christoph Lameter 已提交
1719 1720 1721
/*
 * Remove the cpu slab
 */
1722
static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
C
Christoph Lameter 已提交
1723
{
1724 1725 1726 1727 1728
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1729
	int tail = DEACTIVATE_TO_HEAD;
1730 1731 1732 1733
	struct page new;
	struct page old;

	if (page->freelist) {
1734
		stat(s, DEACTIVATE_REMOTE_FREES);
1735
		tail = DEACTIVATE_TO_TAIL;
1736 1737
	}

1738
	/*
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
			VM_BUG_ON(!new.frozen);

1758
		} while (!__cmpxchg_double_slab(s, page,
1759 1760 1761 1762 1763 1764 1765
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1766
	/*
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1779
	 */
1780
redo:
1781

1782 1783 1784
	old.freelist = page->freelist;
	old.counters = page->counters;
	VM_BUG_ON(!old.frozen);
1785

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1797
	if (!new.inuse && n->nr_partial > s->min_partial)
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1830

1831 1832 1833 1834 1835
			remove_full(s, page);

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1836
			stat(s, tail);
1837 1838

		} else if (m == M_FULL) {
1839

1840 1841 1842 1843 1844 1845 1846
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1847
	if (!__cmpxchg_double_slab(s, page,
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1860
	}
C
Christoph Lameter 已提交
1861 1862
}

1863 1864 1865 1866 1867
/*
 * Unfreeze all the cpu partial slabs.
 *
 * This function must be called with interrupt disabled.
 */
1868 1869
static void unfreeze_partials(struct kmem_cache *s)
{
1870
	struct kmem_cache_node *n = NULL, *n2 = NULL;
1871
	struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1872
	struct page *page, *discard_page = NULL;
1873 1874 1875 1876 1877 1878

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
1879 1880 1881 1882 1883 1884 1885 1886 1887

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
			VM_BUG_ON(!old.frozen);

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1900
		} while (!__cmpxchg_double_slab(s, page,
1901 1902 1903 1904
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

1905
		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1906 1907
			page->next = discard_page;
			discard_page = page;
1908 1909 1910
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
1911 1912 1913 1914 1915
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
1916 1917 1918 1919 1920 1921 1922 1923 1924

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
{
	struct page *oldpage;
	int pages;
	int pobjects;

	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
				unfreeze_partials(s);
				local_irq_restore(flags);
1959
				oldpage = NULL;
1960 1961
				pobjects = 0;
				pages = 0;
1962
				stat(s, CPU_PARTIAL_DRAIN);
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

1973
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1974 1975 1976
	return pobjects;
}

1977
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1978
{
1979
	stat(s, CPUSLAB_FLUSH);
1980 1981 1982 1983 1984
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
1985 1986 1987 1988
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
1989
 *
C
Christoph Lameter 已提交
1990 1991
 * Called from IPI handler with interrupts disabled.
 */
1992
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
1993
{
1994
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
1995

1996 1997 1998 1999 2000 2001
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

		unfreeze_partials(s);
	}
C
Christoph Lameter 已提交
2002 2003 2004 2005 2006 2007
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2008
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2009 2010
}

2011 2012 2013 2014 2015
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2016
	return c->page || c->partial;
2017 2018
}

C
Christoph Lameter 已提交
2019 2020
static void flush_all(struct kmem_cache *s)
{
2021
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2022 2023
}

2024 2025 2026 2027
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2028
static inline int node_match(struct page *page, int node)
2029 2030
{
#ifdef CONFIG_NUMA
2031
	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2032 2033 2034 2035 2036
		return 0;
#endif
	return 1;
}

P
Pekka Enberg 已提交
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}

2056 2057 2058 2059 2060 2061 2062 2063 2064
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
#ifdef CONFIG_SLUB_DEBUG
	return atomic_long_read(&n->total_objects);
#else
	return 0;
#endif
}

P
Pekka Enberg 已提交
2065 2066 2067 2068 2069 2070 2071 2072 2073
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
	int node;

	printk(KERN_WARNING
		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2074
		"default order: %d, min order: %d\n", s->name, s->object_size,
P
Pekka Enberg 已提交
2075 2076
		s->size, oo_order(s->oo), oo_order(s->min));

2077
	if (oo_order(s->min) > get_order(s->object_size))
2078 2079 2080
		printk(KERN_WARNING "  %s debugging increased min order, use "
		       "slub_debug=O to disable.\n", s->name);

P
Pekka Enberg 已提交
2081 2082 2083 2084 2085 2086 2087 2088 2089
	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

		if (!n)
			continue;

2090 2091 2092
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2093 2094 2095 2096 2097 2098 2099

		printk(KERN_WARNING
			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
			node, nr_slabs, nr_objs, nr_free);
	}
}

2100 2101 2102
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2103
	void *freelist;
2104 2105
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2106

2107
	freelist = get_partial(s, flags, node, c);
2108

2109 2110 2111 2112
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2113 2114 2115 2116 2117 2118 2119 2120 2121
	if (page) {
		c = __this_cpu_ptr(s->cpu_slab);
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2122
		freelist = page->freelist;
2123 2124 2125 2126 2127 2128
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2129
		freelist = NULL;
2130

2131
	return freelist;
2132 2133
}

2134 2135 2136 2137 2138 2139 2140 2141
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2142 2143 2144 2145 2146 2147 2148
/*
 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
 * or deactivate the page.
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2149 2150
 *
 * This function must be called with interrupt disabled.
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2161

2162 2163 2164 2165 2166 2167
		new.counters = counters;
		VM_BUG_ON(!new.frozen);

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2168
	} while (!__cmpxchg_double_slab(s, page,
2169 2170 2171 2172 2173 2174 2175
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2176
/*
2177 2178 2179 2180 2181 2182
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2183
 *
2184 2185 2186
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2187
 *
2188
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2189 2190
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
2191
 */
2192 2193
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2194
{
2195
	void *freelist;
2196
	struct page *page;
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif
C
Christoph Lameter 已提交
2208

2209 2210
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2211
		goto new_slab;
2212
redo:
2213

2214
	if (unlikely(!node_match(page, node))) {
2215
		stat(s, ALLOC_NODE_MISMATCH);
2216
		deactivate_slab(s, page, c->freelist);
2217 2218
		c->page = NULL;
		c->freelist = NULL;
2219 2220
		goto new_slab;
	}
C
Christoph Lameter 已提交
2221

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2234
	/* must check again c->freelist in case of cpu migration or IRQ */
2235 2236
	freelist = c->freelist;
	if (freelist)
2237
		goto load_freelist;
2238

2239
	stat(s, ALLOC_SLOWPATH);
2240

2241
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2242

2243
	if (!freelist) {
2244 2245
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2246
		goto new_slab;
2247
	}
C
Christoph Lameter 已提交
2248

2249
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2250

2251
load_freelist:
2252 2253 2254 2255 2256 2257
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
	VM_BUG_ON(!c->page->frozen);
2258
	c->freelist = get_freepointer(s, freelist);
2259 2260
	c->tid = next_tid(c->tid);
	local_irq_restore(flags);
2261
	return freelist;
C
Christoph Lameter 已提交
2262 2263

new_slab:
2264

2265
	if (c->partial) {
2266 2267
		page = c->page = c->partial;
		c->partial = page->next;
2268 2269 2270
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2271 2272
	}

2273
	freelist = new_slab_objects(s, gfpflags, node, &c);
2274

2275 2276 2277
	if (unlikely(!freelist)) {
		if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(s, gfpflags, node);
2278

2279 2280
		local_irq_restore(flags);
		return NULL;
C
Christoph Lameter 已提交
2281
	}
2282

2283
	page = c->page;
2284
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2285
		goto load_freelist;
2286

2287
	/* Only entered in the debug case */
2288
	if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
2289
		goto new_slab;	/* Slab failed checks. Next slab needed */
2290

2291
	deactivate_slab(s, page, get_freepointer(s, freelist));
2292 2293
	c->page = NULL;
	c->freelist = NULL;
2294
	local_irq_restore(flags);
2295
	return freelist;
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
P
Pekka Enberg 已提交
2308
static __always_inline void *slab_alloc(struct kmem_cache *s,
2309
		gfp_t gfpflags, int node, unsigned long addr)
2310 2311
{
	void **object;
2312
	struct kmem_cache_cpu *c;
2313
	struct page *page;
2314
	unsigned long tid;
2315

2316
	if (slab_pre_alloc_hook(s, gfpflags))
A
Akinobu Mita 已提交
2317
		return NULL;
2318

2319 2320 2321 2322 2323 2324 2325 2326
redo:

	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
	 */
2327
	c = __this_cpu_ptr(s->cpu_slab);
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */
	tid = c->tid;
	barrier();

2338
	object = c->freelist;
2339
	page = c->page;
2340
	if (unlikely(!object || !node_match(page, node)))
2341
		object = __slab_alloc(s, gfpflags, node, addr, c);
2342 2343

	else {
2344 2345
		void *next_object = get_freepointer_safe(s, object);

2346
		/*
L
Lucas De Marchi 已提交
2347
		 * The cmpxchg will only match if there was no additional
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
		 * operation and if we are on the right processor.
		 *
		 * The cmpxchg does the following atomically (without lock semantics!)
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
		 * Since this is without lock semantics the protection is only against
		 * code executing on this cpu *not* from access by other cpus.
		 */
2358
		if (unlikely(!this_cpu_cmpxchg_double(
2359 2360
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2361
				next_object, next_tid(tid)))) {
2362 2363 2364 2365

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2366
		prefetch_freepointer(s, next_object);
2367
		stat(s, ALLOC_FASTPATH);
2368
	}
2369

2370
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2371
		memset(object, 0, s->object_size);
2372

2373
	slab_post_alloc_hook(s, gfpflags, object);
V
Vegard Nossum 已提交
2374

2375
	return object;
C
Christoph Lameter 已提交
2376 2377 2378 2379
}

void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2380
	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2381

2382
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2383 2384

	return ret;
C
Christoph Lameter 已提交
2385 2386 2387
}
EXPORT_SYMBOL(kmem_cache_alloc);

2388
#ifdef CONFIG_TRACING
2389 2390 2391 2392 2393 2394 2395 2396 2397
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);

void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
E
Eduard - Gabriel Munteanu 已提交
2398
{
2399 2400 2401
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2402
}
2403
EXPORT_SYMBOL(kmalloc_order_trace);
E
Eduard - Gabriel Munteanu 已提交
2404 2405
#endif

C
Christoph Lameter 已提交
2406 2407 2408
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
E
Eduard - Gabriel Munteanu 已提交
2409 2410
	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);

2411
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2412
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2413 2414

	return ret;
C
Christoph Lameter 已提交
2415 2416 2417
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2418
#ifdef CONFIG_TRACING
2419
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2420
				    gfp_t gfpflags,
2421
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2422
{
2423 2424 2425 2426 2427
	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2428
}
2429
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2430
#endif
2431
#endif
E
Eduard - Gabriel Munteanu 已提交
2432

C
Christoph Lameter 已提交
2433
/*
2434 2435
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2436
 *
2437 2438 2439
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2440
 */
2441
static void __slab_free(struct kmem_cache *s, struct page *page,
2442
			void *x, unsigned long addr)
C
Christoph Lameter 已提交
2443 2444 2445
{
	void *prior;
	void **object = (void *)x;
2446 2447 2448 2449 2450
	int was_frozen;
	int inuse;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2451
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2452

2453
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2454

2455 2456
	if (kmem_cache_debug(s) &&
		!(n = free_debug_processing(s, page, x, addr, &flags)))
2457
		return;
C
Christoph Lameter 已提交
2458

2459 2460 2461 2462 2463 2464 2465 2466
	do {
		prior = page->freelist;
		counters = page->counters;
		set_freepointer(s, object, prior);
		new.counters = counters;
		was_frozen = new.frozen;
		new.inuse--;
		if ((!new.inuse || !prior) && !was_frozen && !n) {
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489

			if (!kmem_cache_debug(s) && !prior)

				/*
				 * Slab was on no list before and will be partially empty
				 * We can defer the list move and instead freeze it.
				 */
				new.frozen = 1;

			else { /* Needs to be taken off a list */

	                        n = get_node(s, page_to_nid(page));
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2490 2491
		}
		inuse = new.inuse;
C
Christoph Lameter 已提交
2492

2493 2494 2495 2496
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
		object, new.counters,
		"__slab_free"));
C
Christoph Lameter 已提交
2497

2498
	if (likely(!n)) {
2499 2500 2501 2502 2503

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2504
		if (new.frozen && !was_frozen) {
2505
			put_cpu_partial(s, page, 1);
2506 2507
			stat(s, CPU_PARTIAL_FREE);
		}
2508
		/*
2509 2510 2511 2512 2513
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
                if (was_frozen)
                        stat(s, FREE_FROZEN);
2514
                return;
2515
        }
C
Christoph Lameter 已提交
2516 2517

	/*
2518 2519
	 * was_frozen may have been set after we acquired the list_lock in
	 * an earlier loop. So we need to check it here again.
C
Christoph Lameter 已提交
2520
	 */
2521 2522 2523 2524 2525
	if (was_frozen)
		stat(s, FREE_FROZEN);
	else {
		if (unlikely(!inuse && n->nr_partial > s->min_partial))
                        goto slab_empty;
C
Christoph Lameter 已提交
2526

2527 2528 2529 2530 2531 2532
		/*
		 * Objects left in the slab. If it was not on the partial list before
		 * then add it.
		 */
		if (unlikely(!prior)) {
			remove_full(s, page);
2533
			add_partial(n, page, DEACTIVATE_TO_TAIL);
2534 2535
			stat(s, FREE_ADD_PARTIAL);
		}
2536
	}
2537
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2538 2539 2540
	return;

slab_empty:
2541
	if (prior) {
C
Christoph Lameter 已提交
2542
		/*
2543
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2544
		 */
2545
		remove_partial(n, page);
2546
		stat(s, FREE_REMOVE_PARTIAL);
2547 2548 2549
	} else
		/* Slab must be on the full list */
		remove_full(s, page);
2550

2551
	spin_unlock_irqrestore(&n->list_lock, flags);
2552
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2553 2554 2555
	discard_slab(s, page);
}

2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
2567
static __always_inline void slab_free(struct kmem_cache *s,
2568
			struct page *page, void *x, unsigned long addr)
2569 2570
{
	void **object = (void *)x;
2571
	struct kmem_cache_cpu *c;
2572
	unsigned long tid;
2573

2574 2575
	slab_free_hook(s, x);

2576 2577 2578 2579 2580 2581 2582
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
	 * during the cmpxchg then the free will succedd.
	 */
2583
	c = __this_cpu_ptr(s->cpu_slab);
2584

2585 2586
	tid = c->tid;
	barrier();
2587

2588
	if (likely(page == c->page)) {
2589
		set_freepointer(s, object, c->freelist);
2590

2591
		if (unlikely(!this_cpu_cmpxchg_double(
2592 2593 2594 2595 2596 2597 2598
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2599
		stat(s, FREE_FASTPATH);
2600
	} else
2601
		__slab_free(s, page, x, addr);
2602 2603 2604

}

C
Christoph Lameter 已提交
2605 2606
void kmem_cache_free(struct kmem_cache *s, void *x)
{
C
Christoph Lameter 已提交
2607
	struct page *page;
C
Christoph Lameter 已提交
2608

2609
	page = virt_to_head_page(x);
C
Christoph Lameter 已提交
2610

2611 2612 2613 2614 2615 2616 2617
	if (kmem_cache_debug(s) && page->slab != s) {
		pr_err("kmem_cache_free: Wrong slab cache. %s but object"
			" is from  %s\n", page->slab->name, s->name);
		WARN_ON_ONCE(1);
		return;
	}

2618
	slab_free(s, page, x, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2619

2620
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2621 2622 2623 2624
}
EXPORT_SYMBOL(kmem_cache_free);

/*
C
Christoph Lameter 已提交
2625 2626 2627 2628
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
2629 2630 2631 2632
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
2633
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2644
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2645
static int slub_min_objects;
C
Christoph Lameter 已提交
2646 2647 2648

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
2649
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
2650 2651 2652 2653 2654 2655
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
2656 2657 2658 2659
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
2660
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
2661 2662 2663 2664 2665 2666
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
2667
 *
C
Christoph Lameter 已提交
2668 2669 2670 2671
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
2672
 *
C
Christoph Lameter 已提交
2673 2674 2675 2676
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
2677
 */
2678
static inline int slab_order(int size, int min_objects,
2679
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
2680 2681 2682
{
	int order;
	int rem;
2683
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
2684

2685
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2686
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2687

2688
	for (order = max(min_order,
2689 2690
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
2691

2692
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
2693

2694
		if (slab_size < min_objects * size + reserved)
C
Christoph Lameter 已提交
2695 2696
			continue;

2697
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
2698

2699
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
2700 2701 2702
			break;

	}
C
Christoph Lameter 已提交
2703

C
Christoph Lameter 已提交
2704 2705 2706
	return order;
}

2707
static inline int calculate_order(int size, int reserved)
2708 2709 2710 2711
{
	int order;
	int min_objects;
	int fraction;
2712
	int max_objects;
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
2723 2724
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2725
	max_objects = order_objects(slub_max_order, size, reserved);
2726 2727
	min_objects = min(min_objects, max_objects);

2728
	while (min_objects > 1) {
C
Christoph Lameter 已提交
2729
		fraction = 16;
2730 2731
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
2732
					slub_max_order, fraction, reserved);
2733 2734 2735 2736
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
2737
		min_objects--;
2738 2739 2740 2741 2742 2743
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
2744
	order = slab_order(size, 1, slub_max_order, 1, reserved);
2745 2746 2747 2748 2749 2750
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
2751
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
2752
	if (order < MAX_ORDER)
2753 2754 2755 2756
		return order;
	return -ENOSYS;
}

C
Christoph Lameter 已提交
2757
/*
C
Christoph Lameter 已提交
2758
 * Figure out what the alignment of the objects will be.
C
Christoph Lameter 已提交
2759 2760 2761 2762 2763
 */
static unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
C
Christoph Lameter 已提交
2764 2765
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
C
Christoph Lameter 已提交
2766
	 *
C
Christoph Lameter 已提交
2767 2768
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
C
Christoph Lameter 已提交
2769
	 */
2770 2771 2772 2773 2774 2775
	if (flags & SLAB_HWCACHE_ALIGN) {
		unsigned long ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}
C
Christoph Lameter 已提交
2776 2777

	if (align < ARCH_SLAB_MINALIGN)
2778
		align = ARCH_SLAB_MINALIGN;
C
Christoph Lameter 已提交
2779 2780 2781 2782

	return ALIGN(align, sizeof(void *));
}

2783
static void
2784
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
2785 2786 2787 2788
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
2789
#ifdef CONFIG_SLUB_DEBUG
2790
	atomic_long_set(&n->nr_slabs, 0);
2791
	atomic_long_set(&n->total_objects, 0);
2792
	INIT_LIST_HEAD(&n->full);
2793
#endif
C
Christoph Lameter 已提交
2794 2795
}

2796
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2797
{
2798 2799
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2800

2801
	/*
2802 2803
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
2804
	 */
2805 2806
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
2807 2808 2809 2810 2811

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
2812

2813
	return 1;
2814 2815
}

2816 2817
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
2818 2819 2820 2821 2822 2823
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
 * Note that this function only works on the kmalloc_node_cache
2824 2825
 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2826
 */
2827
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
2828 2829 2830 2831
{
	struct page *page;
	struct kmem_cache_node *n;

2832
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
2833

2834
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
2835 2836

	BUG_ON(!page);
2837 2838 2839 2840 2841 2842 2843
	if (page_to_nid(page) != node) {
		printk(KERN_ERR "SLUB: Unable to allocate memory from "
				"node %d\n", node);
		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
				"in order to be able to continue\n");
	}

C
Christoph Lameter 已提交
2844 2845
	n = page->freelist;
	BUG_ON(!n);
2846
	page->freelist = get_freepointer(kmem_cache_node, n);
2847
	page->inuse = 1;
2848
	page->frozen = 0;
2849
	kmem_cache_node->node[node] = n;
2850
#ifdef CONFIG_SLUB_DEBUG
2851
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2852
	init_tracking(kmem_cache_node, n);
2853
#endif
2854
	init_kmem_cache_node(n);
2855
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
2856

2857
	add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
2858 2859 2860 2861 2862 2863
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

C
Christoph Lameter 已提交
2864
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2865
		struct kmem_cache_node *n = s->node[node];
2866

2867
		if (n)
2868 2869
			kmem_cache_free(kmem_cache_node, n);

C
Christoph Lameter 已提交
2870 2871 2872 2873
		s->node[node] = NULL;
	}
}

2874
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
2875 2876 2877
{
	int node;

C
Christoph Lameter 已提交
2878
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2879 2880
		struct kmem_cache_node *n;

2881
		if (slab_state == DOWN) {
2882
			early_kmem_cache_node_alloc(node);
2883 2884
			continue;
		}
2885
		n = kmem_cache_alloc_node(kmem_cache_node,
2886
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
2887

2888 2889 2890
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
2891
		}
2892

C
Christoph Lameter 已提交
2893
		s->node[node] = n;
2894
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
2895 2896 2897 2898
	}
	return 1;
}

2899
static void set_min_partial(struct kmem_cache *s, unsigned long min)
2900 2901 2902 2903 2904 2905 2906 2907
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
2908 2909 2910 2911
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
2912
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
2913 2914
{
	unsigned long flags = s->flags;
2915
	unsigned long size = s->object_size;
C
Christoph Lameter 已提交
2916
	unsigned long align = s->align;
2917
	int order;
C
Christoph Lameter 已提交
2918

2919 2920 2921 2922 2923 2924 2925 2926
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2927 2928 2929 2930 2931 2932
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2933
			!s->ctor)
C
Christoph Lameter 已提交
2934 2935 2936 2937 2938 2939
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
2940
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2941
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2942
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2943
	 */
2944
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
2945
		size += sizeof(void *);
C
Christoph Lameter 已提交
2946
#endif
C
Christoph Lameter 已提交
2947 2948

	/*
C
Christoph Lameter 已提交
2949 2950
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
2951 2952 2953 2954
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2955
		s->ctor)) {
C
Christoph Lameter 已提交
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

2968
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2969 2970 2971 2972 2973 2974 2975
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

2976
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
2977 2978 2979 2980
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
2981
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
2982 2983 2984
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
2985
#endif
C
Christoph Lameter 已提交
2986

C
Christoph Lameter 已提交
2987 2988
	/*
	 * Determine the alignment based on various parameters that the
2989 2990
	 * user specified and the dynamic determination of cache line size
	 * on bootup.
C
Christoph Lameter 已提交
2991
	 */
2992
	align = calculate_alignment(flags, align, s->object_size);
2993
	s->align = align;
C
Christoph Lameter 已提交
2994 2995 2996 2997 2998 2999 3000 3001

	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
	size = ALIGN(size, align);
	s->size = size;
3002 3003 3004
	if (forced_order >= 0)
		order = forced_order;
	else
3005
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3006

3007
	if (order < 0)
C
Christoph Lameter 已提交
3008 3009
		return 0;

3010
	s->allocflags = 0;
3011
	if (order)
3012 3013 3014 3015 3016 3017 3018 3019
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
		s->allocflags |= SLUB_DMA;

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3020 3021 3022
	/*
	 * Determine the number of objects per slab
	 */
3023 3024
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3025 3026
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3027

3028
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3029 3030 3031

}

3032
static int kmem_cache_open(struct kmem_cache *s,
C
Christoph Lameter 已提交
3033 3034
		const char *name, size_t size,
		size_t align, unsigned long flags,
3035
		void (*ctor)(void *))
C
Christoph Lameter 已提交
3036 3037 3038
{
	s->name = name;
	s->ctor = ctor;
3039
	s->object_size = size;
C
Christoph Lameter 已提交
3040
	s->align = align;
3041
	s->flags = kmem_cache_flags(size, flags, name, ctor);
3042
	s->reserved = 0;
C
Christoph Lameter 已提交
3043

3044 3045
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3046

3047
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3048
		goto error;
3049 3050 3051 3052 3053
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3054
		if (get_order(s->size) > get_order(s->object_size)) {
3055 3056 3057 3058 3059 3060
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3061

3062 3063
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3064 3065 3066 3067 3068
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3069 3070 3071 3072
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3088
	 * B) The number of objects in cpu partial slabs to extract from the
3089 3090 3091
	 *    per node list when we run out of per cpu objects. We only fetch 50%
	 *    to keep some capacity around for frees.
	 */
3092 3093 3094
	if (kmem_cache_debug(s))
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3095 3096 3097 3098 3099 3100 3101 3102
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3103 3104
	s->refcount = 1;
#ifdef CONFIG_NUMA
3105
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3106
#endif
3107
	if (!init_kmem_cache_nodes(s))
3108
		goto error;
C
Christoph Lameter 已提交
3109

3110
	if (alloc_kmem_cache_cpus(s))
3111
		return 0;
3112

3113
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3114 3115 3116 3117
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3118
			s->name, (unsigned long)size, s->size, oo_order(s->oo),
C
Christoph Lameter 已提交
3119
			s->offset, flags);
3120
	return -EINVAL;
C
Christoph Lameter 已提交
3121 3122 3123 3124 3125 3126 3127
}

/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
3128
	return s->object_size;
C
Christoph Lameter 已提交
3129 3130 3131
}
EXPORT_SYMBOL(kmem_cache_size);

3132 3133 3134 3135 3136 3137
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3138 3139
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3140 3141
	if (!map)
		return;
3142
	slab_err(s, page, text, s->name);
3143 3144
	slab_lock(page);

3145
	get_map(s, page, map);
3146 3147 3148 3149 3150 3151 3152 3153 3154
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
							p, p - addr);
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3155
	kfree(map);
3156 3157 3158
#endif
}

C
Christoph Lameter 已提交
3159
/*
C
Christoph Lameter 已提交
3160
 * Attempt to free all partial slabs on a node.
3161 3162
 * This is called from kmem_cache_close(). We must be the last thread
 * using the cache and therefore we do not need to lock anymore.
C
Christoph Lameter 已提交
3163
 */
C
Christoph Lameter 已提交
3164
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3165 3166 3167
{
	struct page *page, *h;

3168
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3169
		if (!page->inuse) {
3170
			remove_partial(n, page);
C
Christoph Lameter 已提交
3171
			discard_slab(s, page);
3172 3173
		} else {
			list_slab_objects(s, page,
3174
			"Objects remaining in %s on kmem_cache_close()");
C
Christoph Lameter 已提交
3175
		}
3176
	}
C
Christoph Lameter 已提交
3177 3178 3179
}

/*
C
Christoph Lameter 已提交
3180
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3181
 */
3182
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
3183 3184 3185 3186 3187
{
	int node;

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3188
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3189 3190
		struct kmem_cache_node *n = get_node(s, node);

C
Christoph Lameter 已提交
3191 3192
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3193 3194
			return 1;
	}
3195
	free_percpu(s->cpu_slab);
C
Christoph Lameter 已提交
3196 3197 3198 3199
	free_kmem_cache_nodes(s);
	return 0;
}

3200 3201
int __kmem_cache_shutdown(struct kmem_cache *s)
{
3202
	int rc = kmem_cache_close(s);
3203

3204 3205 3206 3207
	if (!rc)
		sysfs_slab_remove(s);

	return rc;
C
Christoph Lameter 已提交
3208 3209 3210 3211 3212 3213
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

3214
struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
C
Christoph Lameter 已提交
3215 3216
EXPORT_SYMBOL(kmalloc_caches);

3217
#ifdef CONFIG_ZONE_DMA
3218
static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3219 3220
#endif

C
Christoph Lameter 已提交
3221 3222
static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3223
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3224 3225 3226 3227 3228 3229 3230 3231

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3232
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3233
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3234 3235 3236 3237 3238 3239 3240 3241

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3242
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

3257 3258
static struct kmem_cache *__init create_kmalloc_cache(const char *name,
						int size, unsigned int flags)
C
Christoph Lameter 已提交
3259
{
3260 3261
	struct kmem_cache *s;

3262
	s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3263

3264 3265
	/*
	 * This function is called with IRQs disabled during early-boot on
3266
	 * single CPU so there's no need to take slab_mutex here.
3267
	 */
3268
	if (kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3269
								flags, NULL))
C
Christoph Lameter 已提交
3270 3271 3272
		goto panic;

	list_add(&s->list, &slab_caches);
3273
	return s;
C
Christoph Lameter 已提交
3274 3275 3276

panic:
	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3277
	return NULL;
C
Christoph Lameter 已提交
3278 3279
}

3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

3313 3314 3315 3316 3317
static inline int size_index_elem(size_t bytes)
{
	return (bytes - 1) / 8;
}

C
Christoph Lameter 已提交
3318 3319
static struct kmem_cache *get_slab(size_t size, gfp_t flags)
{
3320
	int index;
C
Christoph Lameter 已提交
3321

3322 3323 3324
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;
C
Christoph Lameter 已提交
3325

3326
		index = size_index[size_index_elem(size)];
3327
	} else
3328
		index = fls(size - 1);
C
Christoph Lameter 已提交
3329 3330

#ifdef CONFIG_ZONE_DMA
3331
	if (unlikely((flags & SLUB_DMA)))
3332
		return kmalloc_dma_caches[index];
3333

C
Christoph Lameter 已提交
3334
#endif
3335
	return kmalloc_caches[index];
C
Christoph Lameter 已提交
3336 3337 3338 3339
}

void *__kmalloc(size_t size, gfp_t flags)
{
3340
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3341
	void *ret;
C
Christoph Lameter 已提交
3342

3343
	if (unlikely(size > SLUB_MAX_SIZE))
3344
		return kmalloc_large(size, flags);
3345 3346 3347 3348

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3349 3350
		return s;

3351
	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3352

3353
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3354 3355

	return ret;
C
Christoph Lameter 已提交
3356 3357 3358
}
EXPORT_SYMBOL(__kmalloc);

3359
#ifdef CONFIG_NUMA
3360 3361
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3362
	struct page *page;
3363
	void *ptr = NULL;
3364

3365 3366
	flags |= __GFP_COMP | __GFP_NOTRACK;
	page = alloc_pages_node(node, flags, get_order(size));
3367
	if (page)
3368 3369 3370 3371
		ptr = page_address(page);

	kmemleak_alloc(ptr, size, 1, flags);
	return ptr;
3372 3373
}

C
Christoph Lameter 已提交
3374 3375
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3376
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3377
	void *ret;
C
Christoph Lameter 已提交
3378

I
Ingo Molnar 已提交
3379
	if (unlikely(size > SLUB_MAX_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3380 3381
		ret = kmalloc_large_node(size, flags, node);

3382 3383 3384
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3385 3386 3387

		return ret;
	}
3388 3389 3390 3391

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3392 3393
		return s;

E
Eduard - Gabriel Munteanu 已提交
3394 3395
	ret = slab_alloc(s, flags, node, _RET_IP_);

3396
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3397 3398

	return ret;
C
Christoph Lameter 已提交
3399 3400 3401 3402 3403 3404
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
3405
	struct page *page;
C
Christoph Lameter 已提交
3406

3407
	if (unlikely(object == ZERO_SIZE_PTR))
3408 3409
		return 0;

3410 3411
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3412 3413
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3414
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3415
	}
C
Christoph Lameter 已提交
3416

3417
	return slab_ksize(page->slab);
C
Christoph Lameter 已提交
3418
}
K
Kirill A. Shutemov 已提交
3419
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3420

3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
#ifdef CONFIG_SLUB_DEBUG
bool verify_mem_not_deleted(const void *x)
{
	struct page *page;
	void *object = (void *)x;
	unsigned long flags;
	bool rv;

	if (unlikely(ZERO_OR_NULL_PTR(x)))
		return false;

	local_irq_save(flags);

	page = virt_to_head_page(x);
	if (unlikely(!PageSlab(page))) {
		/* maybe it was from stack? */
		rv = true;
		goto out_unlock;
	}

	slab_lock(page);
	if (on_freelist(page->slab, page, object)) {
		object_err(page->slab, page, object, "Object is on free-list");
		rv = false;
	} else {
		rv = true;
	}
	slab_unlock(page);

out_unlock:
	local_irq_restore(flags);
	return rv;
}
EXPORT_SYMBOL(verify_mem_not_deleted);
#endif

C
Christoph Lameter 已提交
3457 3458 3459
void kfree(const void *x)
{
	struct page *page;
3460
	void *object = (void *)x;
C
Christoph Lameter 已提交
3461

3462 3463
	trace_kfree(_RET_IP_, x);

3464
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3465 3466
		return;

3467
	page = virt_to_head_page(x);
3468
	if (unlikely(!PageSlab(page))) {
3469
		BUG_ON(!PageCompound(page));
3470
		kmemleak_free(x);
3471
		__free_pages(page, compound_order(page));
3472 3473
		return;
	}
3474
	slab_free(page->slab, page, object, _RET_IP_);
C
Christoph Lameter 已提交
3475 3476 3477
}
EXPORT_SYMBOL(kfree);

3478
/*
C
Christoph Lameter 已提交
3479 3480 3481 3482 3483 3484 3485 3486
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3487 3488 3489 3490 3491 3492 3493 3494
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3495
	int objects = oo_objects(s->max);
3496
	struct list_head *slabs_by_inuse =
3497
		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3498 3499 3500 3501 3502 3503
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
3504
	for_each_node_state(node, N_NORMAL_MEMORY) {
3505 3506 3507 3508 3509
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

3510
		for (i = 0; i < objects; i++)
3511 3512 3513 3514 3515
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
3516
		 * Build lists indexed by the items in use in each slab.
3517
		 *
C
Christoph Lameter 已提交
3518 3519
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3520 3521
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3522 3523 3524
			list_move(&page->lru, slabs_by_inuse + page->inuse);
			if (!page->inuse)
				n->nr_partial--;
3525 3526 3527
		}

		/*
C
Christoph Lameter 已提交
3528 3529
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
3530
		 */
3531
		for (i = objects - 1; i > 0; i--)
3532 3533 3534
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
3535 3536 3537 3538

		/* Release empty slabs */
		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
			discard_slab(s, page);
3539 3540 3541 3542 3543 3544 3545
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

P
Pekka Enberg 已提交
3546
#if defined(CONFIG_MEMORY_HOTPLUG)
3547 3548 3549 3550
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3551
	mutex_lock(&slab_mutex);
3552 3553
	list_for_each_entry(s, &slab_caches, list)
		kmem_cache_shrink(s);
3554
	mutex_unlock(&slab_mutex);
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

	offline_node = marg->status_change_nid;

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3575
	mutex_lock(&slab_mutex);
3576 3577 3578 3579 3580 3581
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3582
			 * and offline_pages() function shouldn't call this
3583 3584
			 * callback. So, we must fail.
			 */
3585
			BUG_ON(slabs_node(s, offline_node));
3586 3587

			s->node[offline_node] = NULL;
3588
			kmem_cache_free(kmem_cache_node, n);
3589 3590
		}
	}
3591
	mutex_unlock(&slab_mutex);
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int nid = marg->status_change_nid;
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3610
	 * We are bringing a node online. No memory is available yet. We must
3611 3612 3613
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3614
	mutex_lock(&slab_mutex);
3615 3616 3617 3618 3619 3620
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3621
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3622 3623 3624 3625
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3626
		init_kmem_cache_node(n);
3627 3628 3629
		s->node[nid] = n;
	}
out:
3630
	mutex_unlock(&slab_mutex);
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3654 3655 3656 3657
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3658 3659 3660 3661 3662
	return ret;
}

#endif /* CONFIG_MEMORY_HOTPLUG */

C
Christoph Lameter 已提交
3663 3664 3665 3666
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
/*
 * Used for early kmem_cache structures that were allocated using
 * the page allocator
 */

static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
{
	int node;

	list_add(&s->list, &slab_caches);
	s->refcount = -1;

	for_each_node_state(node, N_NORMAL_MEMORY) {
		struct kmem_cache_node *n = get_node(s, node);
		struct page *p;

		if (n) {
			list_for_each_entry(p, &n->partial, lru)
				p->slab = s;

L
Li Zefan 已提交
3687
#ifdef CONFIG_SLUB_DEBUG
3688 3689 3690 3691 3692 3693 3694
			list_for_each_entry(p, &n->full, lru)
				p->slab = s;
#endif
		}
	}
}

C
Christoph Lameter 已提交
3695 3696 3697
void __init kmem_cache_init(void)
{
	int i;
3698
	int caches = 0;
3699 3700 3701 3702 3703
	struct kmem_cache *temp_kmem_cache;
	int order;
	struct kmem_cache *temp_kmem_cache_node;
	unsigned long kmalloc_size;

3704 3705 3706
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3707
	kmem_size = offsetof(struct kmem_cache, node) +
3708
			nr_node_ids * sizeof(struct kmem_cache_node *);
3709 3710 3711 3712 3713 3714

	/* Allocate two kmem_caches from the page allocator */
	kmalloc_size = ALIGN(kmem_size, cache_line_size());
	order = get_order(2 * kmalloc_size);
	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);

C
Christoph Lameter 已提交
3715 3716
	/*
	 * Must first have the slab cache available for the allocations of the
C
Christoph Lameter 已提交
3717
	 * struct kmem_cache_node's. There is special bootstrap code in
C
Christoph Lameter 已提交
3718 3719
	 * kmem_cache_open for slab_state == DOWN.
	 */
3720 3721 3722 3723 3724
	kmem_cache_node = (void *)kmem_cache + kmalloc_size;

	kmem_cache_open(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node),
		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3725

3726
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
C
Christoph Lameter 已提交
3727 3728 3729 3730

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3731 3732 3733 3734 3735
	temp_kmem_cache = kmem_cache;
	kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
	memcpy(kmem_cache, temp_kmem_cache, kmem_size);
C
Christoph Lameter 已提交
3736

3737 3738 3739 3740 3741 3742
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
	temp_kmem_cache_node = kmem_cache_node;
C
Christoph Lameter 已提交
3743

3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);

	kmem_cache_bootstrap_fixup(kmem_cache_node);

	caches++;
	kmem_cache_bootstrap_fixup(kmem_cache);
	caches++;
	/* Free temporary boot structure */
	free_pages((unsigned long)temp_kmem_cache, order);

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3756 3757 3758 3759

	/*
	 * Patch up the size_index table if we have strange large alignment
	 * requirements for the kmalloc array. This is only the case for
C
Christoph Lameter 已提交
3760
	 * MIPS it seems. The standard arches will not generate any code here.
3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
	 *
	 * Largest permitted alignment is 256 bytes due to the way we
	 * handle the index determination for the smaller caches.
	 *
	 * Make sure that nothing crazy happens if someone starts tinkering
	 * around with ARCH_KMALLOC_MINALIGN
	 */
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

3771 3772 3773 3774 3775 3776
	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
		int elem = size_index_elem(i);
		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}
3777

3778 3779 3780 3781 3782 3783 3784 3785
	if (KMALLOC_MIN_SIZE == 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;
	} else if (KMALLOC_MIN_SIZE == 128) {
3786 3787 3788 3789 3790 3791
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
3792
			size_index[size_index_elem(i)] = 8;
3793 3794
	}

3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
	/* Caches that are not of the two-to-the-power-of size */
	if (KMALLOC_MIN_SIZE <= 32) {
		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
		caches++;
	}

	if (KMALLOC_MIN_SIZE <= 64) {
		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
		caches++;
	}

	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
		caches++;
	}

C
Christoph Lameter 已提交
3811 3812 3813
	slab_state = UP;

	/* Provide the correct kmalloc names now that the caches are up */
P
Pekka Enberg 已提交
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
	if (KMALLOC_MIN_SIZE <= 32) {
		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
		BUG_ON(!kmalloc_caches[1]->name);
	}

	if (KMALLOC_MIN_SIZE <= 64) {
		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
		BUG_ON(!kmalloc_caches[2]->name);
	}

3824 3825 3826 3827
	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);

		BUG_ON(!s);
3828
		kmalloc_caches[i]->name = s;
3829
	}
C
Christoph Lameter 已提交
3830 3831 3832

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3833
#endif
C
Christoph Lameter 已提交
3834

3835
#ifdef CONFIG_ZONE_DMA
3836 3837
	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
		struct kmem_cache *s = kmalloc_caches[i];
3838

3839
		if (s && s->size) {
3840
			char *name = kasprintf(GFP_NOWAIT,
3841
				 "dma-kmalloc-%d", s->object_size);
3842 3843

			BUG_ON(!name);
3844
			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3845
				s->object_size, SLAB_CACHE_DMA);
3846 3847 3848
		}
	}
#endif
I
Ingo Molnar 已提交
3849 3850
	printk(KERN_INFO
		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3851 3852
		" CPUs=%d, Nodes=%d\n",
		caches, cache_line_size(),
C
Christoph Lameter 已提交
3853 3854 3855 3856
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3857 3858 3859 3860
void __init kmem_cache_init_late(void)
{
}

C
Christoph Lameter 已提交
3861 3862 3863 3864 3865 3866 3867 3868
/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

3869
	if (s->ctor)
C
Christoph Lameter 已提交
3870 3871
		return 1;

3872 3873 3874 3875 3876 3877
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
3878 3879 3880 3881
	return 0;
}

static struct kmem_cache *find_mergeable(size_t size,
3882
		size_t align, unsigned long flags, const char *name,
3883
		void (*ctor)(void *))
C
Christoph Lameter 已提交
3884
{
3885
	struct kmem_cache *s;
C
Christoph Lameter 已提交
3886 3887 3888 3889

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

3890
	if (ctor)
C
Christoph Lameter 已提交
3891 3892 3893 3894 3895
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
3896
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
3897

3898
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
3899 3900 3901 3902 3903 3904
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3905
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
C
Christoph Lameter 已提交
3906 3907 3908 3909 3910
				continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
P
Pekka Enberg 已提交
3911
		if ((s->size & ~(align - 1)) != s->size)
C
Christoph Lameter 已提交
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

		return s;
	}
	return NULL;
}

3922
struct kmem_cache *__kmem_cache_alias(const char *name, size_t size,
3923
		size_t align, unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3924 3925 3926
{
	struct kmem_cache *s;

3927
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3928 3929 3930 3931 3932 3933
	if (s) {
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3934
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3935
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3936

3937 3938
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3939
			s = NULL;
3940
		}
3941
	}
C
Christoph Lameter 已提交
3942

3943 3944 3945
	return s;
}

3946 3947
int __kmem_cache_create(struct kmem_cache *s,
		const char *name, size_t size,
3948 3949
		size_t align, unsigned long flags, void (*ctor)(void *))
{
3950
	return kmem_cache_open(s, name, size, align, flags, ctor);
C
Christoph Lameter 已提交
3951 3952 3953 3954
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3955 3956
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3957 3958 3959 3960 3961
 */
static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3962 3963
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3964 3965 3966

	switch (action) {
	case CPU_UP_CANCELED:
3967
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3968
	case CPU_DEAD:
3969
	case CPU_DEAD_FROZEN:
3970
		mutex_lock(&slab_mutex);
3971 3972 3973 3974 3975
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
3976
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3977 3978 3979 3980 3981 3982 3983
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

P
Pekka Enberg 已提交
3984
static struct notifier_block __cpuinitdata slab_notifier = {
I
Ingo Molnar 已提交
3985
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3986
};
C
Christoph Lameter 已提交
3987 3988 3989

#endif

3990
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
3991
{
3992
	struct kmem_cache *s;
3993
	void *ret;
3994

3995
	if (unlikely(size > SLUB_MAX_SIZE))
3996 3997
		return kmalloc_large(size, gfpflags);

3998
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
3999

4000
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4001
		return s;
C
Christoph Lameter 已提交
4002

4003
	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
4004

L
Lucas De Marchi 已提交
4005
	/* Honor the call site pointer we received. */
4006
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4007 4008

	return ret;
C
Christoph Lameter 已提交
4009 4010
}

4011
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4012
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4013
					int node, unsigned long caller)
C
Christoph Lameter 已提交
4014
{
4015
	struct kmem_cache *s;
4016
	void *ret;
4017

4018 4019 4020 4021 4022 4023 4024 4025 4026
	if (unlikely(size > SLUB_MAX_SIZE)) {
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
4027

4028
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
4029

4030
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4031
		return s;
C
Christoph Lameter 已提交
4032

4033 4034
	ret = slab_alloc(s, gfpflags, node, caller);

L
Lucas De Marchi 已提交
4035
	/* Honor the call site pointer we received. */
4036
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4037 4038

	return ret;
C
Christoph Lameter 已提交
4039
}
4040
#endif
C
Christoph Lameter 已提交
4041

4042
#ifdef CONFIG_SYSFS
4043 4044 4045 4046 4047 4048 4049 4050 4051
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
4052
#endif
4053

4054
#ifdef CONFIG_SLUB_DEBUG
4055 4056
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4057 4058
{
	void *p;
4059
	void *addr = page_address(page);
4060 4061 4062 4063 4064 4065

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
4066
	bitmap_zero(map, page->objects);
4067

4068 4069 4070 4071 4072
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
4073 4074
	}

4075
	for_each_object(p, s, addr, page->objects)
4076
		if (!test_bit(slab_index(p, s, addr), map))
4077
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4078 4079 4080 4081
				return 0;
	return 1;
}

4082 4083
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4084
{
4085 4086 4087
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
4088 4089
}

4090 4091
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
4092 4093 4094 4095 4096 4097 4098 4099
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
4100
		validate_slab_slab(s, page, map);
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
4111
		validate_slab_slab(s, page, map);
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

4124
static long validate_slab_cache(struct kmem_cache *s)
4125 4126 4127
{
	int node;
	unsigned long count = 0;
4128
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4129 4130 4131 4132
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
4133 4134

	flush_all(s);
C
Christoph Lameter 已提交
4135
	for_each_node_state(node, N_NORMAL_MEMORY) {
4136 4137
		struct kmem_cache_node *n = get_node(s, node);

4138
		count += validate_slab_node(s, n, map);
4139
	}
4140
	kfree(map);
4141 4142
	return count;
}
4143
/*
C
Christoph Lameter 已提交
4144
 * Generate lists of code addresses where slabcache objects are allocated
4145 4146 4147 4148 4149
 * and freed.
 */

struct location {
	unsigned long count;
4150
	unsigned long addr;
4151 4152 4153 4154 4155
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
4156
	DECLARE_BITMAP(cpus, NR_CPUS);
4157
	nodemask_t nodes;
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4173
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4174 4175 4176 4177 4178 4179
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4180
	l = (void *)__get_free_pages(flags, order);
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4194
				const struct track *track)
4195 4196 4197
{
	long start, end, pos;
	struct location *l;
4198
	unsigned long caddr;
4199
	unsigned long age = jiffies - track->when;
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4231 4232
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4233 4234
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4235 4236 4237
			return 1;
		}

4238
		if (track->addr < caddr)
4239 4240 4241 4242 4243 4244
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4245
	 * Not found. Insert new tracking element.
4246
	 */
4247
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4248 4249 4250 4251 4252 4253 4254 4255
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4256 4257 4258 4259 4260 4261
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4262 4263
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4264 4265
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4266 4267 4268 4269
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4270
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4271
		unsigned long *map)
4272
{
4273
	void *addr = page_address(page);
4274 4275
	void *p;

4276
	bitmap_zero(map, page->objects);
4277
	get_map(s, page, map);
4278

4279
	for_each_object(p, s, addr, page->objects)
4280 4281
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4282 4283 4284 4285 4286
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4287
	int len = 0;
4288
	unsigned long i;
4289
	struct loc_track t = { 0, 0, NULL };
4290
	int node;
E
Eric Dumazet 已提交
4291 4292
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
4293

E
Eric Dumazet 已提交
4294 4295 4296
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4297
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4298
	}
4299 4300 4301
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4302
	for_each_node_state(node, N_NORMAL_MEMORY) {
4303 4304 4305 4306
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

4307
		if (!atomic_long_read(&n->nr_slabs))
4308 4309 4310 4311
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4312
			process_slab(&t, s, page, alloc, map);
4313
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4314
			process_slab(&t, s, page, alloc, map);
4315 4316 4317 4318
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4319
		struct location *l = &t.loc[i];
4320

H
Hugh Dickins 已提交
4321
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4322
			break;
4323
		len += sprintf(buf + len, "%7ld ", l->count);
4324 4325

		if (l->addr)
J
Joe Perches 已提交
4326
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4327
		else
4328
			len += sprintf(buf + len, "<not-available>");
4329 4330

		if (l->sum_time != l->min_time) {
4331
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4332 4333 4334
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4335
		} else
4336
			len += sprintf(buf + len, " age=%ld",
4337 4338 4339
				l->min_time);

		if (l->min_pid != l->max_pid)
4340
			len += sprintf(buf + len, " pid=%ld-%ld",
4341 4342
				l->min_pid, l->max_pid);
		else
4343
			len += sprintf(buf + len, " pid=%ld",
4344 4345
				l->min_pid);

R
Rusty Russell 已提交
4346 4347
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4348 4349 4350
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
R
Rusty Russell 已提交
4351
						 to_cpumask(l->cpus));
4352 4353
		}

4354
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4355 4356 4357
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4358 4359 4360
					l->nodes);
		}

4361
		len += sprintf(buf + len, "\n");
4362 4363 4364
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4365
	kfree(map);
4366
	if (!t.count)
4367 4368
		len += sprintf(buf, "No data\n");
	return len;
4369
}
4370
#endif
4371

4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
			" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
	validate_slab_cache(kmalloc_caches[6]);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
			p);
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4434
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4435
enum slab_stat_type {
4436 4437 4438 4439 4440
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4441 4442
};

4443
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4444 4445 4446
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4447
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4448

4449 4450
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4451 4452 4453 4454 4455 4456 4457 4458
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;
	unsigned long *per_cpu;

	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4459 4460
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4461 4462
	per_cpu = nodes + nr_node_ids;

4463 4464
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4465

4466
		for_each_possible_cpu(cpu) {
4467
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4468
			int node;
4469
			struct page *page;
4470

4471
			page = ACCESS_ONCE(c->page);
4472 4473
			if (!page)
				continue;
4474

4475 4476 4477 4478 4479 4480 4481
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4482

4483 4484 4485 4486
			total += x;
			nodes[node] += x;

			page = ACCESS_ONCE(c->partial);
4487 4488
			if (page) {
				x = page->pobjects;
4489 4490
				total += x;
				nodes[node] += x;
4491
			}
4492

4493
			per_cpu[node]++;
C
Christoph Lameter 已提交
4494 4495 4496
		}
	}

4497
	lock_memory_hotplug();
4498
#ifdef CONFIG_SLUB_DEBUG
4499 4500 4501 4502 4503 4504 4505 4506 4507
	if (flags & SO_ALL) {
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);

		if (flags & SO_TOTAL)
			x = atomic_long_read(&n->total_objects);
		else if (flags & SO_OBJECTS)
			x = atomic_long_read(&n->total_objects) -
				count_partial(n, count_free);
C
Christoph Lameter 已提交
4508 4509

			else
4510
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4511 4512 4513 4514
			total += x;
			nodes[node] += x;
		}

4515 4516 4517
	} else
#endif
	if (flags & SO_PARTIAL) {
4518 4519
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);
C
Christoph Lameter 已提交
4520

4521 4522 4523 4524
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4525
			else
4526
				x = n->nr_partial;
C
Christoph Lameter 已提交
4527 4528 4529 4530 4531 4532
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4533
	for_each_node_state(node, N_NORMAL_MEMORY)
C
Christoph Lameter 已提交
4534 4535 4536 4537
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4538
	unlock_memory_hotplug();
C
Christoph Lameter 已提交
4539 4540 4541 4542
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4543
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4544 4545 4546 4547
static int any_slab_objects(struct kmem_cache *s)
{
	int node;

4548
	for_each_online_node(node) {
C
Christoph Lameter 已提交
4549 4550
		struct kmem_cache_node *n = get_node(s, node);

4551 4552 4553
		if (!n)
			continue;

4554
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4555 4556 4557 4558
			return 1;
	}
	return 0;
}
4559
#endif
C
Christoph Lameter 已提交
4560 4561

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4562
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4563 4564 4565 4566 4567 4568 4569 4570

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4571 4572
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4573 4574 4575

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4576
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4592
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4593 4594 4595 4596 4597
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4598
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4599 4600 4601
}
SLAB_ATTR_RO(objs_per_slab);

4602 4603 4604
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4605 4606 4607 4608 4609 4610
	unsigned long order;
	int err;

	err = strict_strtoul(buf, 10, &order);
	if (err)
		return err;
4611 4612 4613 4614 4615 4616 4617 4618

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4619 4620
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4621
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4622
}
4623
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4624

4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

	err = strict_strtoul(buf, 10, &min);
	if (err)
		return err;

4640
	set_min_partial(s, min);
4641 4642 4643 4644
	return length;
}
SLAB_ATTR(min_partial);

4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

	err = strict_strtoul(buf, 10, &objects);
	if (err)
		return err;
4659 4660
	if (objects && kmem_cache_debug(s))
		return -EINVAL;
4661 4662 4663 4664 4665 4666 4667

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4668 4669
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4670 4671 4672
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4684
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4685 4686 4687 4688 4689
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4690
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4691 4692 4693 4694 4695
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4696
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4697 4698 4699
}
SLAB_ATTR_RO(objects);

4700 4701 4702 4703 4704 4705
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4772 4773 4774 4775 4776 4777
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4778
#ifdef CONFIG_SLUB_DEBUG
4779 4780 4781 4782 4783 4784
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4785 4786 4787 4788 4789 4790
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4791 4792 4793 4794 4795 4796 4797 4798 4799
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4800 4801
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4802
		s->flags |= SLAB_DEBUG_FREE;
4803
	}
C
Christoph Lameter 已提交
4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
4817 4818
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4819
		s->flags |= SLAB_TRACE;
4820
	}
C
Christoph Lameter 已提交
4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4837 4838
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4839
		s->flags |= SLAB_RED_ZONE;
4840
	}
4841
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4858 4859
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4860
		s->flags |= SLAB_POISON;
4861
	}
4862
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4879 4880
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4881
		s->flags |= SLAB_STORE_USER;
4882
	}
4883
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4884 4885 4886 4887
	return length;
}
SLAB_ATTR(store_user);

4888 4889 4890 4891 4892 4893 4894 4895
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4896 4897 4898 4899 4900 4901 4902 4903
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4904 4905
}
SLAB_ATTR(validate);
4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4939
#endif
4940

4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
4960
#ifdef CONFIG_NUMA
4961
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4962
{
4963
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4964 4965
}

4966
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4967 4968
				const char *buf, size_t length)
{
4969 4970 4971 4972 4973 4974 4975
	unsigned long ratio;
	int err;

	err = strict_strtoul(buf, 10, &ratio);
	if (err)
		return err;

4976
	if (ratio <= 100)
4977
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4978 4979 4980

	return length;
}
4981
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4982 4983
#endif

4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4996
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4997 4998 4999 5000 5001 5002 5003

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

5004
#ifdef CONFIG_SMP
5005 5006
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
5007
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5008
	}
5009
#endif
5010 5011 5012 5013
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
5014 5015 5016 5017 5018
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
5019
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
5020 5021
}

5022 5023 5024 5025 5026
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
5027 5028 5029 5030 5031 5032 5033 5034 5035
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
5047
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5048 5049 5050 5051 5052 5053 5054
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5055
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5056
STAT_ATTR(ORDER_FALLBACK, order_fallback);
5057 5058
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5059 5060
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5061 5062
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5063 5064
#endif

P
Pekka Enberg 已提交
5065
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
5066 5067 5068 5069
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
5070
	&min_partial_attr.attr,
5071
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
5072
	&objects_attr.attr,
5073
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
5074 5075 5076 5077 5078 5079 5080 5081
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
5082
	&shrink_attr.attr,
5083
	&reserved_attr.attr,
5084
	&slabs_cpu_partial_attr.attr,
5085
#ifdef CONFIG_SLUB_DEBUG
5086 5087 5088 5089
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
5090 5091 5092
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
5093
	&validate_attr.attr,
5094 5095
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
5096
#endif
C
Christoph Lameter 已提交
5097 5098 5099 5100
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
5101
	&remote_node_defrag_ratio_attr.attr,
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
5114
	&alloc_node_mismatch_attr.attr,
5115 5116 5117 5118 5119 5120 5121
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
5122
	&deactivate_bypass_attr.attr,
5123
	&order_fallback_attr.attr,
5124 5125
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
5126 5127
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
5128 5129
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
5130
#endif
5131 5132 5133 5134
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);

	return err;
}

5180
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5198
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5199 5200 5201
	.filter = uevent_filter,
};

5202
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5203 5204 5205 5206

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5207 5208
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
V
Vegard Nossum 已提交
5231 5232
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
C
Christoph Lameter 已提交
5233 5234 5235 5236 5237 5238 5239
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

5240
int sysfs_slab_add(struct kmem_cache *s)
C
Christoph Lameter 已提交
5241 5242 5243 5244 5245
{
	int err;
	const char *name;
	int unmergeable;

5246
	if (slab_state < FULL)
C
Christoph Lameter 已提交
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256
		/* Defer until later */
		return 0;

	unmergeable = slab_unmergeable(s);
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5257
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5258 5259 5260 5261 5262 5263 5264 5265 5266
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5267
	s->kobj.kset = slab_kset;
5268 5269 5270
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
	if (err) {
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5271
		return err;
5272
	}
C
Christoph Lameter 已提交
5273 5274

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5275 5276 5277
	if (err) {
		kobject_del(&s->kobj);
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5278
		return err;
5279
	}
C
Christoph Lameter 已提交
5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
5291
	if (slab_state < FULL)
5292 5293 5294 5295 5296 5297
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

C
Christoph Lameter 已提交
5298 5299
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5300
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5301 5302 5303 5304
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5305
 * available lest we lose that information.
C
Christoph Lameter 已提交
5306 5307 5308 5309 5310 5311 5312
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5313
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5314 5315 5316 5317 5318

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5319
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5320 5321 5322
		/*
		 * If we have a leftover link then remove it.
		 */
5323 5324
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5340
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5341 5342
	int err;

5343
	mutex_lock(&slab_mutex);
5344

5345
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5346
	if (!slab_kset) {
5347
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5348 5349 5350 5351
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

5352
	slab_state = FULL;
5353

5354
	list_for_each_entry(s, &slab_caches, list) {
5355
		err = sysfs_slab_add(s);
5356 5357 5358
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
						" to sysfs\n", s->name);
5359
	}
C
Christoph Lameter 已提交
5360 5361 5362 5363 5364 5365

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5366 5367
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5368
					" %s to sysfs\n", al->name);
C
Christoph Lameter 已提交
5369 5370 5371
		kfree(al);
	}

5372
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5373 5374 5375 5376 5377
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5378
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5379 5380 5381 5382

/*
 * The /proc/slabinfo ABI
 */
5383
#ifdef CONFIG_SLABINFO
P
Pekka J Enberg 已提交
5384 5385 5386
static void print_slabinfo_header(struct seq_file *m)
{
	seq_puts(m, "slabinfo - version: 2.1\n");
5387
	seq_puts(m, "# name            <active_objs> <num_objs> <object_size> "
P
Pekka J Enberg 已提交
5388 5389 5390 5391 5392 5393 5394 5395 5396 5397
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

5398
	mutex_lock(&slab_mutex);
P
Pekka J Enberg 已提交
5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
	if (!n)
		print_slabinfo_header(m);

	return seq_list_start(&slab_caches, *pos);
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
	return seq_list_next(p, &slab_caches, pos);
}

static void s_stop(struct seq_file *m, void *p)
{
5412
	mutex_unlock(&slab_mutex);
P
Pekka J Enberg 已提交
5413 5414 5415 5416 5417 5418 5419
}

static int s_show(struct seq_file *m, void *p)
{
	unsigned long nr_partials = 0;
	unsigned long nr_slabs = 0;
	unsigned long nr_inuse = 0;
5420 5421
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434
	struct kmem_cache *s;
	int node;

	s = list_entry(p, struct kmem_cache, list);

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (!n)
			continue;

		nr_partials += n->nr_partial;
		nr_slabs += atomic_long_read(&n->nr_slabs);
5435 5436
		nr_objs += atomic_long_read(&n->total_objects);
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5437 5438
	}

5439
	nr_inuse = nr_objs - nr_free;
P
Pekka J Enberg 已提交
5440 5441

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5442 5443
		   nr_objs, s->size, oo_objects(s->oo),
		   (1 << oo_order(s->oo)));
P
Pekka J Enberg 已提交
5444 5445 5446 5447 5448 5449 5450
	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
		   0UL);
	seq_putc(m, '\n');
	return 0;
}

5451
static const struct seq_operations slabinfo_op = {
P
Pekka J Enberg 已提交
5452 5453 5454 5455 5456 5457
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};

5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471
static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
5472
	proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5473 5474 5475
	return 0;
}
module_init(slab_proc_init);
5476
#endif /* CONFIG_SLABINFO */