utility.py 12.2 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os, sys
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from paddle.fluid.core import PaddleTensor
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import create_paddle_predictor
import cv2
import numpy as np
L
LDOUBLEV 已提交
24 25
import json
from PIL import Image, ImageDraw, ImageFont
26
import math
L
LDOUBLEV 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48


def parse_args():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    #params for prediction engine
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
    parser.add_argument("--gpu_mem", type=int, default=8000)

    #params for text detector
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
    parser.add_argument("--det_max_side_len", type=float, default=960)

    #DB parmas
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
49
    parser.add_argument("--det_db_unclip_ratio", type=float, default=2.0)
L
LDOUBLEV 已提交
50 51 52 53 54 55

    #EAST parmas
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

L
licx 已提交
56 57 58
    #SAST parmas
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
59
    parser.add_argument("--det_sast_polygon", type=bool, default=False)
L
licx 已提交
60

L
LDOUBLEV 已提交
61 62 63
    #params for text recognizer
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
T
fix bug  
tink2123 已提交
64 65
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
66
    parser.add_argument("--rec_batch_num", type=int, default=30)
T
fix bug  
tink2123 已提交
67
    parser.add_argument("--max_text_length", type=int, default=25)
L
LDOUBLEV 已提交
68 69 70 71
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
T
tink2123 已提交
72
    parser.add_argument("--use_space_char", type=bool, default=True)
D
dyning 已提交
73
    parser.add_argument("--enable_mkldnn", type=bool, default=False)
L
LDOUBLEV 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    return parser.parse_args()


def create_predictor(args, mode):
    if mode == "det":
        model_dir = args.det_model_dir
    else:
        model_dir = args.rec_model_dir

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
    model_file_path = model_dir + "/model"
    params_file_path = model_dir + "/params"
    if not os.path.exists(model_file_path):
        logger.info("not find model file path {}".format(model_file_path))
        sys.exit(0)
    if not os.path.exists(params_file_path):
        logger.info("not find params file path {}".format(params_file_path))
        sys.exit(0)

    config = AnalysisConfig(model_file_path, params_file_path)

    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
    else:
        config.disable_gpu()
D
dyning 已提交
101 102 103
        config.set_cpu_math_library_num_threads(6)
        if args.enable_mkldnn:
            config.enable_mkldnn()
L
LDOUBLEV 已提交
104

T
tink2123 已提交
105
    #config.enable_memory_optim()
L
LDOUBLEV 已提交
106
    config.disable_glog_info()
L
LDOUBLEV 已提交
107

L
LDOUBLEV 已提交
108
    # use zero copy
109
    config.switch_use_feed_fetch_ops(True)
L
LDOUBLEV 已提交
110 111 112 113 114 115 116 117 118 119 120
    predictor = create_paddle_predictor(config)
    input_names = predictor.get_input_names()
    input_tensor = predictor.get_input_tensor(input_names[0])
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
        output_tensor = predictor.get_output_tensor(output_name)
        output_tensors.append(output_tensor)
    return predictor, input_tensor, output_tensors


L
LDOUBLEV 已提交
121
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
122 123 124 125
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
126
    return src_im
L
LDOUBLEV 已提交
127 128


L
LDOUBLEV 已提交
129 130
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
131
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
132 133 134 135 136 137 138 139 140 141
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
    im = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return im


def draw_ocr(image, boxes, txts, scores, draw_txt=True, drop_score=0.5):
142 143 144
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
145
        image(Image|array): RGB image
146 147 148 149 150 151 152 153
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        draw_txt(bool): whether draw text or not
        drop_score(float): only scores greater than drop_threshold will be visualized
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
154 155
    if scores is None:
        scores = [1] * len(boxes)
L
LDOUBLEV 已提交
156
    for (box, score) in zip(boxes, scores):
L
LDOUBLEV 已提交
157
        if score < drop_score or math.isnan(score):
L
LDOUBLEV 已提交
158
            continue
L
LDOUBLEV 已提交
159
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
160
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
L
LDOUBLEV 已提交
161 162

    if draw_txt:
L
LDOUBLEV 已提交
163
        img = np.array(resize_img(image, input_size=600))
164 165 166
        txt_img = text_visual(
            txts, scores, img_h=img.shape[0], img_w=600, threshold=drop_score)
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
167 168
        return img
    return image
169 170


171 172 173 174
def draw_ocr_box_txt(image, boxes, txts):
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
175 176

    import random
L
LDOUBLEV 已提交
177

178 179 180
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
181
    for (box, txt) in zip(boxes, txts):
T
tink2123 已提交
182 183
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
184
        draw_left.polygon(box, fill=color)
T
tink2123 已提交
185 186 187 188 189 190 191 192 193 194
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
195 196
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
T
tink2123 已提交
197 198
            font = ImageFont.truetype(
                "./doc/simfang.ttf", font_size, encoding="utf-8")
199 200 201
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
T
tink2123 已提交
202 203
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
204 205 206
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
T
tink2123 已提交
207 208 209 210
            font = ImageFont.truetype(
                "./doc/simfang.ttf", font_size, encoding="utf-8")
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
211 212 213 214
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
215 216 217
    return np.array(img_show)


218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.

    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


def text_visual(texts, scores, img_h=400, img_w=600, threshold=0.):
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
    return(array):

    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
261 262
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
263
        return blank_img, draw_txt
L
LDOUBLEV 已提交
264

265 266 267 268
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
269
    font = ImageFont.truetype("./doc/simfang.ttf", font_size, encoding="utf-8")
270 271 272

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
273
    count, index = 1, 0
274 275
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
276
        if scores[idx] < threshold or math.isnan(scores[idx]):
277 278 279 280 281 282 283 284 285 286 287
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
288
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
289 290 291 292 293
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
294
            count += 1
295 296 297
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
298
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
299
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
300
        # whether add new blank img or not
L
LDOUBLEV 已提交
301
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
302 303 304
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
305
        count += 1
306 307 308 309 310 311
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
312 313


D
dyning 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


L
LDOUBLEV 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
if __name__ == '__main__':
    test_img = "./doc/test_v2"
    predict_txt = "./doc/predict.txt"
    f = open(predict_txt, 'r')
    data = f.readlines()
    img_path, anno = data[0].strip().split('\t')
    img_name = os.path.basename(img_path)
    img_path = os.path.join(test_img, img_name)
    image = Image.open(img_path)

    data = json.loads(anno)
    boxes, txts, scores = [], [], []
    for dic in data:
        boxes.append(dic['points'])
        txts.append(dic['transcription'])
        scores.append(round(dic['scores'], 3))

    new_img = draw_ocr(image, boxes, txts, scores, draw_txt=True)

M
MissPenguin 已提交
352
    cv2.imwrite(img_name, new_img)