utility.py 23.7 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
W
WenmuZhou 已提交
16
import os
W
WenmuZhou 已提交
17
import sys
文幕地方's avatar
文幕地方 已提交
18
import platform
L
LDOUBLEV 已提交
19 20
import cv2
import numpy as np
Z
zhoujun 已提交
21
import paddle
L
LDOUBLEV 已提交
22
from PIL import Image, ImageDraw, ImageFont
23
import math
W
WenmuZhou 已提交
24
from paddle import inference
L
LDOUBLEV 已提交
25
import time
张欣-男's avatar
张欣-男 已提交
26
import random
L
LDOUBLEV 已提交
27
from ppocr.utils.logging import get_logger
W
WenmuZhou 已提交
28

L
LDOUBLEV 已提交
29

30 31
def str2bool(v):
    return v.lower() in ("true", "t", "1")
L
LDOUBLEV 已提交
32 33


W
WenmuZhou 已提交
34
def init_args():
L
LDOUBLEV 已提交
35
    parser = argparse.ArgumentParser()
W
WenmuZhou 已提交
36
    # params for prediction engine
L
LDOUBLEV 已提交
37
    parser.add_argument("--use_gpu", type=str2bool, default=True)
X
xiaoting 已提交
38
    parser.add_argument("--use_xpu", type=str2bool, default=False)
39
    parser.add_argument("--use_npu", type=str2bool, default=False)
L
LDOUBLEV 已提交
40 41
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
L
LDOUBLEV 已提交
42
    parser.add_argument("--min_subgraph_size", type=int, default=15)
L
LDOUBLEV 已提交
43
    parser.add_argument("--precision", type=str, default="fp32")
L
LDOUBLEV 已提交
44
    parser.add_argument("--gpu_mem", type=int, default=500)
L
LDOUBLEV 已提交
45

W
WenmuZhou 已提交
46
    # params for text detector
L
LDOUBLEV 已提交
47 48 49
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
W
WenmuZhou 已提交
50 51
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
L
LDOUBLEV 已提交
52

W
WenmuZhou 已提交
53
    # DB parmas
L
LDOUBLEV 已提交
54
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
L
LDOUBLEV 已提交
55 56
    parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
L
LDOUBLEV 已提交
57
    parser.add_argument("--max_batch_size", type=int, default=10)
littletomatodonkey's avatar
littletomatodonkey 已提交
58
    parser.add_argument("--use_dilation", type=str2bool, default=False)
littletomatodonkey's avatar
littletomatodonkey 已提交
59
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
W
WenmuZhou 已提交
60
    # EAST parmas
L
LDOUBLEV 已提交
61 62 63 64
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

W
WenmuZhou 已提交
65
    # SAST parmas
L
licx 已提交
66 67
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
littletomatodonkey's avatar
littletomatodonkey 已提交
68
    parser.add_argument("--det_sast_polygon", type=str2bool, default=False)
L
licx 已提交
69

W
WenmuZhou 已提交
70 71 72 73
    # PSE parmas
    parser.add_argument("--det_pse_thresh", type=float, default=0)
    parser.add_argument("--det_pse_box_thresh", type=float, default=0.85)
    parser.add_argument("--det_pse_min_area", type=float, default=16)
文幕地方's avatar
文幕地方 已提交
74
    parser.add_argument("--det_pse_box_type", type=str, default='quad')
W
WenmuZhou 已提交
75 76
    parser.add_argument("--det_pse_scale", type=int, default=1)

文幕地方's avatar
文幕地方 已提交
77 78 79 80 81 82 83
    # FCE parmas
    parser.add_argument("--scales", type=list, default=[8, 16, 32])
    parser.add_argument("--alpha", type=float, default=1.0)
    parser.add_argument("--beta", type=float, default=1.0)
    parser.add_argument("--fourier_degree", type=int, default=5)
    parser.add_argument("--det_fce_box_type", type=str, default='poly')

W
WenmuZhou 已提交
84
    # params for text recognizer
A
andyjpaddle 已提交
85
    parser.add_argument("--rec_algorithm", type=str, default='SVTR_LCNet')
L
LDOUBLEV 已提交
86
    parser.add_argument("--rec_model_dir", type=str)
T
tink2123 已提交
87
    parser.add_argument("--rec_image_shape", type=str, default="3, 48, 320")
L
LDOUBLEV 已提交
88
    parser.add_argument("--rec_batch_num", type=int, default=6)
T
fix bug  
tink2123 已提交
89
    parser.add_argument("--max_text_length", type=int, default=25)
L
LDOUBLEV 已提交
90 91 92 93
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
W
WenmuZhou 已提交
94 95
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
T
tink2123 已提交
96
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
W
WenmuZhou 已提交
97
    parser.add_argument("--drop_score", type=float, default=0.5)
W
WenmuZhou 已提交
98

J
Jethong 已提交
99 100 101 102 103 104 105 106 107
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
J
Jethong 已提交
108
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
J
Jethong 已提交
109
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
J
Jethong 已提交
110
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
J
Jethong 已提交
111

W
WenmuZhou 已提交
112 113 114 115 116
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
L
LDOUBLEV 已提交
117
    parser.add_argument("--cls_batch_num", type=int, default=6)
W
WenmuZhou 已提交
118 119 120
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
L
LDOUBLEV 已提交
121
    parser.add_argument("--cpu_threads", type=int, default=10)
W
WenmuZhou 已提交
122
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
123 124
    parser.add_argument("--warmup", type=str2bool, default=False)

X
xiaoting 已提交
125 126 127 128 129
    # SR parmas
    parser.add_argument("--sr_model_dir", type=str)
    parser.add_argument("--sr_image_shape", type=str, default="3, 32, 128")
    parser.add_argument("--sr_batch_num", type=int, default=1)

130 131 132 133 134
    #
    parser.add_argument(
        "--draw_img_save_dir", type=str, default="./inference_results")
    parser.add_argument("--save_crop_res", type=str2bool, default=False)
    parser.add_argument("--crop_res_save_dir", type=str, default="./output")
W
WenmuZhou 已提交
135

L
LDOUBLEV 已提交
136
    # multi-process
littletomatodonkey's avatar
littletomatodonkey 已提交
137
    parser.add_argument("--use_mp", type=str2bool, default=False)
138 139
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
W
WenmuZhou 已提交
140

littletomatodonkey's avatar
littletomatodonkey 已提交
141
    parser.add_argument("--benchmark", type=str2bool, default=False)
L
LDOUBLEV 已提交
142
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
D
Double_V 已提交
143

W
WenmuZhou 已提交
144
    parser.add_argument("--show_log", type=str2bool, default=True)
T
tink2123 已提交
145
    parser.add_argument("--use_onnx", type=str2bool, default=False)
W
WenmuZhou 已提交
146
    return parser
W
WenmuZhou 已提交
147

148

149
def parse_args():
W
WenmuZhou 已提交
150
    parser = init_args()
L
LDOUBLEV 已提交
151 152 153
    return parser.parse_args()


W
WenmuZhou 已提交
154 155 156 157 158
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
J
Jethong 已提交
159
    elif mode == 'rec':
W
WenmuZhou 已提交
160
        model_dir = args.rec_model_dir
W
WenmuZhou 已提交
161 162
    elif mode == 'table':
        model_dir = args.table_model_dir
163 164
    elif mode == 'ser':
        model_dir = args.ser_model_dir
X
xiaoting 已提交
165 166
    elif mode == "sr":
        model_dir = args.sr_model_dir
文幕地方's avatar
文幕地方 已提交
167 168
    elif mode == 'layout':
        model_dir = args.layout_model_dir
J
Jethong 已提交
169 170
    else:
        model_dir = args.e2e_model_dir
W
WenmuZhou 已提交
171 172 173 174

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
T
tink2123 已提交
175 176 177 178 179 180 181 182
    if args.use_onnx:
        import onnxruntime as ort
        model_file_path = model_dir
        if not os.path.exists(model_file_path):
            raise ValueError("not find model file path {}".format(
                model_file_path))
        sess = ort.InferenceSession(model_file_path)
        return sess, sess.get_inputs()[0], None, None
L
LDOUBLEV 已提交
183

L
LDOUBLEV 已提交
184
    else:
Z
zhoujun 已提交
185 186 187 188 189 190 191
        file_names = ['model', 'inference']
        for file_name in file_names:
            model_file_path = '{}/{}.pdmodel'.format(model_dir, file_name)
            params_file_path = '{}/{}.pdiparams'.format(model_dir, file_name)
            if os.path.exists(model_file_path) and os.path.exists(
                    params_file_path):
                break
T
tink2123 已提交
192
        if not os.path.exists(model_file_path):
Z
zhoujun 已提交
193 194 195
            raise ValueError(
                "not find model.pdmodel or inference.pdmodel in {}".format(
                    model_dir))
T
tink2123 已提交
196
        if not os.path.exists(params_file_path):
Z
zhoujun 已提交
197 198 199
            raise ValueError(
                "not find model.pdiparams or inference.pdiparams in {}".format(
                    model_dir))
T
tink2123 已提交
200 201 202 203 204 205 206 207 208 209

        config = inference.Config(model_file_path, params_file_path)

        if hasattr(args, 'precision'):
            if args.precision == "fp16" and args.use_tensorrt:
                precision = inference.PrecisionType.Half
            elif args.precision == "int8":
                precision = inference.PrecisionType.Int8
            else:
                precision = inference.PrecisionType.Float32
L
LDOUBLEV 已提交
210
        else:
T
tink2123 已提交
211 212 213 214 215
            precision = inference.PrecisionType.Float32

        if args.use_gpu:
            gpu_id = get_infer_gpuid()
            if gpu_id is None:
L
LDOUBLEV 已提交
216
                logger.warning(
217
                    "GPU is not found in current device by nvidia-smi. Please check your device or ignore it if run on jetson."
T
tink2123 已提交
218 219 220 221
                )
            config.enable_use_gpu(args.gpu_mem, 0)
            if args.use_tensorrt:
                config.enable_tensorrt_engine(
L
LDOUBLEV 已提交
222
                    workspace_size=1 << 30,
T
tink2123 已提交
223 224
                    precision_mode=precision,
                    max_batch_size=args.max_batch_size,
225 226
                    min_subgraph_size=args.
                    min_subgraph_size,  # skip the minmum trt subgraph
227
                    use_calib_mode=False)
228

littletomatodonkey's avatar
littletomatodonkey 已提交
229
                # collect shape
L
LDOUBLEV 已提交
230
                model_name = os.path.basename(model_dir[:-1]) if model_dir.endswith("/") else os.path.basename(model_dir)
L
add txt  
LDOUBLEV 已提交
231
                trt_shape_f = f"{mode}_{model_name}.txt"
L
fix trt  
LDOUBLEV 已提交
232 233 234
                if trt_shape_f is not None:
                    if not os.path.exists(trt_shape_f):
                        config.collect_shape_range_info(trt_shape_f)
littletomatodonkey's avatar
littletomatodonkey 已提交
235
                        logger.info(
L
fix trt  
LDOUBLEV 已提交
236
                            f"collect dynamic shape info into : {trt_shape_f}"
littletomatodonkey's avatar
littletomatodonkey 已提交
237 238 239
                        )
                    else:
                        logger.info(
L
fix trt  
LDOUBLEV 已提交
240
                            f"dynamic shape info file( {trt_shape_f} ) already exists, not need to generate again."
littletomatodonkey's avatar
littletomatodonkey 已提交
241
                        )
L
fix trt  
LDOUBLEV 已提交
242
                    config.enable_tuned_tensorrt_dynamic_shape(trt_shape_f, True)
L
LDOUBLEV 已提交
243

244 245
        elif args.use_npu:
            config.enable_npu()
X
xiaoting 已提交
246 247
        elif args.use_xpu:
            config.enable_xpu(10 * 1024 * 1024)
L
LDOUBLEV 已提交
248
        else:
T
tink2123 已提交
249 250 251 252 253 254 255
            config.disable_gpu()
            if args.enable_mkldnn:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
                if args.precision == "fp16":
                    config.enable_mkldnn_bfloat16()
A
andyjpaddle 已提交
256 257 258 259 260
                if hasattr(args, "cpu_threads"):
                    config.set_cpu_math_library_num_threads(args.cpu_threads)
                else:
                    # default cpu threads as 10
                    config.set_cpu_math_library_num_threads(10)
T
tink2123 已提交
261 262
        # enable memory optim
        config.enable_memory_optim()
littletomatodonkey's avatar
fix  
littletomatodonkey 已提交
263
        config.disable_glog_info()
T
tink2123 已提交
264
        config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
T
tink2123 已提交
265
        config.delete_pass("matmul_transpose_reshape_fuse_pass")
T
tink2123 已提交
266 267 268 269 270 271 272 273
        if mode == 'table':
            config.delete_pass("fc_fuse_pass")  # not supported for table
        config.switch_use_feed_fetch_ops(False)
        config.switch_ir_optim(True)

        # create predictor
        predictor = inference.create_predictor(config)
        input_names = predictor.get_input_names()
文幕地方's avatar
文幕地方 已提交
274
        if mode in ['ser', 're']:
275 276 277 278 279 280
            input_tensor = []
            for name in input_names:
                input_tensor.append(predictor.get_input_handle(name))
        else:
            for name in input_names:
                input_tensor = predictor.get_input_handle(name)
L
LDOUBLEV 已提交
281 282 283 284 285 286 287
        output_tensors = get_output_tensors(args, mode, predictor)
        return predictor, input_tensor, output_tensors, config


def get_output_tensors(args, mode, predictor):
    output_names = predictor.get_output_names()
    output_tensors = []
A
andyjpaddle 已提交
288
    if mode == "rec" and args.rec_algorithm in ["CRNN", "SVTR_LCNet"]:
L
LDOUBLEV 已提交
289 290 291
        output_name = 'softmax_0.tmp_0'
        if output_name in output_names:
            return [predictor.get_output_handle(output_name)]
L
LDOUBLEV 已提交
292 293 294 295
        else:
            for output_name in output_names:
                output_tensor = predictor.get_output_handle(output_name)
                output_tensors.append(output_tensor)
L
LDOUBLEV 已提交
296
    else:
T
tink2123 已提交
297 298 299
        for output_name in output_names:
            output_tensor = predictor.get_output_handle(output_name)
            output_tensors.append(output_tensor)
L
LDOUBLEV 已提交
300
    return output_tensors
W
WenmuZhou 已提交
301 302


L
LDOUBLEV 已提交
303
def get_infer_gpuid():
文幕地方's avatar
文幕地方 已提交
304 305 306 307
    sysstr = platform.system()
    if sysstr == "Windows":
        return 0

R
ronny1996 已提交
308 309 310 311
    if not paddle.fluid.core.is_compiled_with_rocm():
        cmd = "env | grep CUDA_VISIBLE_DEVICES"
    else:
        cmd = "env | grep HIP_VISIBLE_DEVICES"
L
LDOUBLEV 已提交
312 313 314 315 316 317 318 319
    env_cuda = os.popen(cmd).readlines()
    if len(env_cuda) == 0:
        return 0
    else:
        gpu_id = env_cuda[0].strip().split("=")[1]
        return int(gpu_id[0])


J
Jethong 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


L
LDOUBLEV 已提交
336
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
337 338 339 340
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
341
    return src_im
L
LDOUBLEV 已提交
342 343


L
LDOUBLEV 已提交
344 345
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
346
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
347 348 349 350 351
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
W
WenmuZhou 已提交
352 353
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
L
LDOUBLEV 已提交
354 355


W
WenmuZhou 已提交
356 357 358 359 360
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
L
LDOUBLEV 已提交
361
             font_path="./doc/fonts/simfang.ttf"):
362 363 364
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
365
        image(Image|array): RGB image
366 367 368 369
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
W
WenmuZhou 已提交
370
        font_path: the path of font which is used to draw text
371 372 373
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
374 375
    if scores is None:
        scores = [1] * len(boxes)
W
WenmuZhou 已提交
376 377 378 379
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
L
LDOUBLEV 已提交
380
            continue
W
WenmuZhou 已提交
381
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
382
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
W
WenmuZhou 已提交
383
    if txts is not None:
L
LDOUBLEV 已提交
384
        img = np.array(resize_img(image, input_size=600))
385
        txt_img = text_visual(
W
WenmuZhou 已提交
386 387 388 389 390 391
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
392
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
393 394
        return img
    return image
395 396


W
WenmuZhou 已提交
397 398
def draw_ocr_box_txt(image,
                     boxes,
张欣-男's avatar
张欣-男 已提交
399
                     txts=None,
W
WenmuZhou 已提交
400 401
                     scores=None,
                     drop_score=0.5,
张欣-男's avatar
张欣-男 已提交
402
                     font_path="./doc/fonts/simfang.ttf"):
403 404 405 406 407 408 409 410 411 412 413
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = np.ones((h, w, 3), dtype=np.uint8) * 255
    random.seed(0)

    draw_left = ImageDraw.Draw(img_left)
    if txts is None or len(txts) != len(boxes):
        txts = [None] * len(boxes)
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
414 415
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
416 417 418 419 420 421 422 423 424 425 426 427 428
        draw_left.polygon(box, fill=color)
        img_right_text = draw_box_txt_fine((w, h), box, txt, font_path)
        pts = np.array(box, np.int32).reshape((-1, 1, 2))
        cv2.polylines(img_right_text, [pts], True, color, 1)
        img_right = cv2.bitwise_and(img_right, img_right_text)
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(Image.fromarray(img_right), (w, 0, w * 2, h))
    return np.array(img_show)


def draw_box_txt_fine(img_size, box, txt, font_path="./doc/fonts/simfang.ttf"):
429 430 431 432
    box_height = int(
        math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][1])**2))
    box_width = int(
        math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][1])**2))
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447

    if box_height > 2 * box_width and box_height > 30:
        img_text = Image.new('RGB', (box_height, box_width), (255, 255, 255))
        draw_text = ImageDraw.Draw(img_text)
        if txt:
            font = create_font(txt, (box_height, box_width), font_path)
            draw_text.text([0, 0], txt, fill=(0, 0, 0), font=font)
        img_text = img_text.transpose(Image.ROTATE_270)
    else:
        img_text = Image.new('RGB', (box_width, box_height), (255, 255, 255))
        draw_text = ImageDraw.Draw(img_text)
        if txt:
            font = create_font(txt, (box_width, box_height), font_path)
            draw_text.text([0, 0], txt, fill=(0, 0, 0), font=font)

448 449
    pts1 = np.float32(
        [[0, 0], [box_width, 0], [box_width, box_height], [0, box_height]])
450 451 452 453
    pts2 = np.array(box, dtype=np.float32)
    M = cv2.getPerspectiveTransform(pts1, pts2)

    img_text = np.array(img_text, dtype=np.uint8)
454 455 456 457 458 459 460
    img_right_text = cv2.warpPerspective(
        img_text,
        M,
        img_size,
        flags=cv2.INTER_NEAREST,
        borderMode=cv2.BORDER_CONSTANT,
        borderValue=(255, 255, 255))
461 462 463 464 465 466 467 468 469 470 471 472 473
    return img_right_text


def create_font(txt, sz, font_path="./doc/fonts/simfang.ttf"):
    font_size = int(sz[1] * 0.99)
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
    length = font.getsize(txt)[0]
    if length > sz[0]:
        font_size = int(font_size * sz[0] / length)
        font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
    return font


474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


W
WenmuZhou 已提交
498 499 500 501 502 503
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
504 505 506 507 508 509 510
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
W
WenmuZhou 已提交
511
        font_path: the path of font which is used to draw text
512 513 514 515 516 517 518 519 520
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
521 522
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
523
        return blank_img, draw_txt
L
LDOUBLEV 已提交
524

525 526 527 528
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
W
WenmuZhou 已提交
529
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
530 531 532

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
533
    count, index = 1, 0
534 535
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
536
        if scores[idx] < threshold or math.isnan(scores[idx]):
537 538 539 540 541 542 543 544 545 546 547
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
548
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
549 550 551 552 553
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
554
            count += 1
555 556 557
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
558
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
559
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
560
        # whether add new blank img or not
L
LDOUBLEV 已提交
561
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
562 563 564
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
565
        count += 1
566 567 568 569 570 571
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
572 573


D
dyning 已提交
574 575 576
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
577
    data = np.frombuffer(data, np.uint8)
D
dyning 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


W
WenmuZhou 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


Z
zhoujun 已提交
628 629 630 631 632 633
def check_gpu(use_gpu):
    if use_gpu and not paddle.is_compiled_with_cuda():
        use_gpu = False
    return use_gpu


L
LDOUBLEV 已提交
634
if __name__ == '__main__':
L
LDOUBLEV 已提交
635
    pass