utility.py 23.7 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
W
WenmuZhou 已提交
16
import os
W
WenmuZhou 已提交
17
import sys
文幕地方's avatar
文幕地方 已提交
18
import platform
L
LDOUBLEV 已提交
19 20
import cv2
import numpy as np
Z
zhoujun 已提交
21
import paddle
L
LDOUBLEV 已提交
22
from PIL import Image, ImageDraw, ImageFont
23
import math
W
WenmuZhou 已提交
24
from paddle import inference
L
LDOUBLEV 已提交
25
import time
张欣-男's avatar
张欣-男 已提交
26
import random
L
LDOUBLEV 已提交
27
from ppocr.utils.logging import get_logger
W
WenmuZhou 已提交
28

L
LDOUBLEV 已提交
29

30 31
def str2bool(v):
    return v.lower() in ("true", "t", "1")
L
LDOUBLEV 已提交
32 33


W
WenmuZhou 已提交
34
def init_args():
L
LDOUBLEV 已提交
35
    parser = argparse.ArgumentParser()
W
WenmuZhou 已提交
36
    # params for prediction engine
L
LDOUBLEV 已提交
37
    parser.add_argument("--use_gpu", type=str2bool, default=True)
X
xiaoting 已提交
38
    parser.add_argument("--use_xpu", type=str2bool, default=False)
39
    parser.add_argument("--use_npu", type=str2bool, default=False)
L
LDOUBLEV 已提交
40 41
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
L
LDOUBLEV 已提交
42
    parser.add_argument("--min_subgraph_size", type=int, default=15)
L
LDOUBLEV 已提交
43
    parser.add_argument("--precision", type=str, default="fp32")
L
LDOUBLEV 已提交
44
    parser.add_argument("--gpu_mem", type=int, default=500)
L
LDOUBLEV 已提交
45

W
WenmuZhou 已提交
46
    # params for text detector
L
LDOUBLEV 已提交
47 48 49
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
W
WenmuZhou 已提交
50 51
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
L
LDOUBLEV 已提交
52

W
WenmuZhou 已提交
53
    # DB parmas
L
LDOUBLEV 已提交
54
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
L
LDOUBLEV 已提交
55 56
    parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
L
LDOUBLEV 已提交
57
    parser.add_argument("--max_batch_size", type=int, default=10)
littletomatodonkey's avatar
littletomatodonkey 已提交
58
    parser.add_argument("--use_dilation", type=str2bool, default=False)
littletomatodonkey's avatar
littletomatodonkey 已提交
59
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
W
WenmuZhou 已提交
60
    # EAST parmas
L
LDOUBLEV 已提交
61 62 63 64
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

W
WenmuZhou 已提交
65
    # SAST parmas
L
licx 已提交
66 67
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
littletomatodonkey's avatar
littletomatodonkey 已提交
68
    parser.add_argument("--det_sast_polygon", type=str2bool, default=False)
L
licx 已提交
69

W
WenmuZhou 已提交
70 71 72 73
    # PSE parmas
    parser.add_argument("--det_pse_thresh", type=float, default=0)
    parser.add_argument("--det_pse_box_thresh", type=float, default=0.85)
    parser.add_argument("--det_pse_min_area", type=float, default=16)
文幕地方's avatar
文幕地方 已提交
74
    parser.add_argument("--det_pse_box_type", type=str, default='quad')
W
WenmuZhou 已提交
75 76
    parser.add_argument("--det_pse_scale", type=int, default=1)

文幕地方's avatar
文幕地方 已提交
77 78 79 80 81 82 83
    # FCE parmas
    parser.add_argument("--scales", type=list, default=[8, 16, 32])
    parser.add_argument("--alpha", type=float, default=1.0)
    parser.add_argument("--beta", type=float, default=1.0)
    parser.add_argument("--fourier_degree", type=int, default=5)
    parser.add_argument("--det_fce_box_type", type=str, default='poly')

W
WenmuZhou 已提交
84
    # params for text recognizer
A
andyjpaddle 已提交
85
    parser.add_argument("--rec_algorithm", type=str, default='SVTR_LCNet')
L
LDOUBLEV 已提交
86
    parser.add_argument("--rec_model_dir", type=str)
T
tink2123 已提交
87
    parser.add_argument("--rec_image_shape", type=str, default="3, 48, 320")
L
LDOUBLEV 已提交
88
    parser.add_argument("--rec_batch_num", type=int, default=6)
T
fix bug  
tink2123 已提交
89
    parser.add_argument("--max_text_length", type=int, default=25)
L
LDOUBLEV 已提交
90 91 92 93
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
W
WenmuZhou 已提交
94 95
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
T
tink2123 已提交
96
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
W
WenmuZhou 已提交
97
    parser.add_argument("--drop_score", type=float, default=0.5)
W
WenmuZhou 已提交
98

J
Jethong 已提交
99 100 101 102 103 104 105 106 107
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
J
Jethong 已提交
108
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
J
Jethong 已提交
109
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
J
Jethong 已提交
110
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
J
Jethong 已提交
111

W
WenmuZhou 已提交
112 113 114 115 116
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
L
LDOUBLEV 已提交
117
    parser.add_argument("--cls_batch_num", type=int, default=6)
W
WenmuZhou 已提交
118 119 120
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
L
LDOUBLEV 已提交
121
    parser.add_argument("--cpu_threads", type=int, default=10)
W
WenmuZhou 已提交
122
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
123 124
    parser.add_argument("--warmup", type=str2bool, default=False)

X
xiaoting 已提交
125 126 127 128 129
    # SR parmas
    parser.add_argument("--sr_model_dir", type=str)
    parser.add_argument("--sr_image_shape", type=str, default="3, 32, 128")
    parser.add_argument("--sr_batch_num", type=int, default=1)

130 131 132 133 134
    #
    parser.add_argument(
        "--draw_img_save_dir", type=str, default="./inference_results")
    parser.add_argument("--save_crop_res", type=str2bool, default=False)
    parser.add_argument("--crop_res_save_dir", type=str, default="./output")
W
WenmuZhou 已提交
135

L
LDOUBLEV 已提交
136
    # multi-process
littletomatodonkey's avatar
littletomatodonkey 已提交
137
    parser.add_argument("--use_mp", type=str2bool, default=False)
138 139
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
W
WenmuZhou 已提交
140

littletomatodonkey's avatar
littletomatodonkey 已提交
141
    parser.add_argument("--benchmark", type=str2bool, default=False)
L
LDOUBLEV 已提交
142
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
D
Double_V 已提交
143

W
WenmuZhou 已提交
144
    parser.add_argument("--show_log", type=str2bool, default=True)
T
tink2123 已提交
145
    parser.add_argument("--use_onnx", type=str2bool, default=False)
W
WenmuZhou 已提交
146
    return parser
W
WenmuZhou 已提交
147

148

149
def parse_args():
W
WenmuZhou 已提交
150
    parser = init_args()
L
LDOUBLEV 已提交
151 152 153
    return parser.parse_args()


W
WenmuZhou 已提交
154 155 156 157 158
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
J
Jethong 已提交
159
    elif mode == 'rec':
W
WenmuZhou 已提交
160
        model_dir = args.rec_model_dir
W
WenmuZhou 已提交
161 162
    elif mode == 'table':
        model_dir = args.table_model_dir
163 164
    elif mode == 'ser':
        model_dir = args.ser_model_dir
文幕地方's avatar
文幕地方 已提交
165 166
    elif mode == 're':
        model_dir = args.re_model_dir
X
xiaoting 已提交
167 168
    elif mode == "sr":
        model_dir = args.sr_model_dir
文幕地方's avatar
文幕地方 已提交
169 170
    elif mode == 'layout':
        model_dir = args.layout_model_dir
J
Jethong 已提交
171 172
    else:
        model_dir = args.e2e_model_dir
W
WenmuZhou 已提交
173 174 175 176

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
T
tink2123 已提交
177 178 179 180 181 182 183 184
    if args.use_onnx:
        import onnxruntime as ort
        model_file_path = model_dir
        if not os.path.exists(model_file_path):
            raise ValueError("not find model file path {}".format(
                model_file_path))
        sess = ort.InferenceSession(model_file_path)
        return sess, sess.get_inputs()[0], None, None
L
LDOUBLEV 已提交
185

L
LDOUBLEV 已提交
186
    else:
Z
zhoujun 已提交
187 188 189 190 191 192 193
        file_names = ['model', 'inference']
        for file_name in file_names:
            model_file_path = '{}/{}.pdmodel'.format(model_dir, file_name)
            params_file_path = '{}/{}.pdiparams'.format(model_dir, file_name)
            if os.path.exists(model_file_path) and os.path.exists(
                    params_file_path):
                break
T
tink2123 已提交
194
        if not os.path.exists(model_file_path):
Z
zhoujun 已提交
195 196 197
            raise ValueError(
                "not find model.pdmodel or inference.pdmodel in {}".format(
                    model_dir))
T
tink2123 已提交
198
        if not os.path.exists(params_file_path):
Z
zhoujun 已提交
199 200 201
            raise ValueError(
                "not find model.pdiparams or inference.pdiparams in {}".format(
                    model_dir))
T
tink2123 已提交
202 203 204 205 206 207 208 209 210 211

        config = inference.Config(model_file_path, params_file_path)

        if hasattr(args, 'precision'):
            if args.precision == "fp16" and args.use_tensorrt:
                precision = inference.PrecisionType.Half
            elif args.precision == "int8":
                precision = inference.PrecisionType.Int8
            else:
                precision = inference.PrecisionType.Float32
L
LDOUBLEV 已提交
212
        else:
T
tink2123 已提交
213 214 215 216 217
            precision = inference.PrecisionType.Float32

        if args.use_gpu:
            gpu_id = get_infer_gpuid()
            if gpu_id is None:
L
LDOUBLEV 已提交
218
                logger.warning(
219
                    "GPU is not found in current device by nvidia-smi. Please check your device or ignore it if run on jetson."
T
tink2123 已提交
220 221 222 223
                )
            config.enable_use_gpu(args.gpu_mem, 0)
            if args.use_tensorrt:
                config.enable_tensorrt_engine(
L
LDOUBLEV 已提交
224
                    workspace_size=1 << 30,
T
tink2123 已提交
225 226
                    precision_mode=precision,
                    max_batch_size=args.max_batch_size,
227 228
                    min_subgraph_size=args.
                    min_subgraph_size,  # skip the minmum trt subgraph
229
                    use_calib_mode=False)
230

littletomatodonkey's avatar
littletomatodonkey 已提交
231
                # collect shape
文幕地方's avatar
文幕地方 已提交
232 233
                trt_shape_f = os.path.join(model_dir,
                                           f"{mode}_trt_dynamic_shape.txt")
L
fix  
LDOUBLEV 已提交
234 235 236 237 238 239 240 241 242 243 244

                if not os.path.exists(trt_shape_f):
                    config.collect_shape_range_info(trt_shape_f)
                    logger.info(
                        f"collect dynamic shape info into : {trt_shape_f}")
                try:
                    config.enable_tuned_tensorrt_dynamic_shape(trt_shape_f,
                                                               True)
                except Exception as E:
                    logger.info(E)
                    logger.info("Please keep your paddlepaddle-gpu >= 2.3.0!")
L
LDOUBLEV 已提交
245

246 247
        elif args.use_npu:
            config.enable_npu()
X
xiaoting 已提交
248 249
        elif args.use_xpu:
            config.enable_xpu(10 * 1024 * 1024)
L
LDOUBLEV 已提交
250
        else:
T
tink2123 已提交
251 252 253 254 255 256 257
            config.disable_gpu()
            if args.enable_mkldnn:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
                if args.precision == "fp16":
                    config.enable_mkldnn_bfloat16()
A
andyjpaddle 已提交
258 259 260 261 262
                if hasattr(args, "cpu_threads"):
                    config.set_cpu_math_library_num_threads(args.cpu_threads)
                else:
                    # default cpu threads as 10
                    config.set_cpu_math_library_num_threads(10)
T
tink2123 已提交
263 264
        # enable memory optim
        config.enable_memory_optim()
littletomatodonkey's avatar
fix  
littletomatodonkey 已提交
265
        config.disable_glog_info()
T
tink2123 已提交
266
        config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
T
tink2123 已提交
267
        config.delete_pass("matmul_transpose_reshape_fuse_pass")
文幕地方's avatar
文幕地方 已提交
268 269
        if mode == 're':
            config.delete_pass("simplify_with_basic_ops_pass")
T
tink2123 已提交
270 271 272 273 274 275 276 277
        if mode == 'table':
            config.delete_pass("fc_fuse_pass")  # not supported for table
        config.switch_use_feed_fetch_ops(False)
        config.switch_ir_optim(True)

        # create predictor
        predictor = inference.create_predictor(config)
        input_names = predictor.get_input_names()
文幕地方's avatar
文幕地方 已提交
278
        if mode in ['ser', 're']:
279 280 281 282 283 284
            input_tensor = []
            for name in input_names:
                input_tensor.append(predictor.get_input_handle(name))
        else:
            for name in input_names:
                input_tensor = predictor.get_input_handle(name)
L
LDOUBLEV 已提交
285 286 287 288 289 290 291
        output_tensors = get_output_tensors(args, mode, predictor)
        return predictor, input_tensor, output_tensors, config


def get_output_tensors(args, mode, predictor):
    output_names = predictor.get_output_names()
    output_tensors = []
A
andyjpaddle 已提交
292
    if mode == "rec" and args.rec_algorithm in ["CRNN", "SVTR_LCNet"]:
L
LDOUBLEV 已提交
293 294 295
        output_name = 'softmax_0.tmp_0'
        if output_name in output_names:
            return [predictor.get_output_handle(output_name)]
L
LDOUBLEV 已提交
296 297 298 299
        else:
            for output_name in output_names:
                output_tensor = predictor.get_output_handle(output_name)
                output_tensors.append(output_tensor)
L
LDOUBLEV 已提交
300
    else:
T
tink2123 已提交
301 302 303
        for output_name in output_names:
            output_tensor = predictor.get_output_handle(output_name)
            output_tensors.append(output_tensor)
L
LDOUBLEV 已提交
304
    return output_tensors
W
WenmuZhou 已提交
305 306


L
LDOUBLEV 已提交
307
def get_infer_gpuid():
文幕地方's avatar
文幕地方 已提交
308 309 310 311
    sysstr = platform.system()
    if sysstr == "Windows":
        return 0

R
ronny1996 已提交
312 313 314 315
    if not paddle.fluid.core.is_compiled_with_rocm():
        cmd = "env | grep CUDA_VISIBLE_DEVICES"
    else:
        cmd = "env | grep HIP_VISIBLE_DEVICES"
L
LDOUBLEV 已提交
316 317 318 319 320 321 322 323
    env_cuda = os.popen(cmd).readlines()
    if len(env_cuda) == 0:
        return 0
    else:
        gpu_id = env_cuda[0].strip().split("=")[1]
        return int(gpu_id[0])


J
Jethong 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


L
LDOUBLEV 已提交
340
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
341 342 343 344
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
345
    return src_im
L
LDOUBLEV 已提交
346 347


L
LDOUBLEV 已提交
348 349
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
350
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
351 352 353 354 355
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
W
WenmuZhou 已提交
356 357
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
L
LDOUBLEV 已提交
358 359


W
WenmuZhou 已提交
360 361 362 363 364
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
L
LDOUBLEV 已提交
365
             font_path="./doc/fonts/simfang.ttf"):
366 367 368
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
369
        image(Image|array): RGB image
370 371 372 373
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
W
WenmuZhou 已提交
374
        font_path: the path of font which is used to draw text
375 376 377
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
378 379
    if scores is None:
        scores = [1] * len(boxes)
W
WenmuZhou 已提交
380 381 382 383
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
L
LDOUBLEV 已提交
384
            continue
W
WenmuZhou 已提交
385
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
386
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
W
WenmuZhou 已提交
387
    if txts is not None:
L
LDOUBLEV 已提交
388
        img = np.array(resize_img(image, input_size=600))
389
        txt_img = text_visual(
W
WenmuZhou 已提交
390 391 392 393 394 395
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
396
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
397 398
        return img
    return image
399 400


W
WenmuZhou 已提交
401 402
def draw_ocr_box_txt(image,
                     boxes,
张欣-男's avatar
张欣-男 已提交
403
                     txts=None,
W
WenmuZhou 已提交
404 405
                     scores=None,
                     drop_score=0.5,
张欣-男's avatar
张欣-男 已提交
406
                     font_path="./doc/fonts/simfang.ttf"):
407 408 409 410 411 412 413 414 415 416 417
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = np.ones((h, w, 3), dtype=np.uint8) * 255
    random.seed(0)

    draw_left = ImageDraw.Draw(img_left)
    if txts is None or len(txts) != len(boxes):
        txts = [None] * len(boxes)
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
418 419
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
420 421 422 423 424 425 426 427 428 429 430 431 432
        draw_left.polygon(box, fill=color)
        img_right_text = draw_box_txt_fine((w, h), box, txt, font_path)
        pts = np.array(box, np.int32).reshape((-1, 1, 2))
        cv2.polylines(img_right_text, [pts], True, color, 1)
        img_right = cv2.bitwise_and(img_right, img_right_text)
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(Image.fromarray(img_right), (w, 0, w * 2, h))
    return np.array(img_show)


def draw_box_txt_fine(img_size, box, txt, font_path="./doc/fonts/simfang.ttf"):
433 434 435 436
    box_height = int(
        math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][1])**2))
    box_width = int(
        math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][1])**2))
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

    if box_height > 2 * box_width and box_height > 30:
        img_text = Image.new('RGB', (box_height, box_width), (255, 255, 255))
        draw_text = ImageDraw.Draw(img_text)
        if txt:
            font = create_font(txt, (box_height, box_width), font_path)
            draw_text.text([0, 0], txt, fill=(0, 0, 0), font=font)
        img_text = img_text.transpose(Image.ROTATE_270)
    else:
        img_text = Image.new('RGB', (box_width, box_height), (255, 255, 255))
        draw_text = ImageDraw.Draw(img_text)
        if txt:
            font = create_font(txt, (box_width, box_height), font_path)
            draw_text.text([0, 0], txt, fill=(0, 0, 0), font=font)

452 453
    pts1 = np.float32(
        [[0, 0], [box_width, 0], [box_width, box_height], [0, box_height]])
454 455 456 457
    pts2 = np.array(box, dtype=np.float32)
    M = cv2.getPerspectiveTransform(pts1, pts2)

    img_text = np.array(img_text, dtype=np.uint8)
458 459 460 461 462 463 464
    img_right_text = cv2.warpPerspective(
        img_text,
        M,
        img_size,
        flags=cv2.INTER_NEAREST,
        borderMode=cv2.BORDER_CONSTANT,
        borderValue=(255, 255, 255))
465 466 467 468 469 470 471 472 473 474 475 476 477
    return img_right_text


def create_font(txt, sz, font_path="./doc/fonts/simfang.ttf"):
    font_size = int(sz[1] * 0.99)
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
    length = font.getsize(txt)[0]
    if length > sz[0]:
        font_size = int(font_size * sz[0] / length)
        font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
    return font


478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


W
WenmuZhou 已提交
502 503 504 505 506 507
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
508 509 510 511 512 513 514
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
W
WenmuZhou 已提交
515
        font_path: the path of font which is used to draw text
516 517 518 519 520 521 522 523 524
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
525 526
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
527
        return blank_img, draw_txt
L
LDOUBLEV 已提交
528

529 530 531 532
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
W
WenmuZhou 已提交
533
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
534 535 536

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
537
    count, index = 1, 0
538 539
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
540
        if scores[idx] < threshold or math.isnan(scores[idx]):
541 542 543 544 545 546 547 548 549 550 551
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
552
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
553 554 555 556 557
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
558
            count += 1
559 560 561
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
562
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
563
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
564
        # whether add new blank img or not
L
LDOUBLEV 已提交
565
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
566 567 568
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
569
        count += 1
570 571 572 573 574 575
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
576 577


D
dyning 已提交
578 579 580
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
581
    data = np.frombuffer(data, np.uint8)
D
dyning 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


W
WenmuZhou 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


Z
zhoujun 已提交
632 633 634 635 636 637
def check_gpu(use_gpu):
    if use_gpu and not paddle.is_compiled_with_cuda():
        use_gpu = False
    return use_gpu


L
LDOUBLEV 已提交
638
if __name__ == '__main__':
L
LDOUBLEV 已提交
639
    pass