README.md 13.0 KB
Newer Older
W
WenmuZhou 已提交
1 2 3
English | [简体中文](README_ch.md)

## Introduction
L
LDOUBLEV 已提交
4
PaddleOCR aims to create multilingual, awesome, leading, and practical OCR tools that help users train better models and apply them into practice.
W
WenmuZhou 已提交
5 6

**Recent updates**
L
LDOUBLEV 已提交
7
- 2020.11.25 Update a new data annotation tool, i.e., [PPOCRLabel](./PPOCRLabel/README_en.md), which is helpful to improve the labeling efficiency. Moreover, the labeling results can be used in training of the PP-OCR system directly.
W
WenmuZhou 已提交
8
- 2020.9.22 Update the PP-OCR technical article, https://arxiv.org/abs/2009.09941
L
LDOUBLEV 已提交
9
- 2020.9.19 Update the ultra lightweight compressed ppocr_mobile_slim series models, the overall model size is 3.5M (see [PP-OCR Pipeline](#PP-OCR-Pipeline)), suitable for mobile deployment. [Model Downloads](#Supported-Chinese-model-list)
W
WenmuZhou 已提交
10
- 2020.9.17 Update the ultra lightweight ppocr_mobile series and general ppocr_server series Chinese and English ocr models, which are comparable to commercial effects. [Model Downloads](#Supported-Chinese-model-list)
L
LDOUBLEV 已提交
11 12
- 2020.9.17 update [English recognition model](./doc/doc_en/models_list_en.md#english-recognition-model) and [Multilingual recognition model](doc/doc_en/models_list_en.md#english-recognition-model), `English`, `Chinese`, `German`, `French`, `Japanese` and `Korean` have been supported. Models for more languages will continue to be updated.
- 2020.8.24 Support the use of PaddleOCR through whl package installation,please refer  [PaddleOCR Package](./doc/doc_en/whl_en.md)
W
WenmuZhou 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
- 2020.8.21 Update the replay and PPT of the live lesson at Bilibili on August 18, lesson 2, easy to learn and use OCR tool spree. [Get Address](https://aistudio.baidu.com/aistudio/education/group/info/1519)
- [more](./doc/doc_en/update_en.md)

## Features
- PPOCR series of high-quality pre-trained models, comparable to commercial effects
    - Ultra lightweight ppocr_mobile series models: detection (2.6M) + direction classifier (0.9M) + recognition (4.6M) = 8.1M
    - General ppocr_server series models: detection (47.2M) + direction classifier (0.9M) + recognition (107M) = 155.1M
    - Ultra lightweight compression ppocr_mobile_slim series models: detection (1.4M) + direction classifier (0.5M) + recognition (1.6M) = 3.5M
- Support Chinese, English, and digit recognition, vertical text recognition, and long text recognition
- Support multi-language recognition: Korean, Japanese, German, French
- Support user-defined training, provides rich predictive inference deployment solutions
- Support PIP installation, easy to use
- Support Linux, Windows, MacOS and other systems

## Visualization
28

W
WenmuZhou 已提交
29 30 31 32 33 34
<div align="center">
    <img src="doc/imgs_results/1101.jpg" width="800">
    <img src="doc/imgs_results/1103.jpg" width="800">
</div>

The above pictures are the visualizations of the general ppocr_server model. For more effect pictures, please see [More visualizations](./doc/doc_en/visualization_en.md).
D
dyning 已提交
35

L
LDOUBLEV 已提交
36 37 38 39 40 41 42 43 44
<a name="Community"></a>
## Community
- Scan the QR code below with your Wechat, you can access to official technical exchange group. Look forward to your participation.

<div align="center">
<img src="./doc/joinus.PNG"  width = "200" height = "200" />
</div>


W
WenmuZhou 已提交
45
## Quick Experience
D
dyning 已提交
46

W
WenmuZhou 已提交
47
You can also quickly experience the ultra-lightweight OCR : [Online Experience](https://www.paddlepaddle.org.cn/hub/scene/ocr)
D
dyning 已提交
48

W
WenmuZhou 已提交
49
Mobile DEMO experience (based on EasyEdge and Paddle-Lite, supports iOS and Android systems): [Sign in to the website to obtain the QR code for  installing the App](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)
T
tink2123 已提交
50

W
WenmuZhou 已提交
51
 Also, you can scan the QR code below to install the App (**Android support only**)
L
LDOUBLEV 已提交
52

G
grasswolfs 已提交
53
<div align="center">
W
WenmuZhou 已提交
54
<img src="./doc/ocr-android-easyedge.png"  width = "200" height = "200" />
G
grasswolfs 已提交
55
</div>
D
dyning 已提交
56

W
WenmuZhou 已提交
57 58 59 60
- [**OCR Quick Start**](./doc/doc_en/quickstart_en.md)

<a name="Supported-Chinese-model-list"></a>

L
LDOUBLEV 已提交
61
## PP-OCR 2.0 series model list(Update on Sep 17)
W
WenmuZhou 已提交
62 63 64

| Model introduction                                           | Model name                   | Recommended scene | Detection model                                              | Direction classifier                                         | Recognition model                                            |
| ------------------------------------------------------------ | ---------------------------- | ----------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
L
LDOUBLEV 已提交
65 66 67
| Chinese and English ultra-lightweight OCR model (8.1M)       | ch_ppocr_mobile_v2.0_xx      | Mobile & server   |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar)      |
| Chinese and English general OCR model (143M)               | ch_ppocr_server_v2.0_xx      | Server            |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar)    |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_traingit.tar)    |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar)  |  

W
WenmuZhou 已提交
68

L
LDOUBLEV 已提交
69
For more model downloads (including multiple languages), please refer to [PP-OCR v2.0 series model downloads](./doc/doc_en/models_list_en.md).
W
WenmuZhou 已提交
70

L
LDOUBLEV 已提交
71
For a new language request, please refer to [Guideline for new language_requests](#language_requests).
W
WenmuZhou 已提交
72 73 74 75 76

## Tutorials
- [Installation](./doc/doc_en/installation_en.md)
- [Quick Start](./doc/doc_en/quickstart_en.md)
- [Code Structure](./doc/doc_en/tree_en.md)
L
LDOUBLEV 已提交
77
- Algorithm Introduction
W
WenmuZhou 已提交
78 79
    - [Text Detection Algorithm](./doc/doc_en/algorithm_overview_en.md)
    - [Text Recognition Algorithm](./doc/doc_en/algorithm_overview_en.md)
L
LDOUBLEV 已提交
80 81
    - [PP-OCR Pipeline](#PP-OCR-Pipeline)
- Model Training/Evaluation
W
WenmuZhou 已提交
82 83 84 85 86
    - [Text Detection](./doc/doc_en/detection_en.md)
    - [Text Recognition](./doc/doc_en/recognition_en.md)
    - [Direction Classification](./doc/doc_en/angle_class_en.md)
    - [Yml Configuration](./doc/doc_en/config_en.md)
- Inference and Deployment
L
LDOUBLEV 已提交
87
    - [Quick Inference Based on PIP](./doc/doc_en/whl_en.md)
W
WenmuZhou 已提交
88 89 90
    - [Python Inference](./doc/doc_en/inference_en.md)
    - [C++ Inference](./deploy/cpp_infer/readme_en.md)
    - [Serving](./deploy/hubserving/readme_en.md)
L
LDOUBLEV 已提交
91 92 93 94 95 96 97 98
    - [Mobile](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/lite/readme_en.md)
    - [Model Quantization](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/slim/quantization/README_en.md)
    - [Model Compression](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/slim/prune/README_en.md)
    - [Benchmark](./doc/doc_en/benchmark_en.md)  
- Data Annotation and Synthesis
    - [Semi-automatic Annotation Tool](./PPOCRLabel/README_en.md)
    - [Data Annotation Tools](./doc/doc_en/data_annotation_en.md)
    - [Data Synthesis Tools](./doc/doc_en/data_synthesis_en.md)
W
WenmuZhou 已提交
99 100 101 102 103
- Datasets
    - [General OCR Datasets(Chinese/English)](./doc/doc_en/datasets_en.md)
    - [HandWritten_OCR_Datasets(Chinese)](./doc/doc_en/handwritten_datasets_en.md)
    - [Various OCR Datasets(multilingual)](./doc/doc_en/vertical_and_multilingual_datasets_en.md)
- [Visualization](#Visualization)
L
LDOUBLEV 已提交
104
- [New language requests](#language_requests)
W
WenmuZhou 已提交
105 106 107 108 109 110
- [FAQ](./doc/doc_en/FAQ_en.md)
- [Community](#Community)
- [References](./doc/doc_en/reference_en.md)
- [License](#LICENSE)
- [Contribution](#CONTRIBUTION)

L
LDOUBLEV 已提交
111 112 113 114
***Note: The dynamic graphs branch is still under development.
Currently, only dynamic graph training, python-end prediction, and C++ prediction are supported.
If you need mobile-end deployment cases or quantitative demo,
please use the static graph branch.***
W
WenmuZhou 已提交
115

L
LDOUBLEV 已提交
116 117 118 119

<a name="PP-OCR-Pipeline"></a>

## PP-OCR Pipeline
D
dyning 已提交
120 121

<div align="center">
W
WenmuZhou 已提交
122
    <img src="./doc/ppocr_framework.png" width="800">
D
dyning 已提交
123 124
</div>

W
WenmuZhou 已提交
125 126
PP-OCR is a practical ultra-lightweight OCR system. It is mainly composed of three parts: DB text detection, detection frame correction and CRNN text recognition. The system adopts 19 effective strategies from 8 aspects including backbone network selection and adjustment, prediction head design, data augmentation, learning rate transformation strategy, regularization parameter selection, pre-training model use, and automatic model tailoring and quantization to optimize and slim down the models of each module. The final results are an ultra-lightweight Chinese and English OCR model with an overall size of 3.5M and a 2.8M English digital OCR model. For more details, please refer to the PP-OCR technical article (https://arxiv.org/abs/2009.09941). Besides, The implementation of the FPGM Pruner and PACT quantization is based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim).

D
dyning 已提交
127

T
tink2123 已提交
128

W
WenmuZhou 已提交
129 130
## Visualization [more](./doc/doc_en/visualization_en.md)
- Chinese OCR model
D
dyning 已提交
131
<div align="center">
L
LDOUBLEV 已提交
132 133 134 135
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/00056221.jpg" width="800">
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/00175408.jpg" width="800">
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/00057937.jpg" width="800">
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/rotate_00052204.jpg" width="800">
D
dyning 已提交
136
</div>
T
tink2123 已提交
137

W
WenmuZhou 已提交
138
- English OCR model
D
dyning 已提交
139
<div align="center">
W
WenmuZhou 已提交
140
    <img src="./doc/imgs_results/img_12.jpg" width="800">
D
dyning 已提交
141
</div>
142

W
WenmuZhou 已提交
143
- Multilingual OCR model
D
dyning 已提交
144
<div align="center">
W
WenmuZhou 已提交
145
    <img src="./doc/imgs_results/1110.jpg" width="800">
L
LDOUBLEV 已提交
146
    <img src="./doc/imgs_results/korean.jpg" width="800">
D
dyning 已提交
147
</div>
T
tink2123 已提交
148

D
dyning 已提交
149

L
LDOUBLEV 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
<a name="language_requests"></a>
## Guideline for new language requests

If you want to request a new language support, a PR with 2 following files are needed:

1. In folder [ppocr/utils/dict](https://github.com/PaddlePaddle/PaddleOCR/tree/develop/ppocr/utils/dict),
it is necessary to submit the dict text to this path and name it with `{language}_dict.txt` that contains a list of all characters. Please see the format example from other files in that folder.

2. In folder [ppocr/utils/corpus](https://github.com/PaddlePaddle/PaddleOCR/tree/develop/ppocr/utils/corpus),
it is necessary to submit the corpus to this path and name it with `{language}_corpus.txt` that contains a list of words in your language.
Maybe, 50000 words per language is necessary at least.
Of course, the more, the better.

If your language has unique elements, please tell me in advance within any way, such as useful links, wikipedia and so on.

More details, please refer to [Multilingual OCR Development Plan](https://github.com/PaddlePaddle/PaddleOCR/issues/1048).

M
MissPenguin 已提交
167

W
WenmuZhou 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
<a name="LICENSE"></a>
## License
This project is released under <a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>

<a name="CONTRIBUTION"></a>
## Contribution
We welcome all the contributions to PaddleOCR and appreciate for your feedback very much.

- Many thanks to [Khanh Tran](https://github.com/xxxpsyduck) and [Karl Horky](https://github.com/karlhorky) for contributing and revising the English documentation.
- Many thanks to [zhangxin](https://github.com/ZhangXinNan) for contributing the new visualize function、add .gitgnore and discard set PYTHONPATH manually.
- Many thanks to [lyl120117](https://github.com/lyl120117) for contributing the code for printing the network structure.
- Thanks [xiangyubo](https://github.com/xiangyubo) for contributing the handwritten Chinese OCR datasets.
- Thanks [authorfu](https://github.com/authorfu) for contributing Android demo  and [xiadeye](https://github.com/xiadeye) contributing iOS demo, respectively.
- Thanks [BeyondYourself](https://github.com/BeyondYourself) for contributing many great suggestions and simplifying part of the code style.
- Thanks [tangmq](https://gitee.com/tangmq) for contributing Dockerized deployment services to PaddleOCR and supporting the rapid release of callable Restful API services.
L
LDOUBLEV 已提交
183 184 185 186
- Thanks [lijinhan](https://github.com/lijinhan) for contributing a new way, i.e., java SpringBoot, to achieve the request for the Hubserving deployment.
- Thanks [Mejans](https://github.com/Mejans) for contributing the Occitan corpus and character set.
- Thanks [LKKlein](https://github.com/LKKlein) for contributing a new deploying package with the Golang program language.
- Thanks [Evezerest](https://github.com/Evezerest), [ninetailskim](https://github.com/ninetailskim), [edencfc](https://github.com/edencfc), [BeyondYourself](https://github.com/BeyondYourself) and [1084667371](https://github.com/1084667371) for contributing a new data annotation tool, i.e., PPOCRLabel。