onenand_base.c 55.5 KB
Newer Older
1 2 3
/*
 *  linux/drivers/mtd/onenand/onenand_base.c
 *
4
 *  Copyright (C) 2005-2006 Samsung Electronics
5 6 7 8 9 10 11 12 13 14
 *  Kyungmin Park <kyungmin.park@samsung.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
15
#include <linux/sched.h>
16
#include <linux/interrupt.h>
17
#include <linux/jiffies.h>
18 19 20 21 22 23 24 25 26
#include <linux/mtd/mtd.h>
#include <linux/mtd/onenand.h>
#include <linux/mtd/partitions.h>

#include <asm/io.h>

/**
 * onenand_oob_64 - oob info for large (2KB) page
 */
27
static struct nand_ecclayout onenand_oob_64 = {
28 29 30 31 32 33 34 35 36
	.eccbytes	= 20,
	.eccpos		= {
		8, 9, 10, 11, 12,
		24, 25, 26, 27, 28,
		40, 41, 42, 43, 44,
		56, 57, 58, 59, 60,
		},
	.oobfree	= {
		{2, 3}, {14, 2}, {18, 3}, {30, 2},
37 38
		{34, 3}, {46, 2}, {50, 3}, {62, 2}
	}
39 40 41 42 43
};

/**
 * onenand_oob_32 - oob info for middle (1KB) page
 */
44
static struct nand_ecclayout onenand_oob_32 = {
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
	.eccbytes	= 10,
	.eccpos		= {
		8, 9, 10, 11, 12,
		24, 25, 26, 27, 28,
		},
	.oobfree	= { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
};

static const unsigned char ffchars[] = {
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
};

/**
 * onenand_readw - [OneNAND Interface] Read OneNAND register
 * @param addr		address to read
 *
 * Read OneNAND register
 */
static unsigned short onenand_readw(void __iomem *addr)
{
	return readw(addr);
}

/**
 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
 * @param value		value to write
 * @param addr		address to write
 *
 * Write OneNAND register with value
 */
static void onenand_writew(unsigned short value, void __iomem *addr)
{
	writew(value, addr);
}

/**
 * onenand_block_address - [DEFAULT] Get block address
89
 * @param this		onenand chip data structure
90 91 92 93 94
 * @param block		the block
 * @return		translated block address if DDP, otherwise same
 *
 * Setup Start Address 1 Register (F100h)
 */
95
static int onenand_block_address(struct onenand_chip *this, int block)
96
{
97 98 99
	/* Device Flash Core select, NAND Flash Block Address */
	if (block & this->density_mask)
		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
100 101 102 103 104 105

	return block;
}

/**
 * onenand_bufferram_address - [DEFAULT] Get bufferram address
106
 * @param this		onenand chip data structure
107 108 109 110 111
 * @param block		the block
 * @return		set DBS value if DDP, otherwise 0
 *
 * Setup Start Address 2 Register (F101h) for DDP
 */
112
static int onenand_bufferram_address(struct onenand_chip *this, int block)
113
{
114 115 116
	/* Device BufferRAM Select */
	if (block & this->density_mask)
		return ONENAND_DDP_CHIP1;
117

118
	return ONENAND_DDP_CHIP0;
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
}

/**
 * onenand_page_address - [DEFAULT] Get page address
 * @param page		the page address
 * @param sector	the sector address
 * @return		combined page and sector address
 *
 * Setup Start Address 8 Register (F107h)
 */
static int onenand_page_address(int page, int sector)
{
	/* Flash Page Address, Flash Sector Address */
	int fpa, fsa;

	fpa = page & ONENAND_FPA_MASK;
	fsa = sector & ONENAND_FSA_MASK;

	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
}

/**
 * onenand_buffer_address - [DEFAULT] Get buffer address
 * @param dataram1	DataRAM index
 * @param sectors	the sector address
 * @param count		the number of sectors
 * @return		the start buffer value
 *
 * Setup Start Buffer Register (F200h)
 */
static int onenand_buffer_address(int dataram1, int sectors, int count)
{
	int bsa, bsc;

	/* BufferRAM Sector Address */
	bsa = sectors & ONENAND_BSA_MASK;

	if (dataram1)
		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
	else
		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */

	/* BufferRAM Sector Count */
	bsc = count & ONENAND_BSC_MASK;

	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
}

/**
 * onenand_command - [DEFAULT] Send command to OneNAND device
 * @param mtd		MTD device structure
 * @param cmd		the command to be sent
 * @param addr		offset to read from or write to
 * @param len		number of bytes to read or write
 *
 * Send command to OneNAND device. This function is used for middle/large page
 * devices (1KB/2KB Bytes per page)
 */
static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
{
	struct onenand_chip *this = mtd->priv;
180
	int value, readcmd = 0, block_cmd = 0;
181 182 183 184 185 186 187
	int block, page;

	/* Address translation */
	switch (cmd) {
	case ONENAND_CMD_UNLOCK:
	case ONENAND_CMD_LOCK:
	case ONENAND_CMD_LOCK_TIGHT:
188
	case ONENAND_CMD_UNLOCK_ALL:
189 190 191 192 193 194
		block = -1;
		page = -1;
		break;

	case ONENAND_CMD_ERASE:
	case ONENAND_CMD_BUFFERRAM:
195 196
	case ONENAND_CMD_OTP_ACCESS:
		block_cmd = 1;
197 198 199 200 201 202 203 204 205 206 207 208 209 210
		block = (int) (addr >> this->erase_shift);
		page = -1;
		break;

	default:
		block = (int) (addr >> this->erase_shift);
		page = (int) (addr >> this->page_shift);
		page &= this->page_mask;
		break;
	}

	/* NOTE: The setting order of the registers is very important! */
	if (cmd == ONENAND_CMD_BUFFERRAM) {
		/* Select DataRAM for DDP */
211
		value = onenand_bufferram_address(this, block);
212 213 214 215 216 217 218 219 220 221
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);

		/* Switch to the next data buffer */
		ONENAND_SET_NEXT_BUFFERRAM(this);

		return 0;
	}

	if (block != -1) {
		/* Write 'DFS, FBA' of Flash */
222
		value = onenand_block_address(this, block);
223
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
224

K
Kyungmin Park 已提交
225
		if (block_cmd) {
226 227 228 229
			/* Select DataRAM for DDP */
			value = onenand_bufferram_address(this, block);
			this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
		}
230 231 232
	}

	if (page != -1) {
233 234
		/* Now we use page size operation */
		int sectors = 4, count = 4;
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
		int dataram;

		switch (cmd) {
		case ONENAND_CMD_READ:
		case ONENAND_CMD_READOOB:
			dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
			readcmd = 1;
			break;

		default:
			dataram = ONENAND_CURRENT_BUFFERRAM(this);
			break;
		}

		/* Write 'FPA, FSA' of Flash */
		value = onenand_page_address(page, sectors);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);

		/* Write 'BSA, BSC' of DataRAM */
		value = onenand_buffer_address(dataram, sectors, count);
		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
256

257 258
		if (readcmd) {
			/* Select DataRAM for DDP */
259
			value = onenand_bufferram_address(this, block);
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
			this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
		}
	}

	/* Interrupt clear */
	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);

	/* Write command */
	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);

	return 0;
}

/**
 * onenand_wait - [DEFAULT] wait until the command is done
 * @param mtd		MTD device structure
 * @param state		state to select the max. timeout value
 *
 * Wait for command done. This applies to all OneNAND command
 * Read can take up to 30us, erase up to 2ms and program up to 350us
 * according to general OneNAND specs
 */
static int onenand_wait(struct mtd_info *mtd, int state)
{
	struct onenand_chip * this = mtd->priv;
	unsigned long timeout;
	unsigned int flags = ONENAND_INT_MASTER;
	unsigned int interrupt = 0;
288
	unsigned int ctrl;
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

	/* The 20 msec is enough */
	timeout = jiffies + msecs_to_jiffies(20);
	while (time_before(jiffies, timeout)) {
		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);

		if (interrupt & flags)
			break;

		if (state != FL_READING)
			cond_resched();
	}
	/* To get correct interrupt status in timeout case */
	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);

	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);

	if (ctrl & ONENAND_CTRL_ERROR) {
307
		DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: controller error = 0x%04x\n", ctrl);
308 309 310
		if (ctrl & ONENAND_CTRL_LOCK)
			DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: it's locked error.\n");
		return ctrl;
311 312 313
	}

	if (interrupt & ONENAND_INT_READ) {
314
		int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
315
		if (ecc) {
316
			DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: ECC error = 0x%04x\n", ecc);
317
			if (ecc & ONENAND_ECC_2BIT_ALL) {
318
				mtd->ecc_stats.failed++;
319 320
				return ecc;
			} else if (ecc & ONENAND_ECC_1BIT_ALL)
321
				mtd->ecc_stats.corrected++;
322
		}
323 324 325
	} else if (state == FL_READING) {
		printk(KERN_ERR "onenand_wait: read timeout! ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
		return -EIO;
326 327 328 329 330
	}

	return 0;
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
/*
 * onenand_interrupt - [DEFAULT] onenand interrupt handler
 * @param irq		onenand interrupt number
 * @param dev_id	interrupt data
 *
 * complete the work
 */
static irqreturn_t onenand_interrupt(int irq, void *data)
{
	struct onenand_chip *this = (struct onenand_chip *) data;

	/* To handle shared interrupt */
	if (!this->complete.done)
		complete(&this->complete);

	return IRQ_HANDLED;
}

/*
 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
 * @param mtd		MTD device structure
 * @param state		state to select the max. timeout value
 *
 * Wait for command done.
 */
static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
{
	struct onenand_chip *this = mtd->priv;

	wait_for_completion(&this->complete);

	return onenand_wait(mtd, state);
}

/*
 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
 * @param mtd		MTD device structure
 * @param state		state to select the max. timeout value
 *
 * Try interrupt based wait (It is used one-time)
 */
static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
{
	struct onenand_chip *this = mtd->priv;
	unsigned long remain, timeout;

	/* We use interrupt wait first */
	this->wait = onenand_interrupt_wait;

	timeout = msecs_to_jiffies(100);
	remain = wait_for_completion_timeout(&this->complete, timeout);
	if (!remain) {
		printk(KERN_INFO "OneNAND: There's no interrupt. "
				"We use the normal wait\n");

		/* Release the irq */
		free_irq(this->irq, this);
D
David Woodhouse 已提交
388

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
		this->wait = onenand_wait;
	}

	return onenand_wait(mtd, state);
}

/*
 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
 * @param mtd		MTD device structure
 *
 * There's two method to wait onenand work
 * 1. polling - read interrupt status register
 * 2. interrupt - use the kernel interrupt method
 */
static void onenand_setup_wait(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;
	int syscfg;

	init_completion(&this->complete);

	if (this->irq <= 0) {
		this->wait = onenand_wait;
		return;
	}

	if (request_irq(this->irq, &onenand_interrupt,
				IRQF_SHARED, "onenand", this)) {
		/* If we can't get irq, use the normal wait */
		this->wait = onenand_wait;
		return;
	}

	/* Enable interrupt */
	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
	syscfg |= ONENAND_SYS_CFG1_IOBE;
	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);

	this->wait = onenand_try_interrupt_wait;
}

430 431 432 433 434 435 436 437 438 439 440 441 442 443
/**
 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
 * @param mtd		MTD data structure
 * @param area		BufferRAM area
 * @return		offset given area
 *
 * Return BufferRAM offset given area
 */
static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
{
	struct onenand_chip *this = mtd->priv;

	if (ONENAND_CURRENT_BUFFERRAM(this)) {
		if (area == ONENAND_DATARAM)
J
Joern Engel 已提交
444
			return mtd->writesize;
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
		if (area == ONENAND_SPARERAM)
			return mtd->oobsize;
	}

	return 0;
}

/**
 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
 * @param mtd		MTD data structure
 * @param area		BufferRAM area
 * @param buffer	the databuffer to put/get data
 * @param offset	offset to read from or write to
 * @param count		number of bytes to read/write
 *
 * Read the BufferRAM area
 */
static int onenand_read_bufferram(struct mtd_info *mtd, int area,
		unsigned char *buffer, int offset, size_t count)
{
	struct onenand_chip *this = mtd->priv;
	void __iomem *bufferram;

	bufferram = this->base + area;

	bufferram += onenand_bufferram_offset(mtd, area);

472 473 474 475 476 477 478 479 480 481 482
	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
		unsigned short word;

		/* Align with word(16-bit) size */
		count--;

		/* Read word and save byte */
		word = this->read_word(bufferram + offset + count);
		buffer[count] = (word & 0xff);
	}

483 484 485 486 487
	memcpy(buffer, bufferram + offset, count);

	return 0;
}

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
/**
 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
 * @param mtd		MTD data structure
 * @param area		BufferRAM area
 * @param buffer	the databuffer to put/get data
 * @param offset	offset to read from or write to
 * @param count		number of bytes to read/write
 *
 * Read the BufferRAM area with Sync. Burst Mode
 */
static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
		unsigned char *buffer, int offset, size_t count)
{
	struct onenand_chip *this = mtd->priv;
	void __iomem *bufferram;

	bufferram = this->base + area;

	bufferram += onenand_bufferram_offset(mtd, area);

	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);

510 511 512 513 514 515 516 517 518 519 520
	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
		unsigned short word;

		/* Align with word(16-bit) size */
		count--;

		/* Read word and save byte */
		word = this->read_word(bufferram + offset + count);
		buffer[count] = (word & 0xff);
	}

521 522 523 524 525 526 527
	memcpy(buffer, bufferram + offset, count);

	this->mmcontrol(mtd, 0);

	return 0;
}

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
/**
 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
 * @param mtd		MTD data structure
 * @param area		BufferRAM area
 * @param buffer	the databuffer to put/get data
 * @param offset	offset to read from or write to
 * @param count		number of bytes to read/write
 *
 * Write the BufferRAM area
 */
static int onenand_write_bufferram(struct mtd_info *mtd, int area,
		const unsigned char *buffer, int offset, size_t count)
{
	struct onenand_chip *this = mtd->priv;
	void __iomem *bufferram;

	bufferram = this->base + area;

	bufferram += onenand_bufferram_offset(mtd, area);

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
		unsigned short word;
		int byte_offset;

		/* Align with word(16-bit) size */
		count--;

		/* Calculate byte access offset */
		byte_offset = offset + count;

		/* Read word and save byte */
		word = this->read_word(bufferram + byte_offset);
		word = (word & ~0xff) | buffer[count];
		this->write_word(word, bufferram + byte_offset);
	}

564 565 566 567 568 569 570 571 572
	memcpy(bufferram + offset, buffer, count);

	return 0;
}

/**
 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
 * @param mtd		MTD data structure
 * @param addr		address to check
573
 * @return		1 if there are valid data, otherwise 0
574 575 576 577 578 579 580 581
 *
 * Check bufferram if there is data we required
 */
static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
{
	struct onenand_chip *this = mtd->priv;
	int block, page;
	int i;
582

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
	block = (int) (addr >> this->erase_shift);
	page = (int) (addr >> this->page_shift);
	page &= this->page_mask;

	i = ONENAND_CURRENT_BUFFERRAM(this);

	/* Is there valid data? */
	if (this->bufferram[i].block == block &&
	    this->bufferram[i].page == page &&
	    this->bufferram[i].valid)
		return 1;

	return 0;
}

/**
 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
 * @param mtd		MTD data structure
 * @param addr		address to update
 * @param valid		valid flag
 *
 * Update BufferRAM information
 */
static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
		int valid)
{
	struct onenand_chip *this = mtd->priv;
	int block, page;
	int i;
612

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
	block = (int) (addr >> this->erase_shift);
	page = (int) (addr >> this->page_shift);
	page &= this->page_mask;

	/* Invalidate BufferRAM */
	for (i = 0; i < MAX_BUFFERRAM; i++) {
		if (this->bufferram[i].block == block &&
		    this->bufferram[i].page == page)
			this->bufferram[i].valid = 0;
	}

	/* Update BufferRAM */
	i = ONENAND_CURRENT_BUFFERRAM(this);
	this->bufferram[i].block = block;
	this->bufferram[i].page = page;
	this->bufferram[i].valid = valid;

	return 0;
}

/**
 * onenand_get_device - [GENERIC] Get chip for selected access
 * @param mtd		MTD device structure
 * @param new_state	the state which is requested
 *
 * Get the device and lock it for exclusive access
 */
640
static int onenand_get_device(struct mtd_info *mtd, int new_state)
641 642 643 644 645 646 647 648 649 650 651 652 653 654
{
	struct onenand_chip *this = mtd->priv;
	DECLARE_WAITQUEUE(wait, current);

	/*
	 * Grab the lock and see if the device is available
	 */
	while (1) {
		spin_lock(&this->chip_lock);
		if (this->state == FL_READY) {
			this->state = new_state;
			spin_unlock(&this->chip_lock);
			break;
		}
655 656 657 658
		if (new_state == FL_PM_SUSPENDED) {
			spin_unlock(&this->chip_lock);
			return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
		}
659 660 661 662 663 664
		set_current_state(TASK_UNINTERRUPTIBLE);
		add_wait_queue(&this->wq, &wait);
		spin_unlock(&this->chip_lock);
		schedule();
		remove_wait_queue(&this->wq, &wait);
	}
665 666

	return 0;
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
}

/**
 * onenand_release_device - [GENERIC] release chip
 * @param mtd		MTD device structure
 *
 * Deselect, release chip lock and wake up anyone waiting on the device
 */
static void onenand_release_device(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;

	/* Release the chip */
	spin_lock(&this->chip_lock);
	this->state = FL_READY;
	wake_up(&this->wq);
	spin_unlock(&this->chip_lock);
}

/**
687
 * onenand_read - [MTD Interface] Read data from flash
688 689 690 691 692 693
 * @param mtd		MTD device structure
 * @param from		offset to read from
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put data
 *
694 695 696 697
 * Read with ecc
*/
static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
	size_t *retlen, u_char *buf)
698 699
{
	struct onenand_chip *this = mtd->priv;
700
	struct mtd_ecc_stats stats;
701 702
	int read = 0, column;
	int thislen;
703
	int ret = 0, boundary = 0;
704

705
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_read: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
706 707 708

	/* Do not allow reads past end of device */
	if ((from + len) > mtd->size) {
709
		DEBUG(MTD_DEBUG_LEVEL0, "onenand_read: Attempt read beyond end of device\n");
710 711 712 713 714 715 716 717 718
		*retlen = 0;
		return -EINVAL;
	}

	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_READING);

	/* TODO handling oob */

719
	stats = mtd->ecc_stats;
720

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
 	/* Read-while-load method */

 	/* Do first load to bufferRAM */
 	if (read < len) {
 		if (!onenand_check_bufferram(mtd, from)) {
 			this->command(mtd, ONENAND_CMD_READ, from, mtd->writesize);
 			ret = this->wait(mtd, FL_READING);
 			onenand_update_bufferram(mtd, from, !ret);
 		}
 	}

 	thislen = min_t(int, mtd->writesize, len - read);
 	column = from & (mtd->writesize - 1);
 	if (column + thislen > mtd->writesize)
 		thislen = mtd->writesize - column;

 	while (!ret) {
 		/* If there is more to load then start next load */
 		from += thislen;
 		if (read + thislen < len) {
 			this->command(mtd, ONENAND_CMD_READ, from, mtd->writesize);
742 743 744 745 746
 			/*
 			 * Chip boundary handling in DDP
 			 * Now we issued chip 1 read and pointed chip 1
 			 * bufferam so we have to point chip 0 bufferam.
 			 */
747 748 749
 			if (ONENAND_IS_DDP(this) &&
 			    unlikely(from == (this->chipsize >> 1))) {
 				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
750 751 752
 				boundary = 1;
 			} else
 				boundary = 0;
753 754 755 756 757 758 759 760 761
 			ONENAND_SET_PREV_BUFFERRAM(this);
 		}
 		/* While load is going, read from last bufferRAM */
 		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
 		/* See if we are done */
 		read += thislen;
 		if (read == len)
 			break;
 		/* Set up for next read from bufferRAM */
762
 		if (unlikely(boundary))
763
 			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
764 765 766 767 768 769 770 771 772
 		ONENAND_SET_NEXT_BUFFERRAM(this);
 		buf += thislen;
 		thislen = min_t(int, mtd->writesize, len - read);
 		column = 0;
 		cond_resched();
 		/* Now wait for load */
 		ret = this->wait(mtd, FL_READING);
 		onenand_update_bufferram(mtd, from, !ret);
 	}
773 774 775 776 777 778 779 780 781 782

	/* Deselect and wake up anyone waiting on the device */
	onenand_release_device(mtd);

	/*
	 * Return success, if no ECC failures, else -EBADMSG
	 * fs driver will take care of that, because
	 * retlen == desired len and result == -EBADMSG
	 */
	*retlen = read;
783 784 785 786

	if (mtd->ecc_stats.failed - stats.failed)
		return -EBADMSG;

787 788 789
	if (ret)
		return ret;

790
	return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
791 792 793
}

/**
794
 * onenand_do_read_oob - [MTD Interface] OneNAND read out-of-band
795 796 797 798 799 800 801 802
 * @param mtd		MTD device structure
 * @param from		offset to read from
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put data
 *
 * OneNAND read out-of-band data from the spare area
 */
803 804
int onenand_do_read_oob(struct mtd_info *mtd, loff_t from, size_t len,
			size_t *retlen, u_char *buf)
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
{
	struct onenand_chip *this = mtd->priv;
	int read = 0, thislen, column;
	int ret = 0;

	DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);

	/* Initialize return length value */
	*retlen = 0;

	/* Do not allow reads past end of device */
	if (unlikely((from + len) > mtd->size)) {
		DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_oob: Attempt read beyond end of device\n");
		return -EINVAL;
	}

	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_READING);

	column = from & (mtd->oobsize - 1);

	while (read < len) {
827 828
		cond_resched();

829 830 831 832 833 834 835 836 837 838 839 840
		thislen = mtd->oobsize - column;
		thislen = min_t(int, thislen, len);

		this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);

		onenand_update_bufferram(mtd, from, 0);

		ret = this->wait(mtd, FL_READING);
		/* First copy data and check return value for ECC handling */

		this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);

841 842 843 844 845
		if (ret) {
			DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_oob: read failed = 0x%x\n", ret);
			goto out;
		}

846 847 848 849 850 851 852 853 854 855
		read += thislen;

		if (read == len)
			break;

		buf += thislen;

		/* Read more? */
		if (read < len) {
			/* Page size */
J
Joern Engel 已提交
856
			from += mtd->writesize;
857 858 859 860 861 862 863 864 865 866 867 868
			column = 0;
		}
	}

out:
	/* Deselect and wake up anyone waiting on the device */
	onenand_release_device(mtd);

	*retlen = read;
	return ret;
}

869 870 871 872 873 874 875 876 877 878 879
/**
 * onenand_read_oob - [MTD Interface] NAND write data and/or out-of-band
 * @mtd:	MTD device structure
 * @from:	offset to read from
 * @ops:	oob operation description structure
 */
static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
			    struct mtd_oob_ops *ops)
{
	BUG_ON(ops->mode != MTD_OOB_PLACE);

880 881
	return onenand_do_read_oob(mtd, from + ops->ooboffs, ops->ooblen,
				   &ops->oobretlen, ops->oobbuf);
882 883
}

884
#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
/**
 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
 * @param mtd		MTD device structure
 * @param buf		the databuffer to verify
 * @param to		offset to read from
 * @param len		number of bytes to read and compare
 *
 */
static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to, int len)
{
	struct onenand_chip *this = mtd->priv;
	char *readp = this->page_buf;
	int column = to & (mtd->oobsize - 1);
	int status, i;

	this->command(mtd, ONENAND_CMD_READOOB, to, mtd->oobsize);
	onenand_update_bufferram(mtd, to, 0);
	status = this->wait(mtd, FL_READING);
	if (status)
		return status;

	this->read_bufferram(mtd, ONENAND_SPARERAM, readp, column, len);

	for(i = 0; i < len; i++)
		if (buf[i] != 0xFF && buf[i] != readp[i])
			return -EBADMSG;

	return 0;
}

915 916 917 918 919 920 921
/**
 * onenand_verify_page - [GENERIC] verify the chip contents after a write
 * @param mtd		MTD device structure
 * @param buf		the databuffer to verify
 *
 * Check DataRAM area directly
 */
922
static int onenand_verify_page(struct mtd_info *mtd, u_char *buf, loff_t addr)
923 924 925 926 927
{
	struct onenand_chip *this = mtd->priv;
	void __iomem *dataram0, *dataram1;
	int ret = 0;

928 929 930 931
	/* In partial page write, just skip it */
	if ((addr & (mtd->writesize - 1)) != 0)
		return 0;

J
Joern Engel 已提交
932
	this->command(mtd, ONENAND_CMD_READ, addr, mtd->writesize);
933 934 935 936 937 938 939 940 941

	ret = this->wait(mtd, FL_READING);
	if (ret)
		return ret;

	onenand_update_bufferram(mtd, addr, 1);

	/* Check, if the two dataram areas are same */
	dataram0 = this->base + ONENAND_DATARAM;
J
Joern Engel 已提交
942
	dataram1 = dataram0 + mtd->writesize;
943

J
Joern Engel 已提交
944
	if (memcmp(dataram0, dataram1, mtd->writesize))
945
		return -EBADMSG;
946

947 948 949 950
	return 0;
}
#else
#define onenand_verify_page(...)	(0)
951
#define onenand_verify_oob(...)		(0)
952 953
#endif

954
#define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
955 956

/**
957
 * onenand_write - [MTD Interface] write buffer to FLASH
958 959 960 961 962 963
 * @param mtd		MTD device structure
 * @param to		offset to write to
 * @param len		number of bytes to write
 * @param retlen	pointer to variable to store the number of written bytes
 * @param buf		the data to write
 *
964
 * Write with ECC
965
 */
966 967
static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
968 969 970 971
{
	struct onenand_chip *this = mtd->priv;
	int written = 0;
	int ret = 0;
972
	int column, subpage;
973

974
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_write: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
975 976 977 978 979 980

	/* Initialize retlen, in case of early exit */
	*retlen = 0;

	/* Do not allow writes past end of device */
	if (unlikely((to + len) > mtd->size)) {
981
		DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: Attempt write to past end of device\n");
982 983 984 985 986
		return -EINVAL;
	}

	/* Reject writes, which are not page aligned */
        if (unlikely(NOTALIGNED(to)) || unlikely(NOTALIGNED(len))) {
987
                DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: Attempt to write not page aligned data\n");
988 989 990
                return -EINVAL;
        }

991 992 993
	column = to & (mtd->writesize - 1);
	subpage = column || (len & (mtd->writesize - 1));

994 995 996 997 998
	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_WRITING);

	/* Loop until all data write */
	while (written < len) {
999 1000 1001 1002
		int bytes = mtd->writesize;
		int thislen = min_t(int, bytes, len - written);
		u_char *wbuf = (u_char *) buf;

1003 1004
		cond_resched();

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, bytes);

		/* Partial page write */
		if (subpage) {
			bytes = min_t(int, bytes - column, (int) len);
			memset(this->page_buf, 0xff, mtd->writesize);
			memcpy(this->page_buf + column, buf, bytes);
			wbuf = this->page_buf;
			/* Even though partial write, we need page size */
			thislen = mtd->writesize;
		}
1016

1017
		this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, thislen);
1018 1019
		this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);

J
Joern Engel 已提交
1020
		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1021

1022 1023
		/* In partial page write we don't update bufferram */
		onenand_update_bufferram(mtd, to, !subpage);
1024 1025 1026

		ret = this->wait(mtd, FL_WRITING);
		if (ret) {
1027
			DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: write filaed %d\n", ret);
1028
			break;
1029 1030 1031
		}

		/* Only check verify write turn on */
1032
		ret = onenand_verify_page(mtd, (u_char *) wbuf, to);
1033
		if (ret) {
1034
			DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: verify failed %d\n", ret);
1035
			break;
1036 1037
		}

1038 1039
		written += thislen;

1040 1041 1042
		if (written == len)
			break;

1043
		column = 0;
1044 1045 1046 1047 1048 1049 1050 1051
		to += thislen;
		buf += thislen;
	}

	/* Deselect and wake up anyone waiting on the device */
	onenand_release_device(mtd);

	*retlen = written;
1052

1053 1054 1055 1056
	return ret;
}

/**
1057
 * onenand_do_write_oob - [Internal] OneNAND write out-of-band
1058 1059 1060 1061 1062 1063 1064 1065
 * @param mtd		MTD device structure
 * @param to		offset to write to
 * @param len		number of bytes to write
 * @param retlen	pointer to variable to store the number of written bytes
 * @param buf		the data to write
 *
 * OneNAND write out-of-band
 */
1066 1067
static int onenand_do_write_oob(struct mtd_info *mtd, loff_t to, size_t len,
				size_t *retlen, const u_char *buf)
1068 1069
{
	struct onenand_chip *this = mtd->priv;
1070
	int column, ret = 0;
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	int written = 0;

	DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);

	/* Initialize retlen, in case of early exit */
	*retlen = 0;

	/* Do not allow writes past end of device */
	if (unlikely((to + len) > mtd->size)) {
		DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: Attempt write to past end of device\n");
		return -EINVAL;
	}

	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_WRITING);

	/* Loop until all data write */
	while (written < len) {
		int thislen = min_t(int, mtd->oobsize, len - written);

1091 1092
		cond_resched();

1093 1094 1095 1096
		column = to & (mtd->oobsize - 1);

		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);

1097 1098 1099 1100 1101
		/* We send data to spare ram with oobsize
		 * to prevent byte access */
		memset(this->page_buf, 0xff, mtd->oobsize);
		memcpy(this->page_buf + column, buf, thislen);
		this->write_bufferram(mtd, ONENAND_SPARERAM, this->page_buf, 0, mtd->oobsize);
1102 1103 1104 1105 1106

		this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);

		onenand_update_bufferram(mtd, to, 0);

1107 1108 1109 1110 1111 1112 1113 1114 1115
		ret = this->wait(mtd, FL_WRITING);
		if (ret) {
			DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: write filaed %d\n", ret);
			goto out;
		}

		ret = onenand_verify_oob(mtd, buf, to, thislen);
		if (ret) {
			DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: verify failed %d\n", ret);
1116
			goto out;
1117
		}
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

		written += thislen;

		if (written == len)
			break;

		to += thislen;
		buf += thislen;
	}

out:
	/* Deselect and wake up anyone waiting on the device */
	onenand_release_device(mtd);

	*retlen = written;
1133

1134
	return ret;
1135 1136
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
/**
 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
 * @mtd:	MTD device structure
 * @from:	offset to read from
 * @ops:	oob operation description structure
 */
static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
			     struct mtd_oob_ops *ops)
{
	BUG_ON(ops->mode != MTD_OOB_PLACE);

1148 1149
	return onenand_do_write_oob(mtd, to + ops->ooboffs, ops->ooblen,
				    &ops->oobretlen, ops->oobbuf);
1150 1151
}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
/**
 * onenand_block_checkbad - [GENERIC] Check if a block is marked bad
 * @param mtd		MTD device structure
 * @param ofs		offset from device start
 * @param getchip	0, if the chip is already selected
 * @param allowbbt	1, if its allowed to access the bbt area
 *
 * Check, if the block is bad. Either by reading the bad block table or
 * calling of the scan function.
 */
static int onenand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
{
	struct onenand_chip *this = mtd->priv;
	struct bbm_info *bbm = this->bbm;

	/* Return info from the table */
	return bbm->isbad_bbt(mtd, ofs, allowbbt);
}

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
/**
 * onenand_erase - [MTD Interface] erase block(s)
 * @param mtd		MTD device structure
 * @param instr		erase instruction
 *
 * Erase one ore more blocks
 */
static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct onenand_chip *this = mtd->priv;
	unsigned int block_size;
	loff_t addr;
	int len;
	int ret = 0;

	DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);

	block_size = (1 << this->erase_shift);

	/* Start address must align on block boundary */
	if (unlikely(instr->addr & (block_size - 1))) {
		DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Unaligned address\n");
		return -EINVAL;
	}

	/* Length must align on block boundary */
	if (unlikely(instr->len & (block_size - 1))) {
		DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Length not block aligned\n");
		return -EINVAL;
	}

	/* Do not allow erase past end of device */
	if (unlikely((instr->len + instr->addr) > mtd->size)) {
		DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Erase past end of device\n");
		return -EINVAL;
	}

	instr->fail_addr = 0xffffffff;

	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_ERASING);

	/* Loop throught the pages */
	len = instr->len;
	addr = instr->addr;

	instr->state = MTD_ERASING;

	while (len) {
1220
		cond_resched();
1221

1222 1223 1224 1225 1226 1227
		/* Check if we have a bad block, we do not erase bad blocks */
		if (onenand_block_checkbad(mtd, addr, 0, 0)) {
			printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%08x\n", (unsigned int) addr);
			instr->state = MTD_ERASE_FAILED;
			goto erase_exit;
		}
1228 1229 1230 1231 1232 1233

		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);

		ret = this->wait(mtd, FL_ERASING);
		/* Check, if it is write protected */
		if (ret) {
1234
			DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Failed erase, block %d\n", (unsigned) (addr >> this->erase_shift));
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
			instr->state = MTD_ERASE_FAILED;
			instr->fail_addr = addr;
			goto erase_exit;
		}

		len -= block_size;
		addr += block_size;
	}

	instr->state = MTD_ERASE_DONE;

erase_exit:

	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
	/* Do call back function */
	if (!ret)
		mtd_erase_callback(instr);

	/* Deselect and wake up anyone waiting on the device */
	onenand_release_device(mtd);

	return ret;
}

/**
 * onenand_sync - [MTD Interface] sync
 * @param mtd		MTD device structure
 *
 * Sync is actually a wait for chip ready function
 */
static void onenand_sync(struct mtd_info *mtd)
{
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");

	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_SYNCING);

	/* Release it and go back */
	onenand_release_device(mtd);
}

/**
 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
1280 1281
 *
 * Check whether the block is bad
1282 1283 1284
 */
static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
{
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	/* Check for invalid offset */
	if (ofs > mtd->size)
		return -EINVAL;

	return onenand_block_checkbad(mtd, ofs, 1, 0);
}

/**
 * onenand_default_block_markbad - [DEFAULT] mark a block bad
 * @param mtd		MTD device structure
 * @param ofs		offset from device start
 *
 * This is the default implementation, which can be overridden by
 * a hardware specific driver.
 */
static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
	struct onenand_chip *this = mtd->priv;
	struct bbm_info *bbm = this->bbm;
	u_char buf[2] = {0, 0};
	size_t retlen;
	int block;

	/* Get block number */
	block = ((int) ofs) >> bbm->bbt_erase_shift;
        if (bbm->bbt)
                bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);

        /* We write two bytes, so we dont have to mess with 16 bit access */
        ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1315
        return onenand_do_write_oob(mtd, ofs , 2, &retlen, buf);
1316 1317 1318 1319 1320 1321
}

/**
 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
1322 1323
 *
 * Mark the block as bad
1324 1325 1326
 */
static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
	struct onenand_chip *this = mtd->priv;
	int ret;

	ret = onenand_block_isbad(mtd, ofs);
	if (ret) {
		/* If it was bad already, return success and do nothing */
		if (ret > 0)
			return 0;
		return ret;
	}

	return this->block_markbad(mtd, ofs);
1339 1340 1341
}

/**
K
Kyungmin Park 已提交
1342
 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1343 1344
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
K
Kyungmin Park 已提交
1345
 * @param len		number of bytes to lock or unlock
1346
 *
K
Kyungmin Park 已提交
1347
 * Lock or unlock one or more blocks
1348
 */
K
Kyungmin Park 已提交
1349
static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1350 1351 1352
{
	struct onenand_chip *this = mtd->priv;
	int start, end, block, value, status;
K
Kyungmin Park 已提交
1353
	int wp_status_mask;
1354 1355 1356 1357

	start = ofs >> this->erase_shift;
	end = len >> this->erase_shift;

K
Kyungmin Park 已提交
1358 1359 1360 1361 1362
	if (cmd == ONENAND_CMD_LOCK)
		wp_status_mask = ONENAND_WP_LS;
	else
		wp_status_mask = ONENAND_WP_US;

1363
	/* Continuous lock scheme */
1364
	if (this->options & ONENAND_HAS_CONT_LOCK) {
1365 1366 1367
		/* Set start block address */
		this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
		/* Set end block address */
1368
		this->write_word(start + end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
K
Kyungmin Park 已提交
1369 1370
		/* Write lock command */
		this->command(mtd, cmd, 0, 0);
1371 1372

		/* There's no return value */
K
Kyungmin Park 已提交
1373
		this->wait(mtd, FL_LOCKING);
1374 1375 1376 1377 1378 1379 1380 1381

		/* Sanity check */
		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
		    & ONENAND_CTRL_ONGO)
			continue;

		/* Check lock status */
		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
K
Kyungmin Park 已提交
1382
		if (!(status & wp_status_mask))
1383 1384 1385 1386 1387 1388
			printk(KERN_ERR "wp status = 0x%x\n", status);

		return 0;
	}

	/* Block lock scheme */
1389
	for (block = start; block < start + end; block++) {
1390 1391 1392 1393 1394 1395
		/* Set block address */
		value = onenand_block_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
		/* Select DataRAM for DDP */
		value = onenand_bufferram_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1396 1397
		/* Set start block address */
		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
K
Kyungmin Park 已提交
1398 1399
		/* Write lock command */
		this->command(mtd, cmd, 0, 0);
1400 1401

		/* There's no return value */
K
Kyungmin Park 已提交
1402
		this->wait(mtd, FL_LOCKING);
1403 1404 1405 1406 1407 1408 1409 1410

		/* Sanity check */
		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
		    & ONENAND_CTRL_ONGO)
			continue;

		/* Check lock status */
		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
K
Kyungmin Park 已提交
1411
		if (!(status & wp_status_mask))
1412 1413
			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
	}
1414

1415 1416 1417
	return 0;
}

K
Kyungmin Park 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
/**
 * onenand_lock - [MTD Interface] Lock block(s)
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
 * @param len		number of bytes to unlock
 *
 * Lock one or more blocks
 */
static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
{
	return onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
}

/**
 * onenand_unlock - [MTD Interface] Unlock block(s)
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
 * @param len		number of bytes to unlock
 *
 * Unlock one or more blocks
 */
static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
{
	return onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
}

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
/**
 * onenand_check_lock_status - [OneNAND Interface] Check lock status
 * @param this		onenand chip data structure
 *
 * Check lock status
 */
static void onenand_check_lock_status(struct onenand_chip *this)
{
	unsigned int value, block, status;
	unsigned int end;

	end = this->chipsize >> this->erase_shift;
	for (block = 0; block < end; block++) {
		/* Set block address */
		value = onenand_block_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
		/* Select DataRAM for DDP */
		value = onenand_bufferram_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
		/* Set start block address */
		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);

		/* Check lock status */
		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
		if (!(status & ONENAND_WP_US))
			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
	}
}

/**
 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
 * @param mtd		MTD device structure
 *
 * Unlock all blocks
 */
static int onenand_unlock_all(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;

	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
1484 1485
		/* Set start block address */
		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1486 1487 1488 1489
		/* Write unlock command */
		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);

		/* There's no return value */
K
Kyungmin Park 已提交
1490
		this->wait(mtd, FL_LOCKING);
1491 1492 1493 1494 1495 1496 1497

		/* Sanity check */
		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
		    & ONENAND_CTRL_ONGO)
			continue;

		/* Workaround for all block unlock in DDP */
1498
		if (ONENAND_IS_DDP(this)) {
1499
			/* 1st block on another chip */
1500 1501
			loff_t ofs = this->chipsize >> 1;
			size_t len = mtd->erasesize;
1502 1503 1504 1505 1506 1507 1508 1509 1510

			onenand_unlock(mtd, ofs, len);
		}

		onenand_check_lock_status(this);

		return 0;
	}

K
Kyungmin Park 已提交
1511
	onenand_unlock(mtd, 0x0, this->chipsize);
1512 1513 1514 1515

	return 0;
}

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
#ifdef CONFIG_MTD_ONENAND_OTP

/* Interal OTP operation */
typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
		size_t *retlen, u_char *buf);

/**
 * do_otp_read - [DEFAULT] Read OTP block area
 * @param mtd		MTD device structure
 * @param from		The offset to read
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of readbytes
 * @param buf		the databuffer to put/get data
 *
 * Read OTP block area.
 */
static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
		size_t *retlen, u_char *buf)
{
	struct onenand_chip *this = mtd->priv;
	int ret;

	/* Enter OTP access mode */
	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
	this->wait(mtd, FL_OTPING);

	ret = mtd->read(mtd, from, len, retlen, buf);

	/* Exit OTP access mode */
	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
	this->wait(mtd, FL_RESETING);

	return ret;
}

/**
 * do_otp_write - [DEFAULT] Write OTP block area
 * @param mtd		MTD device structure
 * @param from		The offset to write
 * @param len		number of bytes to write
 * @param retlen	pointer to variable to store the number of write bytes
 * @param buf		the databuffer to put/get data
 *
 * Write OTP block area.
 */
static int do_otp_write(struct mtd_info *mtd, loff_t from, size_t len,
		size_t *retlen, u_char *buf)
{
	struct onenand_chip *this = mtd->priv;
	unsigned char *pbuf = buf;
	int ret;

	/* Force buffer page aligned */
J
Joern Engel 已提交
1569
	if (len < mtd->writesize) {
1570
		memcpy(this->page_buf, buf, len);
J
Joern Engel 已提交
1571
		memset(this->page_buf + len, 0xff, mtd->writesize - len);
1572
		pbuf = this->page_buf;
J
Joern Engel 已提交
1573
		len = mtd->writesize;
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	}

	/* Enter OTP access mode */
	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
	this->wait(mtd, FL_OTPING);

	ret = mtd->write(mtd, from, len, retlen, pbuf);

	/* Exit OTP access mode */
	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
	this->wait(mtd, FL_RESETING);

	return ret;
}

/**
 * do_otp_lock - [DEFAULT] Lock OTP block area
 * @param mtd		MTD device structure
 * @param from		The offset to lock
 * @param len		number of bytes to lock
 * @param retlen	pointer to variable to store the number of lock bytes
 * @param buf		the databuffer to put/get data
 *
 * Lock OTP block area.
 */
static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
		size_t *retlen, u_char *buf)
{
	struct onenand_chip *this = mtd->priv;
	int ret;

	/* Enter OTP access mode */
	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
	this->wait(mtd, FL_OTPING);

1609
	ret = onenand_do_write_oob(mtd, from, len, retlen, buf);
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

	/* Exit OTP access mode */
	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
	this->wait(mtd, FL_RESETING);

	return ret;
}

/**
 * onenand_otp_walk - [DEFAULT] Handle OTP operation
 * @param mtd		MTD device structure
 * @param from		The offset to read/write
 * @param len		number of bytes to read/write
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put/get data
 * @param action	do given action
 * @param mode		specify user and factory
 *
 * Handle OTP operation.
 */
static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
			size_t *retlen, u_char *buf,
			otp_op_t action, int mode)
{
	struct onenand_chip *this = mtd->priv;
	int otp_pages;
	int density;
	int ret = 0;

	*retlen = 0;

	density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
	if (density < ONENAND_DEVICE_DENSITY_512Mb)
		otp_pages = 20;
	else
		otp_pages = 10;

	if (mode == MTD_OTP_FACTORY) {
J
Joern Engel 已提交
1648
		from += mtd->writesize * otp_pages;
1649 1650 1651 1652
		otp_pages = 64 - otp_pages;
	}

	/* Check User/Factory boundary */
J
Joern Engel 已提交
1653
	if (((mtd->writesize * otp_pages) - (from + len)) < 0)
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
		return 0;

	while (len > 0 && otp_pages > 0) {
		if (!action) {	/* OTP Info functions */
			struct otp_info *otpinfo;

			len -= sizeof(struct otp_info);
			if (len <= 0)
				return -ENOSPC;

			otpinfo = (struct otp_info *) buf;
			otpinfo->start = from;
J
Joern Engel 已提交
1666
			otpinfo->length = mtd->writesize;
1667 1668
			otpinfo->locked = 0;

J
Joern Engel 已提交
1669
			from += mtd->writesize;
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
			buf += sizeof(struct otp_info);
			*retlen += sizeof(struct otp_info);
		} else {
			size_t tmp_retlen;
			int size = len;

			ret = action(mtd, from, len, &tmp_retlen, buf);

			buf += size;
			len -= size;
			*retlen += size;

			if (ret < 0)
				return ret;
		}
		otp_pages--;
	}

	return 0;
}

/**
 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
 * @param mtd		MTD device structure
 * @param buf		the databuffer to put/get data
 * @param len		number of bytes to read
 *
 * Read factory OTP info.
 */
static int onenand_get_fact_prot_info(struct mtd_info *mtd,
			struct otp_info *buf, size_t len)
{
	size_t retlen;
	int ret;

	ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);

	return ret ? : retlen;
}

/**
 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
 * @param mtd		MTD device structure
 * @param from		The offset to read
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put/get data
 *
 * Read factory OTP area.
 */
static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
			size_t len, size_t *retlen, u_char *buf)
{
	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
}

/**
 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
 * @param mtd		MTD device structure
 * @param buf		the databuffer to put/get data
 * @param len		number of bytes to read
 *
 * Read user OTP info.
 */
static int onenand_get_user_prot_info(struct mtd_info *mtd,
			struct otp_info *buf, size_t len)
{
	size_t retlen;
	int ret;

	ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);

	return ret ? : retlen;
}

/**
 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
 * @param mtd		MTD device structure
 * @param from		The offset to read
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put/get data
 *
 * Read user OTP area.
 */
static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
			size_t len, size_t *retlen, u_char *buf)
{
	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
}

/**
 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
 * @param mtd		MTD device structure
 * @param from		The offset to write
 * @param len		number of bytes to write
 * @param retlen	pointer to variable to store the number of write bytes
 * @param buf		the databuffer to put/get data
 *
 * Write user OTP area.
 */
static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
			size_t len, size_t *retlen, u_char *buf)
{
	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
}

/**
 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
 * @param mtd		MTD device structure
 * @param from		The offset to lock
 * @param len		number of bytes to unlock
 *
 * Write lock mark on spare area in page 0 in OTP block
 */
static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
			size_t len)
{
	unsigned char oob_buf[64];
	size_t retlen;
	int ret;

	memset(oob_buf, 0xff, mtd->oobsize);
	/*
	 * Note: OTP lock operation
	 *       OTP block : 0xXXFC
	 *       1st block : 0xXXF3 (If chip support)
	 *       Both      : 0xXXF0 (If chip support)
	 */
	oob_buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;

	/*
	 * Write lock mark to 8th word of sector0 of page0 of the spare0.
	 * We write 16 bytes spare area instead of 2 bytes.
	 */
	from = 0;
	len = 16;

	ret = onenand_otp_walk(mtd, from, len, &retlen, oob_buf, do_otp_lock, MTD_OTP_USER);

	return ret ? : retlen;
}
#endif	/* CONFIG_MTD_ONENAND_OTP */

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
/**
 * onenand_lock_scheme - Check and set OneNAND lock scheme
 * @param mtd		MTD data structure
 *
 * Check and set OneNAND lock scheme
 */
static void onenand_lock_scheme(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;
	unsigned int density, process;

	/* Lock scheme depends on density and process */
	density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;

	/* Lock scheme */
	if (density >= ONENAND_DEVICE_DENSITY_1Gb) {
		/* A-Die has all block unlock */
		if (process) {
			printk(KERN_DEBUG "Chip support all block unlock\n");
			this->options |= ONENAND_HAS_UNLOCK_ALL;
		}
	} else {
		/* Some OneNAND has continues lock scheme */
		if (!process) {
			printk(KERN_DEBUG "Lock scheme is Continues Lock\n");
			this->options |= ONENAND_HAS_CONT_LOCK;
		}
	}
}

1845 1846 1847 1848 1849 1850
/**
 * onenand_print_device_info - Print device ID
 * @param device        device ID
 *
 * Print device ID
 */
1851
static void onenand_print_device_info(int device, int version)
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
{
        int vcc, demuxed, ddp, density;

        vcc = device & ONENAND_DEVICE_VCC_MASK;
        demuxed = device & ONENAND_DEVICE_IS_DEMUX;
        ddp = device & ONENAND_DEVICE_IS_DDP;
        density = device >> ONENAND_DEVICE_DENSITY_SHIFT;
        printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
                demuxed ? "" : "Muxed ",
                ddp ? "(DDP)" : "",
                (16 << density),
                vcc ? "2.65/3.3" : "1.8",
                device);
1865
	printk(KERN_DEBUG "OneNAND version = 0x%04x\n", version);
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
}

static const struct onenand_manufacturers onenand_manuf_ids[] = {
        {ONENAND_MFR_SAMSUNG, "Samsung"},
};

/**
 * onenand_check_maf - Check manufacturer ID
 * @param manuf         manufacturer ID
 *
 * Check manufacturer ID
 */
static int onenand_check_maf(int manuf)
{
1880 1881
	int size = ARRAY_SIZE(onenand_manuf_ids);
	char *name;
1882 1883
        int i;

1884
	for (i = 0; i < size; i++)
1885 1886 1887
                if (manuf == onenand_manuf_ids[i].id)
                        break;

1888 1889 1890 1891 1892 1893
	if (i < size)
		name = onenand_manuf_ids[i].name;
	else
		name = "Unknown";

	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
1894

1895
	return (i == size);
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
}

/**
 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
 * @param mtd		MTD device structure
 *
 * OneNAND detection method:
 *   Compare the the values from command with ones from register
 */
static int onenand_probe(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;
1908
	int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
1909
	int density;
K
Kyungmin Park 已提交
1910 1911 1912 1913 1914 1915
	int syscfg;

	/* Save system configuration 1 */
	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
	/* Clear Sync. Burst Read mode to read BootRAM */
	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ), this->base + ONENAND_REG_SYS_CFG1);
1916 1917 1918 1919 1920 1921 1922 1923

	/* Send the command for reading device ID from BootRAM */
	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);

	/* Read manufacturer and device IDs from BootRAM */
	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);

K
Kyungmin Park 已提交
1924 1925 1926 1927 1928 1929 1930 1931
	/* Reset OneNAND to read default register values */
	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
	/* Wait reset */
	this->wait(mtd, FL_RESETING);

	/* Restore system configuration 1 */
	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);

1932 1933 1934 1935 1936 1937 1938
	/* Check manufacturer ID */
	if (onenand_check_maf(bram_maf_id))
		return -ENXIO;

	/* Read manufacturer and device IDs from Register */
	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
1939
	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
1940 1941 1942 1943 1944 1945

	/* Check OneNAND device */
	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
		return -ENXIO;

	/* Flash device information */
1946
	onenand_print_device_info(dev_id, ver_id);
1947
	this->device_id = dev_id;
1948
	this->version_id = ver_id;
1949 1950 1951

	density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
	this->chipsize = (16 << density) << 20;
1952
	/* Set density mask. it is used for DDP */
1953 1954 1955 1956
	if (ONENAND_IS_DDP(this))
		this->density_mask = (1 << (density + 6));
	else
		this->density_mask = 0;
1957 1958 1959

	/* OneNAND page size & block size */
	/* The data buffer size is equal to page size */
J
Joern Engel 已提交
1960 1961
	mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
	mtd->oobsize = mtd->writesize >> 5;
1962
	/* Pagers per block is always 64 in OneNAND */
J
Joern Engel 已提交
1963
	mtd->erasesize = mtd->writesize << 6;
1964 1965

	this->erase_shift = ffs(mtd->erasesize) - 1;
J
Joern Engel 已提交
1966
	this->page_shift = ffs(mtd->writesize) - 1;
1967
	this->ppb_shift = (this->erase_shift - this->page_shift);
J
Joern Engel 已提交
1968
	this->page_mask = (mtd->erasesize / mtd->writesize) - 1;
1969 1970 1971 1972 1973

	/* REVIST: Multichip handling */

	mtd->size = this->chipsize;

1974 1975
	/* Check OneNAND lock scheme */
	onenand_lock_scheme(mtd);
1976

1977 1978 1979
	return 0;
}

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
/**
 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
 * @param mtd		MTD device structure
 */
static int onenand_suspend(struct mtd_info *mtd)
{
	return onenand_get_device(mtd, FL_PM_SUSPENDED);
}

/**
 * onenand_resume - [MTD Interface] Resume the OneNAND flash
 * @param mtd		MTD device structure
 */
static void onenand_resume(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;

	if (this->state == FL_PM_SUSPENDED)
		onenand_release_device(mtd);
	else
		printk(KERN_ERR "resume() called for the chip which is not"
				"in suspended state\n");
}

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
/**
 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
 * @param mtd		MTD device structure
 * @param maxchips	Number of chips to scan for
 *
 * This fills out all the not initialized function pointers
 * with the defaults.
 * The flash ID is read and the mtd/chip structures are
 * filled with the appropriate values.
 */
int onenand_scan(struct mtd_info *mtd, int maxchips)
{
	struct onenand_chip *this = mtd->priv;

	if (!this->read_word)
		this->read_word = onenand_readw;
	if (!this->write_word)
		this->write_word = onenand_writew;

	if (!this->command)
		this->command = onenand_command;
	if (!this->wait)
2026
		onenand_setup_wait(mtd);
2027 2028 2029 2030 2031 2032

	if (!this->read_bufferram)
		this->read_bufferram = onenand_read_bufferram;
	if (!this->write_bufferram)
		this->write_bufferram = onenand_write_bufferram;

2033 2034 2035 2036 2037
	if (!this->block_markbad)
		this->block_markbad = onenand_default_block_markbad;
	if (!this->scan_bbt)
		this->scan_bbt = onenand_default_bbt;

2038 2039 2040
	if (onenand_probe(mtd))
		return -ENXIO;

2041 2042 2043 2044 2045 2046
	/* Set Sync. Burst Read after probing */
	if (this->mmcontrol) {
		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
		this->read_bufferram = onenand_sync_read_bufferram;
	}

2047 2048 2049
	/* Allocate buffers, if necessary */
	if (!this->page_buf) {
		size_t len;
J
Joern Engel 已提交
2050
		len = mtd->writesize + mtd->oobsize;
2051 2052 2053 2054 2055 2056 2057 2058
		this->page_buf = kmalloc(len, GFP_KERNEL);
		if (!this->page_buf) {
			printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
			return -ENOMEM;
		}
		this->options |= ONENAND_PAGEBUF_ALLOC;
	}

2059 2060 2061 2062
	this->state = FL_READY;
	init_waitqueue_head(&this->wq);
	spin_lock_init(&this->chip_lock);

2063 2064 2065
	/*
	 * Allow subpage writes up to oobsize.
	 */
2066 2067
	switch (mtd->oobsize) {
	case 64:
2068
		this->ecclayout = &onenand_oob_64;
2069
		mtd->subpage_sft = 2;
2070 2071 2072
		break;

	case 32:
2073
		this->ecclayout = &onenand_oob_32;
2074
		mtd->subpage_sft = 1;
2075 2076 2077 2078 2079
		break;

	default:
		printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
			mtd->oobsize);
2080
		mtd->subpage_sft = 0;
2081
		/* To prevent kernel oops */
2082
		this->ecclayout = &onenand_oob_32;
2083 2084 2085
		break;
	}

2086
	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2087
	mtd->ecclayout = this->ecclayout;
2088

2089 2090
	/* Fill in remaining MTD driver data */
	mtd->type = MTD_NANDFLASH;
J
Joern Engel 已提交
2091
	mtd->flags = MTD_CAP_NANDFLASH;
2092 2093 2094 2095 2096 2097 2098 2099
	mtd->ecctype = MTD_ECC_SW;
	mtd->erase = onenand_erase;
	mtd->point = NULL;
	mtd->unpoint = NULL;
	mtd->read = onenand_read;
	mtd->write = onenand_write;
	mtd->read_oob = onenand_read_oob;
	mtd->write_oob = onenand_write_oob;
2100 2101 2102 2103 2104 2105 2106 2107
#ifdef CONFIG_MTD_ONENAND_OTP
	mtd->get_fact_prot_info = onenand_get_fact_prot_info;
	mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
	mtd->get_user_prot_info = onenand_get_user_prot_info;
	mtd->read_user_prot_reg = onenand_read_user_prot_reg;
	mtd->write_user_prot_reg = onenand_write_user_prot_reg;
	mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
#endif
2108
	mtd->sync = onenand_sync;
K
Kyungmin Park 已提交
2109
	mtd->lock = onenand_lock;
2110
	mtd->unlock = onenand_unlock;
2111 2112
	mtd->suspend = onenand_suspend;
	mtd->resume = onenand_resume;
2113 2114 2115 2116 2117
	mtd->block_isbad = onenand_block_isbad;
	mtd->block_markbad = onenand_block_markbad;
	mtd->owner = THIS_MODULE;

	/* Unlock whole block */
2118
	onenand_unlock_all(mtd);
2119

2120
	return this->scan_bbt(mtd);
2121 2122 2123 2124 2125 2126 2127 2128
}

/**
 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
 * @param mtd		MTD device structure
 */
void onenand_release(struct mtd_info *mtd)
{
2129 2130
	struct onenand_chip *this = mtd->priv;

2131 2132 2133 2134 2135 2136
#ifdef CONFIG_MTD_PARTITIONS
	/* Deregister partitions */
	del_mtd_partitions (mtd);
#endif
	/* Deregister the device */
	del_mtd_device (mtd);
2137 2138 2139 2140 2141 2142 2143

	/* Free bad block table memory, if allocated */
	if (this->bbm)
		kfree(this->bbm);
	/* Buffer allocated by onenand_scan */
	if (this->options & ONENAND_PAGEBUF_ALLOC)
		kfree(this->page_buf);
2144 2145 2146 2147 2148 2149 2150 2151
}

EXPORT_SYMBOL_GPL(onenand_scan);
EXPORT_SYMBOL_GPL(onenand_release);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
MODULE_DESCRIPTION("Generic OneNAND flash driver code");