README.md 12.1 KB
Newer Older
W
WenmuZhou 已提交
1 2 3
English | [简体中文](README_ch.md)

## Introduction
L
LDOUBLEV 已提交
4
PaddleOCR aims to create multilingual, awesome, leading, and practical OCR tools that help users train better models and apply them into practice.
W
WenmuZhou 已提交
5

G
grasswolfs 已提交
6 7
## Notice
PaddleOCR supports both dynamic graph and static graph programming paradigm
M
MissPenguin 已提交
8
- Dynamic graph: dygraph branch (default), **supported by paddle 2.0rc1+ ([installation](./doc/doc_en/installation_en.md))**
G
grasswolfs 已提交
9 10
- Static graph: develop branch

W
WenmuZhou 已提交
11
**Recent updates**
M
MissPenguin 已提交
12
- 2020.12.15 update Data synthesis tool, i.e., [Style-Text](./StyleText/README.md),easy to synthesize a large number of images which are similar to the target scene image.
G
grasswolfs 已提交
13
- 2020.11.25 Update a new data annotation tool, i.e., [PPOCRLabel](./PPOCRLabel/README.md), which is helpful to improve the labeling efficiency. Moreover, the labeling results can be used in training of the PP-OCR system directly.
W
WenmuZhou 已提交
14 15 16 17 18
- 2020.9.22 Update the PP-OCR technical article, https://arxiv.org/abs/2009.09941
- [more](./doc/doc_en/update_en.md)

## Features
- PPOCR series of high-quality pre-trained models, comparable to commercial effects
G
grasswolfs 已提交
19 20 21 22
    - Ultra lightweight ppocr_mobile series models: detection (3.0M) + direction classifier (1.4M) + recognition (5.0M) = 9.4M
    - General ppocr_server series models: detection (47.1M) + direction classifier (1.4M) + recognition (94.9M) = 143.4M
    - Support Chinese, English, and digit recognition, vertical text recognition, and long text recognition
    - Support multi-language recognition: Korean, Japanese, German, French
G
grasswolfs 已提交
23
- Rich toolkits related to the OCR areas
G
grasswolfs 已提交
24 25
    - Semi-automatic data annotation tool, i.e., PPOCRLabel: support fast and efficient data annotation
    - Data synthesis tool, i.e., Style-Text: easy to synthesize a large number of images which are similar to the target scene image
W
WenmuZhou 已提交
26 27 28 29 30
- Support user-defined training, provides rich predictive inference deployment solutions
- Support PIP installation, easy to use
- Support Linux, Windows, MacOS and other systems

## Visualization
31

W
WenmuZhou 已提交
32
<div align="center">
L
LDOUBLEV 已提交
33 34
    <img src="doc/imgs_results/ch_ppocr_mobile_v2.0/test_add_91.jpg" width="800">
    <img src="doc/imgs_results/ch_ppocr_mobile_v2.0/00018069.jpg" width="800">
W
WenmuZhou 已提交
35 36 37
</div>

The above pictures are the visualizations of the general ppocr_server model. For more effect pictures, please see [More visualizations](./doc/doc_en/visualization_en.md).
D
dyning 已提交
38

L
LDOUBLEV 已提交
39 40 41 42 43 44 45 46 47
<a name="Community"></a>
## Community
- Scan the QR code below with your Wechat, you can access to official technical exchange group. Look forward to your participation.

<div align="center">
<img src="./doc/joinus.PNG"  width = "200" height = "200" />
</div>


W
WenmuZhou 已提交
48
## Quick Experience
D
dyning 已提交
49

W
WenmuZhou 已提交
50
You can also quickly experience the ultra-lightweight OCR : [Online Experience](https://www.paddlepaddle.org.cn/hub/scene/ocr)
D
dyning 已提交
51

W
WenmuZhou 已提交
52
Mobile DEMO experience (based on EasyEdge and Paddle-Lite, supports iOS and Android systems): [Sign in to the website to obtain the QR code for  installing the App](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)
T
tink2123 已提交
53

W
WenmuZhou 已提交
54
 Also, you can scan the QR code below to install the App (**Android support only**)
L
LDOUBLEV 已提交
55

G
grasswolfs 已提交
56
<div align="center">
W
WenmuZhou 已提交
57
<img src="./doc/ocr-android-easyedge.png"  width = "200" height = "200" />
G
grasswolfs 已提交
58
</div>
D
dyning 已提交
59

W
WenmuZhou 已提交
60 61 62 63
- [**OCR Quick Start**](./doc/doc_en/quickstart_en.md)

<a name="Supported-Chinese-model-list"></a>

L
LDOUBLEV 已提交
64

T
tink2123 已提交
65
## PP-OCR 2.0 series model list(Update on Dec 15)
M
MissPenguin 已提交
66
**Note** : Compared with models 1.1, which are trained with static graph programming paradigm, models 2.0 are the dynamic graph trained version and achieve close performance.
W
WenmuZhou 已提交
67 68 69

| Model introduction                                           | Model name                   | Recommended scene | Detection model                                              | Direction classifier                                         | Recognition model                                            |
| ------------------------------------------------------------ | ---------------------------- | ----------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
G
grasswolfs 已提交
70 71
| Chinese and English ultra-lightweight OCR model (9.4M)       | ch_ppocr_mobile_v2.0_xx      | Mobile & server   |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar)      |
| Chinese and English general OCR model (143.4M)               | ch_ppocr_server_v2.0_xx      | Server            |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar)    |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_traingit.tar)    |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar)  |  
L
LDOUBLEV 已提交
72

W
WenmuZhou 已提交
73

L
LDOUBLEV 已提交
74
For more model downloads (including multiple languages), please refer to [PP-OCR v2.0 series model downloads](./doc/doc_en/models_list_en.md).
W
WenmuZhou 已提交
75

L
LDOUBLEV 已提交
76
For a new language request, please refer to [Guideline for new language_requests](#language_requests).
W
WenmuZhou 已提交
77 78 79 80 81

## Tutorials
- [Installation](./doc/doc_en/installation_en.md)
- [Quick Start](./doc/doc_en/quickstart_en.md)
- [Code Structure](./doc/doc_en/tree_en.md)
L
LDOUBLEV 已提交
82
- Algorithm Introduction
W
WenmuZhou 已提交
83 84
    - [Text Detection Algorithm](./doc/doc_en/algorithm_overview_en.md)
    - [Text Recognition Algorithm](./doc/doc_en/algorithm_overview_en.md)
L
LDOUBLEV 已提交
85 86
    - [PP-OCR Pipeline](#PP-OCR-Pipeline)
- Model Training/Evaluation
W
WenmuZhou 已提交
87 88 89 90 91
    - [Text Detection](./doc/doc_en/detection_en.md)
    - [Text Recognition](./doc/doc_en/recognition_en.md)
    - [Direction Classification](./doc/doc_en/angle_class_en.md)
    - [Yml Configuration](./doc/doc_en/config_en.md)
- Inference and Deployment
L
LDOUBLEV 已提交
92
    - [Quick Inference Based on PIP](./doc/doc_en/whl_en.md)
W
WenmuZhou 已提交
93 94 95
    - [Python Inference](./doc/doc_en/inference_en.md)
    - [C++ Inference](./deploy/cpp_infer/readme_en.md)
    - [Serving](./deploy/hubserving/readme_en.md)
L
LDOUBLEV 已提交
96 97 98
    - [Mobile](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/lite/readme_en.md)
    - [Benchmark](./doc/doc_en/benchmark_en.md)  
- Data Annotation and Synthesis
G
grasswolfs 已提交
99
    - [Semi-automatic Annotation Tool: PPOCRLabel](./PPOCRLabel/README.md)
D
dyning 已提交
100
    - [Data Synthesis Tool: Style-Text](./StyleText/README.md)
G
grasswolfs 已提交
101 102
    - [Other Data Annotation Tools](./doc/doc_en/data_annotation_en.md)
    - [Other Data Synthesis Tools](./doc/doc_en/data_synthesis_en.md)
W
WenmuZhou 已提交
103 104 105 106 107
- Datasets
    - [General OCR Datasets(Chinese/English)](./doc/doc_en/datasets_en.md)
    - [HandWritten_OCR_Datasets(Chinese)](./doc/doc_en/handwritten_datasets_en.md)
    - [Various OCR Datasets(multilingual)](./doc/doc_en/vertical_and_multilingual_datasets_en.md)
- [Visualization](#Visualization)
L
LDOUBLEV 已提交
108
- [New language requests](#language_requests)
W
WenmuZhou 已提交
109 110 111 112 113 114 115
- [FAQ](./doc/doc_en/FAQ_en.md)
- [Community](#Community)
- [References](./doc/doc_en/reference_en.md)
- [License](#LICENSE)
- [Contribution](#CONTRIBUTION)


L
LDOUBLEV 已提交
116 117 118 119

<a name="PP-OCR-Pipeline"></a>

## PP-OCR Pipeline
D
dyning 已提交
120 121

<div align="center">
W
WenmuZhou 已提交
122
    <img src="./doc/ppocr_framework.png" width="800">
D
dyning 已提交
123 124
</div>

W
WenmuZhou 已提交
125 126
PP-OCR is a practical ultra-lightweight OCR system. It is mainly composed of three parts: DB text detection, detection frame correction and CRNN text recognition. The system adopts 19 effective strategies from 8 aspects including backbone network selection and adjustment, prediction head design, data augmentation, learning rate transformation strategy, regularization parameter selection, pre-training model use, and automatic model tailoring and quantization to optimize and slim down the models of each module. The final results are an ultra-lightweight Chinese and English OCR model with an overall size of 3.5M and a 2.8M English digital OCR model. For more details, please refer to the PP-OCR technical article (https://arxiv.org/abs/2009.09941). Besides, The implementation of the FPGM Pruner and PACT quantization is based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim).

D
dyning 已提交
127

T
tink2123 已提交
128

W
WenmuZhou 已提交
129 130
## Visualization [more](./doc/doc_en/visualization_en.md)
- Chinese OCR model
D
dyning 已提交
131
<div align="center">
L
LDOUBLEV 已提交
132
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/test_add_91.jpg" width="800">
L
LDOUBLEV 已提交
133 134
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/00015504.jpg" width="800">
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/00056221.jpg" width="800">
L
LDOUBLEV 已提交
135
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/rotate_00052204.jpg" width="800">
D
dyning 已提交
136
</div>
T
tink2123 已提交
137

W
WenmuZhou 已提交
138
- English OCR model
D
dyning 已提交
139
<div align="center">
L
LDOUBLEV 已提交
140
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/img_12.jpg" width="800">
D
dyning 已提交
141
</div>
142

W
WenmuZhou 已提交
143
- Multilingual OCR model
D
dyning 已提交
144
<div align="center">
L
LDOUBLEV 已提交
145
    <img src="./doc/imgs_results/french_0.jpg" width="800">
L
LDOUBLEV 已提交
146
    <img src="./doc/imgs_results/korean.jpg" width="800">
D
dyning 已提交
147
</div>
T
tink2123 已提交
148

D
dyning 已提交
149

L
LDOUBLEV 已提交
150 151 152 153 154
<a name="language_requests"></a>
## Guideline for new language requests

If you want to request a new language support, a PR with 2 following files are needed:

G
grasswolfs 已提交
155
1. In folder [ppocr/utils/dict](./ppocr/utils/dict),
L
LDOUBLEV 已提交
156 157
it is necessary to submit the dict text to this path and name it with `{language}_dict.txt` that contains a list of all characters. Please see the format example from other files in that folder.

G
grasswolfs 已提交
158
2. In folder [ppocr/utils/corpus](./ppocr/utils/corpus),
L
LDOUBLEV 已提交
159 160 161 162 163 164 165 166
it is necessary to submit the corpus to this path and name it with `{language}_corpus.txt` that contains a list of words in your language.
Maybe, 50000 words per language is necessary at least.
Of course, the more, the better.

If your language has unique elements, please tell me in advance within any way, such as useful links, wikipedia and so on.

More details, please refer to [Multilingual OCR Development Plan](https://github.com/PaddlePaddle/PaddleOCR/issues/1048).

M
MissPenguin 已提交
167

W
WenmuZhou 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
<a name="LICENSE"></a>
## License
This project is released under <a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>

<a name="CONTRIBUTION"></a>
## Contribution
We welcome all the contributions to PaddleOCR and appreciate for your feedback very much.

- Many thanks to [Khanh Tran](https://github.com/xxxpsyduck) and [Karl Horky](https://github.com/karlhorky) for contributing and revising the English documentation.
- Many thanks to [zhangxin](https://github.com/ZhangXinNan) for contributing the new visualize function、add .gitgnore and discard set PYTHONPATH manually.
- Many thanks to [lyl120117](https://github.com/lyl120117) for contributing the code for printing the network structure.
- Thanks [xiangyubo](https://github.com/xiangyubo) for contributing the handwritten Chinese OCR datasets.
- Thanks [authorfu](https://github.com/authorfu) for contributing Android demo  and [xiadeye](https://github.com/xiadeye) contributing iOS demo, respectively.
- Thanks [BeyondYourself](https://github.com/BeyondYourself) for contributing many great suggestions and simplifying part of the code style.
- Thanks [tangmq](https://gitee.com/tangmq) for contributing Dockerized deployment services to PaddleOCR and supporting the rapid release of callable Restful API services.
L
LDOUBLEV 已提交
183 184 185 186
- Thanks [lijinhan](https://github.com/lijinhan) for contributing a new way, i.e., java SpringBoot, to achieve the request for the Hubserving deployment.
- Thanks [Mejans](https://github.com/Mejans) for contributing the Occitan corpus and character set.
- Thanks [LKKlein](https://github.com/LKKlein) for contributing a new deploying package with the Golang program language.
- Thanks [Evezerest](https://github.com/Evezerest), [ninetailskim](https://github.com/ninetailskim), [edencfc](https://github.com/edencfc), [BeyondYourself](https://github.com/BeyondYourself) and [1084667371](https://github.com/1084667371) for contributing a new data annotation tool, i.e., PPOCRLabel。