README.md 12.6 KB
Newer Older
W
WenmuZhou 已提交
1 2 3
English | [简体中文](README_ch.md)

## Introduction
L
LDOUBLEV 已提交
4
PaddleOCR aims to create multilingual, awesome, leading, and practical OCR tools that help users train better models and apply them into practice.
W
WenmuZhou 已提交
5

G
grasswolfs 已提交
6 7
## Notice
PaddleOCR supports both dynamic graph and static graph programming paradigm
8
- Dynamic graph: dygraph branch (default), **supported by paddle 2.0.0 ([installation](./doc/doc_en/installation_en.md))**
G
grasswolfs 已提交
9 10
- Static graph: develop branch

W
WenmuZhou 已提交
11
**Recent updates**
D
Daniel Yang 已提交
12
- 2021.1.21 update more than 25+ multilingual recognition models [models list](./doc/doc_en/models_list_en.md), including:English, Chinese, German, French, Japanese,Spanish,Portuguese Russia Arabic and so on.  Models for more languages will continue to be updated [Develop Plan](https://github.com/PaddlePaddle/PaddleOCR/issues/1048).
M
MissPenguin 已提交
13
- 2020.12.15 update Data synthesis tool, i.e., [Style-Text](./StyleText/README.md),easy to synthesize a large number of images which are similar to the target scene image.
G
grasswolfs 已提交
14
- 2020.11.25 Update a new data annotation tool, i.e., [PPOCRLabel](./PPOCRLabel/README.md), which is helpful to improve the labeling efficiency. Moreover, the labeling results can be used in training of the PP-OCR system directly.
W
WenmuZhou 已提交
15 16 17 18 19
- 2020.9.22 Update the PP-OCR technical article, https://arxiv.org/abs/2009.09941
- [more](./doc/doc_en/update_en.md)

## Features
- PPOCR series of high-quality pre-trained models, comparable to commercial effects
G
grasswolfs 已提交
20 21 22 23
    - Ultra lightweight ppocr_mobile series models: detection (3.0M) + direction classifier (1.4M) + recognition (5.0M) = 9.4M
    - General ppocr_server series models: detection (47.1M) + direction classifier (1.4M) + recognition (94.9M) = 143.4M
    - Support Chinese, English, and digit recognition, vertical text recognition, and long text recognition
    - Support multi-language recognition: Korean, Japanese, German, French
G
grasswolfs 已提交
24
- Rich toolkits related to the OCR areas
G
grasswolfs 已提交
25 26
    - Semi-automatic data annotation tool, i.e., PPOCRLabel: support fast and efficient data annotation
    - Data synthesis tool, i.e., Style-Text: easy to synthesize a large number of images which are similar to the target scene image
W
WenmuZhou 已提交
27 28 29 30 31
- Support user-defined training, provides rich predictive inference deployment solutions
- Support PIP installation, easy to use
- Support Linux, Windows, MacOS and other systems

## Visualization
32

W
WenmuZhou 已提交
33
<div align="center">
L
LDOUBLEV 已提交
34
    <img src="doc/imgs_results/ch_ppocr_mobile_v2.0/test_add_91.jpg" width="800">
T
tink2123 已提交
35 36
    <img src="doc/imgs_results/multi_lang/img_01.jpg" width="800">
    <img src="doc/imgs_results/multi_lang/img_02.jpg" width="800">
W
WenmuZhou 已提交
37 38 39
</div>

The above pictures are the visualizations of the general ppocr_server model. For more effect pictures, please see [More visualizations](./doc/doc_en/visualization_en.md).
D
dyning 已提交
40

L
LDOUBLEV 已提交
41 42 43 44 45
<a name="Community"></a>
## Community
- Scan the QR code below with your Wechat, you can access to official technical exchange group. Look forward to your participation.

<div align="center">
D
Daniel Yang 已提交
46
<img src="https://raw.githubusercontent.com/PaddlePaddle/PaddleOCR/dygraph/doc/joinus.PNG"  width = "200" height = "200" />
L
LDOUBLEV 已提交
47 48 49
</div>


W
WenmuZhou 已提交
50
## Quick Experience
D
dyning 已提交
51

W
WenmuZhou 已提交
52
You can also quickly experience the ultra-lightweight OCR : [Online Experience](https://www.paddlepaddle.org.cn/hub/scene/ocr)
D
dyning 已提交
53

W
WenmuZhou 已提交
54
Mobile DEMO experience (based on EasyEdge and Paddle-Lite, supports iOS and Android systems): [Sign in to the website to obtain the QR code for  installing the App](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)
T
tink2123 已提交
55

W
WenmuZhou 已提交
56
 Also, you can scan the QR code below to install the App (**Android support only**)
L
LDOUBLEV 已提交
57

G
grasswolfs 已提交
58
<div align="center">
W
WenmuZhou 已提交
59
<img src="./doc/ocr-android-easyedge.png"  width = "200" height = "200" />
G
grasswolfs 已提交
60
</div>
D
dyning 已提交
61

W
WenmuZhou 已提交
62 63 64 65
- [**OCR Quick Start**](./doc/doc_en/quickstart_en.md)

<a name="Supported-Chinese-model-list"></a>

L
LDOUBLEV 已提交
66

T
tink2123 已提交
67
## PP-OCR 2.0 series model list(Update on Dec 15)
M
MissPenguin 已提交
68
**Note** : Compared with [models 1.1](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/models_list_en.md), which are trained with static graph programming paradigm, models 2.0 are the dynamic graph trained version and achieve close performance.
W
WenmuZhou 已提交
69 70 71

| Model introduction                                           | Model name                   | Recommended scene | Detection model                                              | Direction classifier                                         | Recognition model                                            |
| ------------------------------------------------------------ | ---------------------------- | ----------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
G
grasswolfs 已提交
72 73
| Chinese and English ultra-lightweight OCR model (9.4M)       | ch_ppocr_mobile_v2.0_xx      | Mobile & server   |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar)      |
| Chinese and English general OCR model (143.4M)               | ch_ppocr_server_v2.0_xx      | Server            |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar)    |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_traingit.tar)    |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar)  |  
L
LDOUBLEV 已提交
74

W
WenmuZhou 已提交
75

L
LDOUBLEV 已提交
76
For more model downloads (including multiple languages), please refer to [PP-OCR v2.0 series model downloads](./doc/doc_en/models_list_en.md).
W
WenmuZhou 已提交
77

L
LDOUBLEV 已提交
78
For a new language request, please refer to [Guideline for new language_requests](#language_requests).
W
WenmuZhou 已提交
79 80 81 82 83

## Tutorials
- [Installation](./doc/doc_en/installation_en.md)
- [Quick Start](./doc/doc_en/quickstart_en.md)
- [Code Structure](./doc/doc_en/tree_en.md)
L
LDOUBLEV 已提交
84
- Algorithm Introduction
W
WenmuZhou 已提交
85 86
    - [Text Detection Algorithm](./doc/doc_en/algorithm_overview_en.md)
    - [Text Recognition Algorithm](./doc/doc_en/algorithm_overview_en.md)
L
LDOUBLEV 已提交
87 88
    - [PP-OCR Pipeline](#PP-OCR-Pipeline)
- Model Training/Evaluation
W
WenmuZhou 已提交
89 90 91 92 93
    - [Text Detection](./doc/doc_en/detection_en.md)
    - [Text Recognition](./doc/doc_en/recognition_en.md)
    - [Direction Classification](./doc/doc_en/angle_class_en.md)
    - [Yml Configuration](./doc/doc_en/config_en.md)
- Inference and Deployment
L
LDOUBLEV 已提交
94
    - [Quick Inference Based on PIP](./doc/doc_en/whl_en.md)
W
WenmuZhou 已提交
95 96
    - [Python Inference](./doc/doc_en/inference_en.md)
    - [C++ Inference](./deploy/cpp_infer/readme_en.md)
M
MissPenguin 已提交
97
    - [Serving](./deploy/pdserving/README.md)
M
MissPenguin 已提交
98
    - [Mobile](./deploy/lite/readme_en.md)
L
LDOUBLEV 已提交
99 100
    - [Benchmark](./doc/doc_en/benchmark_en.md)  
- Data Annotation and Synthesis
G
grasswolfs 已提交
101
    - [Semi-automatic Annotation Tool: PPOCRLabel](./PPOCRLabel/README.md)
D
dyning 已提交
102
    - [Data Synthesis Tool: Style-Text](./StyleText/README.md)
G
grasswolfs 已提交
103 104
    - [Other Data Annotation Tools](./doc/doc_en/data_annotation_en.md)
    - [Other Data Synthesis Tools](./doc/doc_en/data_synthesis_en.md)
W
WenmuZhou 已提交
105 106 107 108 109
- Datasets
    - [General OCR Datasets(Chinese/English)](./doc/doc_en/datasets_en.md)
    - [HandWritten_OCR_Datasets(Chinese)](./doc/doc_en/handwritten_datasets_en.md)
    - [Various OCR Datasets(multilingual)](./doc/doc_en/vertical_and_multilingual_datasets_en.md)
- [Visualization](#Visualization)
L
LDOUBLEV 已提交
110
- [New language requests](#language_requests)
W
WenmuZhou 已提交
111 112 113 114 115 116 117
- [FAQ](./doc/doc_en/FAQ_en.md)
- [Community](#Community)
- [References](./doc/doc_en/reference_en.md)
- [License](#LICENSE)
- [Contribution](#CONTRIBUTION)


L
LDOUBLEV 已提交
118 119 120 121

<a name="PP-OCR-Pipeline"></a>

## PP-OCR Pipeline
D
dyning 已提交
122 123

<div align="center">
W
WenmuZhou 已提交
124
    <img src="./doc/ppocr_framework.png" width="800">
D
dyning 已提交
125 126
</div>

D
dyning 已提交
127
PP-OCR is a practical ultra-lightweight OCR system. It is mainly composed of three parts: DB text detection[2], detection frame correction and CRNN text recognition[7]. The system adopts 19 effective strategies from 8 aspects including backbone network selection and adjustment, prediction head design, data augmentation, learning rate transformation strategy, regularization parameter selection, pre-training model use, and automatic model tailoring and quantization to optimize and slim down the models of each module. The final results are an ultra-lightweight Chinese and English OCR model with an overall size of 3.5M and a 2.8M English digital OCR model. For more details, please refer to the PP-OCR technical article (https://arxiv.org/abs/2009.09941). Besides, The implementation of the FPGM Pruner [8] and PACT quantization [9] is based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim).
D
dyning 已提交
128

T
tink2123 已提交
129

W
WenmuZhou 已提交
130 131
## Visualization [more](./doc/doc_en/visualization_en.md)
- Chinese OCR model
D
dyning 已提交
132
<div align="center">
L
LDOUBLEV 已提交
133
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/test_add_91.jpg" width="800">
L
LDOUBLEV 已提交
134 135
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/00015504.jpg" width="800">
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/00056221.jpg" width="800">
L
LDOUBLEV 已提交
136
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/rotate_00052204.jpg" width="800">
D
dyning 已提交
137
</div>
T
tink2123 已提交
138

W
WenmuZhou 已提交
139
- English OCR model
D
dyning 已提交
140
<div align="center">
L
LDOUBLEV 已提交
141
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/img_12.jpg" width="800">
D
dyning 已提交
142
</div>
143

W
WenmuZhou 已提交
144
- Multilingual OCR model
D
dyning 已提交
145
<div align="center">
L
LDOUBLEV 已提交
146
    <img src="./doc/imgs_results/french_0.jpg" width="800">
L
LDOUBLEV 已提交
147
    <img src="./doc/imgs_results/korean.jpg" width="800">
D
dyning 已提交
148
</div>
T
tink2123 已提交
149

D
dyning 已提交
150

L
LDOUBLEV 已提交
151 152 153 154 155
<a name="language_requests"></a>
## Guideline for new language requests

If you want to request a new language support, a PR with 2 following files are needed:

G
grasswolfs 已提交
156
1. In folder [ppocr/utils/dict](./ppocr/utils/dict),
L
LDOUBLEV 已提交
157 158
it is necessary to submit the dict text to this path and name it with `{language}_dict.txt` that contains a list of all characters. Please see the format example from other files in that folder.

G
grasswolfs 已提交
159
2. In folder [ppocr/utils/corpus](./ppocr/utils/corpus),
L
LDOUBLEV 已提交
160 161 162 163 164 165 166 167
it is necessary to submit the corpus to this path and name it with `{language}_corpus.txt` that contains a list of words in your language.
Maybe, 50000 words per language is necessary at least.
Of course, the more, the better.

If your language has unique elements, please tell me in advance within any way, such as useful links, wikipedia and so on.

More details, please refer to [Multilingual OCR Development Plan](https://github.com/PaddlePaddle/PaddleOCR/issues/1048).

M
MissPenguin 已提交
168

W
WenmuZhou 已提交
169 170 171 172 173 174 175 176 177
<a name="LICENSE"></a>
## License
This project is released under <a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>

<a name="CONTRIBUTION"></a>
## Contribution
We welcome all the contributions to PaddleOCR and appreciate for your feedback very much.

- Many thanks to [Khanh Tran](https://github.com/xxxpsyduck) and [Karl Horky](https://github.com/karlhorky) for contributing and revising the English documentation.
L
littletomatodonkey 已提交
178
- Many thanks to [zhangxin](https://github.com/ZhangXinNan) for contributing the new visualize function、add .gitignore and discard set PYTHONPATH manually.
W
WenmuZhou 已提交
179 180 181 182 183
- Many thanks to [lyl120117](https://github.com/lyl120117) for contributing the code for printing the network structure.
- Thanks [xiangyubo](https://github.com/xiangyubo) for contributing the handwritten Chinese OCR datasets.
- Thanks [authorfu](https://github.com/authorfu) for contributing Android demo  and [xiadeye](https://github.com/xiadeye) contributing iOS demo, respectively.
- Thanks [BeyondYourself](https://github.com/BeyondYourself) for contributing many great suggestions and simplifying part of the code style.
- Thanks [tangmq](https://gitee.com/tangmq) for contributing Dockerized deployment services to PaddleOCR and supporting the rapid release of callable Restful API services.
L
LDOUBLEV 已提交
184 185 186 187
- Thanks [lijinhan](https://github.com/lijinhan) for contributing a new way, i.e., java SpringBoot, to achieve the request for the Hubserving deployment.
- Thanks [Mejans](https://github.com/Mejans) for contributing the Occitan corpus and character set.
- Thanks [LKKlein](https://github.com/LKKlein) for contributing a new deploying package with the Golang program language.
- Thanks [Evezerest](https://github.com/Evezerest), [ninetailskim](https://github.com/ninetailskim), [edencfc](https://github.com/edencfc), [BeyondYourself](https://github.com/BeyondYourself) and [1084667371](https://github.com/1084667371) for contributing a new data annotation tool, i.e., PPOCRLabel。