utility.py 12.9 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os, sys
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from paddle.fluid.core import PaddleTensor
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import create_paddle_predictor
import cv2
import numpy as np
L
LDOUBLEV 已提交
24 25
import json
from PIL import Image, ImageDraw, ImageFont
26
import math
L
LDOUBLEV 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48


def parse_args():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    #params for prediction engine
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
    parser.add_argument("--gpu_mem", type=int, default=8000)

    #params for text detector
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
    parser.add_argument("--det_max_side_len", type=float, default=960)

    #DB parmas
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
49
    parser.add_argument("--det_db_unclip_ratio", type=float, default=2.0)
L
LDOUBLEV 已提交
50 51 52 53 54 55

    #EAST parmas
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

L
licx 已提交
56 57 58
    #SAST parmas
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
59
    parser.add_argument("--det_sast_polygon", type=bool, default=False)
L
licx 已提交
60

L
LDOUBLEV 已提交
61
    #params for text recognizer
T
tink2123 已提交
62
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
L
LDOUBLEV 已提交
63
    parser.add_argument("--rec_model_dir", type=str)
T
tink2123 已提交
64 65
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
66
    parser.add_argument("--rec_batch_num", type=int, default=30)
T
fix bug  
tink2123 已提交
67
    parser.add_argument("--max_text_length", type=int, default=25)
L
LDOUBLEV 已提交
68 69 70 71
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
T
tink2123 已提交
72
    parser.add_argument("--use_space_char", type=bool, default=True)
D
dyning 已提交
73
    parser.add_argument("--enable_mkldnn", type=bool, default=False)
littletomatodonkey's avatar
littletomatodonkey 已提交
74
    parser.add_argument("--use_zero_copy_run", type=bool, default=False)
L
LDOUBLEV 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    return parser.parse_args()


def create_predictor(args, mode):
    if mode == "det":
        model_dir = args.det_model_dir
    else:
        model_dir = args.rec_model_dir

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
    model_file_path = model_dir + "/model"
    params_file_path = model_dir + "/params"
    if not os.path.exists(model_file_path):
        logger.info("not find model file path {}".format(model_file_path))
        sys.exit(0)
    if not os.path.exists(params_file_path):
        logger.info("not find params file path {}".format(params_file_path))
        sys.exit(0)

    config = AnalysisConfig(model_file_path, params_file_path)

    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
    else:
        config.disable_gpu()
D
dyning 已提交
102 103
        config.set_cpu_math_library_num_threads(6)
        if args.enable_mkldnn:
littletomatodonkey's avatar
littletomatodonkey 已提交
104
            config.set_mkldnn_cache_capacity(10)
D
dyning 已提交
105
            config.enable_mkldnn()
L
LDOUBLEV 已提交
106

T
tink2123 已提交
107
    #config.enable_memory_optim()
L
LDOUBLEV 已提交
108
    config.disable_glog_info()
L
LDOUBLEV 已提交
109

littletomatodonkey's avatar
littletomatodonkey 已提交
110 111 112 113 114 115
    if args.use_zero_copy_run:
        config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
        config.switch_use_feed_fetch_ops(False)
    else:
        config.switch_use_feed_fetch_ops(True)

L
LDOUBLEV 已提交
116 117
    predictor = create_paddle_predictor(config)
    input_names = predictor.get_input_names()
T
tink2123 已提交
118 119
    for name in input_names:
        input_tensor = predictor.get_input_tensor(name)
L
LDOUBLEV 已提交
120 121 122 123 124 125 126 127
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
        output_tensor = predictor.get_output_tensor(output_name)
        output_tensors.append(output_tensor)
    return predictor, input_tensor, output_tensors


L
LDOUBLEV 已提交
128
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
129 130 131 132
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
133
    return src_im
L
LDOUBLEV 已提交
134 135


L
LDOUBLEV 已提交
136 137
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
138
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
139 140 141 142 143 144 145 146 147
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
    im = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return im


W
WenmuZhou 已提交
148 149 150 151 152 153
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
             font_path="./doc/simfang.ttf"):
154 155 156
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
157
        image(Image|array): RGB image
158 159 160 161
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
W
WenmuZhou 已提交
162
        font_path: the path of font which is used to draw text
163 164 165
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
166 167
    if scores is None:
        scores = [1] * len(boxes)
W
WenmuZhou 已提交
168 169 170 171
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
L
LDOUBLEV 已提交
172
            continue
W
WenmuZhou 已提交
173
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
174
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
W
WenmuZhou 已提交
175
    if txts is not None:
L
LDOUBLEV 已提交
176
        img = np.array(resize_img(image, input_size=600))
177
        txt_img = text_visual(
W
WenmuZhou 已提交
178 179 180 181 182 183
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
184
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
185 186
        return img
    return image
187 188


189 190 191 192
def draw_ocr_box_txt(image, boxes, txts):
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
193 194

    import random
L
LDOUBLEV 已提交
195

196 197 198
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
199
    for (box, txt) in zip(boxes, txts):
T
tink2123 已提交
200 201
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
202
        draw_left.polygon(box, fill=color)
T
tink2123 已提交
203 204 205 206 207 208 209 210 211 212
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
213 214
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
T
tink2123 已提交
215 216
            font = ImageFont.truetype(
                "./doc/simfang.ttf", font_size, encoding="utf-8")
217 218 219
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
T
tink2123 已提交
220 221
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
222 223 224
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
T
tink2123 已提交
225 226 227 228
            font = ImageFont.truetype(
                "./doc/simfang.ttf", font_size, encoding="utf-8")
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
229 230 231 232
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
233 234 235
    return np.array(img_show)


236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.

    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


W
WenmuZhou 已提交
261 262 263 264 265 266
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
267 268 269 270 271 272 273
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
W
WenmuZhou 已提交
274
        font_path: the path of font which is used to draw text
275 276 277 278 279 280 281 282 283 284
    return(array):

    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
285 286
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
287
        return blank_img, draw_txt
L
LDOUBLEV 已提交
288

289 290 291 292
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
W
WenmuZhou 已提交
293
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
294 295 296

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
297
    count, index = 1, 0
298 299
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
300
        if scores[idx] < threshold or math.isnan(scores[idx]):
301 302 303 304 305 306 307 308 309 310 311
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
312
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
313 314 315 316 317
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
318
            count += 1
319 320 321
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
322
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
323
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
324
        # whether add new blank img or not
L
LDOUBLEV 已提交
325
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
326 327 328
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
329
        count += 1
330 331 332 333 334 335
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
336 337


D
dyning 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


L
LDOUBLEV 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
if __name__ == '__main__':
    test_img = "./doc/test_v2"
    predict_txt = "./doc/predict.txt"
    f = open(predict_txt, 'r')
    data = f.readlines()
    img_path, anno = data[0].strip().split('\t')
    img_name = os.path.basename(img_path)
    img_path = os.path.join(test_img, img_name)
    image = Image.open(img_path)

    data = json.loads(anno)
    boxes, txts, scores = [], [], []
    for dic in data:
        boxes.append(dic['points'])
        txts.append(dic['transcription'])
        scores.append(round(dic['scores'], 3))

W
WenmuZhou 已提交
374
    new_img = draw_ocr(image, boxes, txts, scores)
L
LDOUBLEV 已提交
375

M
MissPenguin 已提交
376
    cv2.imwrite(img_name, new_img)