utility.py 14.3 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
W
WenmuZhou 已提交
16
import os
W
WenmuZhou 已提交
17
import sys
L
LDOUBLEV 已提交
18 19
import cv2
import numpy as np
L
LDOUBLEV 已提交
20 21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
W
WenmuZhou 已提交
23 24
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import create_paddle_predictor
L
LDOUBLEV 已提交
25 26 27 28 29 30 31


def parse_args():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
W
WenmuZhou 已提交
32
    # params for prediction engine
L
LDOUBLEV 已提交
33 34 35
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
L
LDOUBLEV 已提交
36
    parser.add_argument("--use_fp16", type=str2bool, default=False)
L
LDOUBLEV 已提交
37 38
    parser.add_argument("--gpu_mem", type=int, default=8000)

W
WenmuZhou 已提交
39
    # params for text detector
L
LDOUBLEV 已提交
40 41 42
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
W
WenmuZhou 已提交
43 44
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
L
LDOUBLEV 已提交
45

W
WenmuZhou 已提交
46
    # DB parmas
L
LDOUBLEV 已提交
47 48
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
W
WenmuZhou 已提交
49
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.6)
L
LDOUBLEV 已提交
50
    parser.add_argument("--max_batch_size", type=int, default=10)
W
WenmuZhou 已提交
51
    # EAST parmas
L
LDOUBLEV 已提交
52 53 54 55
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

W
WenmuZhou 已提交
56
    # SAST parmas
L
licx 已提交
57 58
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
59
    parser.add_argument("--det_sast_polygon", type=bool, default=False)
L
licx 已提交
60

W
WenmuZhou 已提交
61
    # params for text recognizer
L
LDOUBLEV 已提交
62 63
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
T
fix bug  
tink2123 已提交
64 65
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
L
LDOUBLEV 已提交
66
    parser.add_argument("--rec_batch_num", type=int, default=1)
T
fix bug  
tink2123 已提交
67
    parser.add_argument("--max_text_length", type=int, default=25)
L
LDOUBLEV 已提交
68 69 70 71
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
W
WenmuZhou 已提交
72 73 74
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
        "--vis_font_path", type=str, default="./doc/simfang.ttf")
W
WenmuZhou 已提交
75
    parser.add_argument("--drop_score", type=float, default=0.5)
W
WenmuZhou 已提交
76 77 78 79 80 81

    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
L
LDOUBLEV 已提交
82
    parser.add_argument("--cls_batch_num", type=int, default=6)
W
WenmuZhou 已提交
83 84 85 86 87 88 89
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
    parser.add_argument("--use_zero_copy_run", type=str2bool, default=False)

    parser.add_argument("--use_pdserving", type=str2bool, default=False)

L
LDOUBLEV 已提交
90 91 92
    return parser.parse_args()


W
WenmuZhou 已提交
93 94 95 96 97 98 99 100 101 102 103
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
    else:
        model_dir = args.rec_model_dir

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
文幕地方's avatar
文幕地方 已提交
104 105
    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
W
WenmuZhou 已提交
106 107 108 109 110 111 112 113 114 115 116
    if not os.path.exists(model_file_path):
        logger.info("not find model file path {}".format(model_file_path))
        sys.exit(0)
    if not os.path.exists(params_file_path):
        logger.info("not find params file path {}".format(params_file_path))
        sys.exit(0)

    config = AnalysisConfig(model_file_path, params_file_path)

    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
L
LDOUBLEV 已提交
117 118 119 120 121
        if args.use_tensorrt:
            config.enable_tensorrt_engine(
                precision_mode=AnalysisConfig.Precision.Half
                if args.use_fp16 else AnalysisConfig.Precision.Float32,
                max_batch_size=args.max_batch_size)
W
WenmuZhou 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    else:
        config.disable_gpu()
        config.set_cpu_math_library_num_threads(6)
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()

    # config.enable_memory_optim()
    config.disable_glog_info()

    if args.use_zero_copy_run:
        config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
        config.switch_use_feed_fetch_ops(False)
    else:
        config.switch_use_feed_fetch_ops(True)

    predictor = create_paddle_predictor(config)
    input_names = predictor.get_input_names()
    for name in input_names:
        input_tensor = predictor.get_input_tensor(name)
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
        output_tensor = predictor.get_output_tensor(output_name)
        output_tensors.append(output_tensor)
    return predictor, input_tensor, output_tensors


L
LDOUBLEV 已提交
151
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
152 153 154 155
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
156
    return src_im
L
LDOUBLEV 已提交
157 158


L
LDOUBLEV 已提交
159 160
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
161
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
162 163 164 165 166
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
W
WenmuZhou 已提交
167 168
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
L
LDOUBLEV 已提交
169 170


W
WenmuZhou 已提交
171 172 173 174 175 176
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
             font_path="./doc/simfang.ttf"):
177 178 179
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
180
        image(Image|array): RGB image
181 182 183 184
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
W
WenmuZhou 已提交
185
        font_path: the path of font which is used to draw text
186 187 188
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
189 190
    if scores is None:
        scores = [1] * len(boxes)
W
WenmuZhou 已提交
191 192 193 194
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
L
LDOUBLEV 已提交
195
            continue
W
WenmuZhou 已提交
196
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
197
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
W
WenmuZhou 已提交
198
    if txts is not None:
L
LDOUBLEV 已提交
199
        img = np.array(resize_img(image, input_size=600))
200
        txt_img = text_visual(
W
WenmuZhou 已提交
201 202 203 204 205 206
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
207
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
208 209
        return img
    return image
210 211


W
WenmuZhou 已提交
212 213 214 215 216 217
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
218 219 220
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
221 222

    import random
L
LDOUBLEV 已提交
223

224 225 226
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
W
WenmuZhou 已提交
227 228 229
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
T
tink2123 已提交
230 231
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
232
        draw_left.polygon(box, fill=color)
T
tink2123 已提交
233 234 235 236 237 238 239 240 241 242
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
243 244
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
W
WenmuZhou 已提交
245
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
246 247 248
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
T
tink2123 已提交
249 250
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
251 252 253
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
W
WenmuZhou 已提交
254
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
T
tink2123 已提交
255 256
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
257 258 259 260
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
261 262 263
    return np.array(img_show)


264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


W
WenmuZhou 已提交
288 289 290 291 292 293
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
294 295 296 297 298 299 300
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
W
WenmuZhou 已提交
301
        font_path: the path of font which is used to draw text
302 303 304 305 306 307 308 309 310
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
311 312
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
313
        return blank_img, draw_txt
L
LDOUBLEV 已提交
314

315 316 317 318
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
W
WenmuZhou 已提交
319
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
320 321 322

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
323
    count, index = 1, 0
324 325
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
326
        if scores[idx] < threshold or math.isnan(scores[idx]):
327 328 329 330 331 332 333 334 335 336 337
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
338
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
339 340 341 342 343
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
344
            count += 1
345 346 347
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
348
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
349
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
350
        # whether add new blank img or not
L
LDOUBLEV 已提交
351
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
352 353 354
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
355
        count += 1
356 357 358 359 360 361
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
362 363


D
dyning 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


L
LDOUBLEV 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
if __name__ == '__main__':
    test_img = "./doc/test_v2"
    predict_txt = "./doc/predict.txt"
    f = open(predict_txt, 'r')
    data = f.readlines()
    img_path, anno = data[0].strip().split('\t')
    img_name = os.path.basename(img_path)
    img_path = os.path.join(test_img, img_name)
    image = Image.open(img_path)

    data = json.loads(anno)
    boxes, txts, scores = [], [], []
    for dic in data:
        boxes.append(dic['points'])
        txts.append(dic['transcription'])
        scores.append(round(dic['scores'], 3))

W
WenmuZhou 已提交
400
    new_img = draw_ocr(image, boxes, txts, scores)
L
LDOUBLEV 已提交
401

M
MissPenguin 已提交
402
    cv2.imwrite(img_name, new_img)