utility.py 12.4 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os, sys
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from paddle.fluid.core import PaddleTensor
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import create_paddle_predictor
import cv2
import numpy as np
L
LDOUBLEV 已提交
24 25
import json
from PIL import Image, ImageDraw, ImageFont
26
import math
L
LDOUBLEV 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48


def parse_args():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    #params for prediction engine
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
    parser.add_argument("--gpu_mem", type=int, default=8000)

    #params for text detector
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
    parser.add_argument("--det_max_side_len", type=float, default=960)

    #DB parmas
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
49
    parser.add_argument("--det_db_unclip_ratio", type=float, default=2.0)
L
LDOUBLEV 已提交
50 51 52 53 54 55

    #EAST parmas
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

L
licx 已提交
56 57 58
    #SAST parmas
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
59
    parser.add_argument("--det_sast_polygon", type=bool, default=False)
L
licx 已提交
60

L
LDOUBLEV 已提交
61
    #params for text recognizer
T
tink2123 已提交
62
    parser.add_argument("--rec_algorithm", type=str, default='SRN')
L
LDOUBLEV 已提交
63
    parser.add_argument("--rec_model_dir", type=str)
T
tink2123 已提交
64 65
    parser.add_argument("--rec_image_shape", type=str, default="3, 64, 256")
    parser.add_argument("--rec_char_type", type=str, default='en')
66
    parser.add_argument("--rec_batch_num", type=int, default=30)
T
fix bug  
tink2123 已提交
67
    parser.add_argument("--max_text_length", type=int, default=25)
L
LDOUBLEV 已提交
68 69 70 71
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
T
tink2123 已提交
72
    parser.add_argument("--use_space_char", type=bool, default=True)
D
dyning 已提交
73
    parser.add_argument("--enable_mkldnn", type=bool, default=False)
L
LDOUBLEV 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    return parser.parse_args()


def create_predictor(args, mode):
    if mode == "det":
        model_dir = args.det_model_dir
    else:
        model_dir = args.rec_model_dir

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
    model_file_path = model_dir + "/model"
    params_file_path = model_dir + "/params"
    if not os.path.exists(model_file_path):
        logger.info("not find model file path {}".format(model_file_path))
        sys.exit(0)
    if not os.path.exists(params_file_path):
        logger.info("not find params file path {}".format(params_file_path))
        sys.exit(0)

    config = AnalysisConfig(model_file_path, params_file_path)

    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
    else:
        config.disable_gpu()
D
dyning 已提交
101 102 103
        config.set_cpu_math_library_num_threads(6)
        if args.enable_mkldnn:
            config.enable_mkldnn()
L
LDOUBLEV 已提交
104

T
tink2123 已提交
105
    #config.enable_memory_optim()
L
LDOUBLEV 已提交
106
    config.disable_glog_info()
L
LDOUBLEV 已提交
107

L
LDOUBLEV 已提交
108
    # use zero copy
109
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
T
tink2123 已提交
110 111
    #config.switch_use_feed_fetch_ops(False)
    config.switch_use_feed_fetch_ops(True)
L
LDOUBLEV 已提交
112 113
    predictor = create_paddle_predictor(config)
    input_names = predictor.get_input_names()
T
tink2123 已提交
114 115 116
    print(input_names)
    for name in input_names:
        input_tensor = predictor.get_input_tensor(name)
L
LDOUBLEV 已提交
117 118 119 120 121 122 123 124
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
        output_tensor = predictor.get_output_tensor(output_name)
        output_tensors.append(output_tensor)
    return predictor, input_tensor, output_tensors


L
LDOUBLEV 已提交
125
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
126 127 128 129
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
130
    return src_im
L
LDOUBLEV 已提交
131 132


L
LDOUBLEV 已提交
133 134
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
135
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
136 137 138 139 140 141 142 143 144 145
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
    im = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return im


def draw_ocr(image, boxes, txts, scores, draw_txt=True, drop_score=0.5):
146 147 148
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
149
        image(Image|array): RGB image
150 151 152 153 154 155 156 157
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        draw_txt(bool): whether draw text or not
        drop_score(float): only scores greater than drop_threshold will be visualized
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
158 159
    if scores is None:
        scores = [1] * len(boxes)
L
LDOUBLEV 已提交
160
    for (box, score) in zip(boxes, scores):
L
LDOUBLEV 已提交
161
        if score < drop_score or math.isnan(score):
L
LDOUBLEV 已提交
162
            continue
L
LDOUBLEV 已提交
163
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
164
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
L
LDOUBLEV 已提交
165 166

    if draw_txt:
L
LDOUBLEV 已提交
167
        img = np.array(resize_img(image, input_size=600))
168 169 170
        txt_img = text_visual(
            txts, scores, img_h=img.shape[0], img_w=600, threshold=drop_score)
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
171 172
        return img
    return image
173 174


175 176 177 178
def draw_ocr_box_txt(image, boxes, txts):
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
179 180

    import random
L
LDOUBLEV 已提交
181

182 183 184
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
185
    for (box, txt) in zip(boxes, txts):
T
tink2123 已提交
186 187
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
188
        draw_left.polygon(box, fill=color)
T
tink2123 已提交
189 190 191 192 193 194 195 196 197 198
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
199 200
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
T
tink2123 已提交
201 202
            font = ImageFont.truetype(
                "./doc/simfang.ttf", font_size, encoding="utf-8")
203 204 205
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
T
tink2123 已提交
206 207
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
208 209 210
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
T
tink2123 已提交
211 212 213 214
            font = ImageFont.truetype(
                "./doc/simfang.ttf", font_size, encoding="utf-8")
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
215 216 217 218
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
219 220 221
    return np.array(img_show)


222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.

    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


def text_visual(texts, scores, img_h=400, img_w=600, threshold=0.):
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
    return(array):

    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
265 266
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
267
        return blank_img, draw_txt
L
LDOUBLEV 已提交
268

269 270 271 272
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
273
    font = ImageFont.truetype("./doc/simfang.ttf", font_size, encoding="utf-8")
274 275 276

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
277
    count, index = 1, 0
278 279
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
280
        if scores[idx] < threshold or math.isnan(scores[idx]):
281 282 283 284 285 286 287 288 289 290 291
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
292
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
293 294 295 296 297
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
298
            count += 1
299 300 301
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
302
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
303
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
304
        # whether add new blank img or not
L
LDOUBLEV 已提交
305
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
306 307 308
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
309
        count += 1
310 311 312 313 314 315
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
316 317


D
dyning 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


L
LDOUBLEV 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
if __name__ == '__main__':
    test_img = "./doc/test_v2"
    predict_txt = "./doc/predict.txt"
    f = open(predict_txt, 'r')
    data = f.readlines()
    img_path, anno = data[0].strip().split('\t')
    img_name = os.path.basename(img_path)
    img_path = os.path.join(test_img, img_name)
    image = Image.open(img_path)

    data = json.loads(anno)
    boxes, txts, scores = [], [], []
    for dic in data:
        boxes.append(dic['points'])
        txts.append(dic['transcription'])
        scores.append(round(dic['scores'], 3))

    new_img = draw_ocr(image, boxes, txts, scores, draw_txt=True)

M
MissPenguin 已提交
356
    cv2.imwrite(img_name, new_img)